CN111420562A - 一种中空平板陶瓷膜及其制备方法 - Google Patents
一种中空平板陶瓷膜及其制备方法 Download PDFInfo
- Publication number
- CN111420562A CN111420562A CN202010194974.3A CN202010194974A CN111420562A CN 111420562 A CN111420562 A CN 111420562A CN 202010194974 A CN202010194974 A CN 202010194974A CN 111420562 A CN111420562 A CN 111420562A
- Authority
- CN
- China
- Prior art keywords
- support body
- membrane
- parts
- preparing
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/06—Flat membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0041—Inorganic membrane manufacture by agglomeration of particles in the dry state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0076—Pretreatment of inorganic membrane material prior to membrane formation, e.g. coating of metal powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/105—Support pretreatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
- C04B35/117—Composites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62204—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/063—Preparing or treating the raw materials individually or as batches
- C04B38/0635—Compounding ingredients
- C04B38/0645—Burnable, meltable, sublimable materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/063—Preparing or treating the raw materials individually or as batches
- C04B38/0635—Compounding ingredients
- C04B38/0645—Burnable, meltable, sublimable materials
- C04B38/067—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/063—Preparing or treating the raw materials individually or as batches
- C04B38/0635—Compounding ingredients
- C04B38/0645—Burnable, meltable, sublimable materials
- C04B38/068—Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
- C04B41/5037—Clay, Kaolin
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/12—Specific ratios of components used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/219—Specific solvent system
- B01D2323/22—Specific non-solvents or non-solvent system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/021—Pore shapes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/04—Characteristic thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/24—Mechanical properties, e.g. strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/025—Aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/349—Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Composite Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种中空平板陶瓷膜的制备方法,步骤包括支撑本体用球形氧化铝和微孔膜用球形氧化铝制备、支撑本体和微孔膜浆料制备、支撑本体坯体制备、支撑本体坯体干燥、支撑本体坯体烧结、支撑本体喷浆、陶瓷膜烧成。本发明还公开了一种中空平板陶瓷膜,包括一体化的支撑本体和微孔膜。本发明提供一种中空平板陶瓷膜的制备方法,将一般工业废弃物转化为附加值较高的工业分离产品,提高球形氧化铝生产企业的综合利用率。本发明还提供了一种中空平板陶瓷膜,可替代目前的有机平板膜、中空纤维膜或普通陶瓷平板膜,可以在苛刻的环境中使用,另一方面其机械强度较高,通量大且可以通过反向施压进行反冲洗,减少膜的清洗次数,提高膜的使用寿命。
Description
技术领域
本发明涉及水处理过滤、固~液化工分离中用的过滤分离膜元件,尤其涉及一种采用球形氧化铝废料作为原料的中空平板陶瓷膜的制备方法。
背景技术
在水处理、固~液化工膜分离装置中,起主要作用的是分离膜元件,它是膜分离技术的核心。例如膜生物反应器是一种结合生物处理和薄膜分离技术的污水处理装置,在原本布满微生物的反应槽内,增加生物膜组件使进流水除了与反应槽内的微生物接触并进行分解反应外,还同时使混合液在足够的压力差驱动下通过生物膜组的薄膜而产生过滤作用的处理技术,污染则被完全截留在反应槽内。
目前常用的膜生物反应器大都采用有机中空纤维膜,如聚乙烯中空纤维膜,但是有机膜存在机械、化学和热稳定性低的缺点,其不能化学冲洗及反冲洗,使其在苛刻体系中的应用受到限制。而多孔无机陶瓷膜由于具有优异的高分离效率、耐高温、耐溶剂、抗微生物、耐酸碱性、高机械强度及易清洗可再生等优点,可用于工艺过程中的分离、澄清、纯化、浓缩、除菌、除盐等。
另一方面,目前相关多孔无机陶瓷膜的生产制备多采用市面可购的无机粉体进行复配生产加工,其相关产品成品价格相对较高。而目前采用工业生产废弃物进行生产的相关综合利用思路也在不断发展。球铝生产废料是一种典型的工业生产废弃物,其性质相对特殊,采用普通工业废弃物的处置方法将极大削弱其材料价值。同时将该类放任流失到固废处理市场,既增加了企业负担,也极大的浪费了市场资源,与循环经济的现代化生产理念不相符。
发明内容
本发明为克服现有技术存在的问题,提供一种中空平板陶瓷膜的制备方法,以球形氧化铝废料为原料,可一般工业废弃物转化为附加值较高的工业分离产品,提高球形氧化铝生产企业的综合利用率,实现资源的回收利用。同时,本发明还提供了一种中空平板陶瓷膜,可替代目前的有机平板膜、中空纤维膜或普通陶瓷平板膜,一方面其耐酸碱腐蚀以及耐高温,可以在苛刻的环境中使用,另一方面其机械强度较高,通量大且可以通过反向施压进行反冲洗,减少膜的清洗次数,提高膜的使用寿命,从而解决了目前有机膜使用寿命不足的问题。
本发明采用的技术方案是:
一种中空平板陶瓷膜的制备方法,步骤包括,
S1.支撑本体用球形氧化铝制备:对球形氧化铝废料进行分级,获取其中3~50μm的物料,整形,整形后D50粒径为D1,D1取值于[5,20];
微孔膜用球形氧化铝制备:对球形氧化铝废料进行分级,获取其中3~10μm的物料,整形,整形后D50粒径为D2,D2取值于[0.3,3];
S2.支撑本体制备:以重量份计,支撑本体原料包括将陶瓷骨料60~80份、造孔剂5~15份、坯体粘结剂1~10份、聚乙二醇1~5份、水10~20份,所述陶瓷骨料包括支撑本体用球形氧化铝60~120份,氧化镁1~10份,高岭土1~10份;将支撑本体原料混合均匀后倒入真空练泥机中进行练泥,练泥次数1~6次,最后放入密闭容器中陈腐20~40h,得到支撑本体泥料;
微孔膜浆料制备:以重量份计,微孔膜浆料原料包括微孔膜用球形氧化铝50~60份、高岭土10~15份、钾长石5~10份、聚乙二醇1~3份、硅溶胶2~5份、水适量;将微孔膜浆料原料混均匀后放入球磨机内球磨2~4h,放出得到微孔膜浆料,控制微孔膜浆料含水率在40~50wt%;
S3.支撑本体坯体制备:陈腐的支撑本体泥料挤出成型,挤出温度在10~50℃,挤出速度0.2~3m/min,挤出压力5~15MPa,得到支撑本体坯体;
S4.支撑本体坯体干燥:对得到支撑本体坯体进行微波干燥,时间1~10min,然后放置于烘箱中继续干燥,温度50~100℃,时间2~12h;
S5.支撑本体坯体烧结:将干燥后的支撑本体坯进行烧结,温度1000~1700℃,时间2~4h,制得支撑本体;
S6.支撑本体喷浆:支撑本体表面吹扫,双面喷涂微孔膜浆料,单面喷浆次数2~3次,厚度20~100μm,喷浆后的支撑本体放入到烘箱中干燥,温度60~100℃,时间1~3h,将水分控制在0.5%以下,得到陶瓷膜坯;
S7.陶瓷膜烧成:将干燥后陶瓷膜坯进行烧结,温度1000~1300℃,时间1~3h,得到中空平板陶瓷膜。
进一步地,所述步骤S1中,球形氧化铝整形操作可采用球磨机、万能粉碎机或气流磨机进行,或者球磨机、万能粉碎机,气流磨机中两者或三者组合进行。
进一步地,步骤S2中,所述造孔剂为淀粉、石墨粉、活性炭粉、酚醛树脂微球、聚甲基丙烯酸甲酯微球或者聚苯乙烯微球中的一种,粒径0.5~2μm之间。
进一步地,步骤S2中,所述坯体粘结剂为甲基纤维素、羧甲基纤维素、聚乙烯醇、聚丙烯酰胺、阿拉伯树胶、海藻酸钠或者黄糊精中的一种。
中空平板陶瓷膜,由前述制备方法加工而成,包括
支撑本体,中空薄板结构,具有方形的贯通孔道,方形孔道尺寸为3~5*3~5mm,孔道壁厚1.5mm,孔隙率为30~50%,孔径分布0.5~5μm;
微孔膜,烧结后一体化附着在所述支撑本体两面,孔隙率为40~60%,孔径分布为0.01~0.5μm。
本发明的有益效果是:
1. 采用本发明中的中空陶瓷平板膜制备方法,可将现有企业排放的一般工业废弃物转化为附加值较高的工业分离产品,提高球形氧化铝生产企业的综合利用率,实现资源的回收利用。同时,改变了现有生产所用无机粉体的来源,极大的拓展了相关球铝生产废料的工业物料利用寿命,获取可观的收益。
2. 采用本发明中的中空陶瓷平板膜制备方法制备的中空平板陶瓷膜可替代目前的有机平板膜、中空纤维膜或普通陶瓷平板膜,一方面其耐酸碱腐蚀以及耐高温,可以在苛刻的环境中使用,另一方面其机械强度较高,通量大且可以通过反向施压进行反冲洗,减少膜的清洗次数,提高膜的使用寿命,从而解决了目前有机膜使用寿命不足的问题。膜层表面光滑,污物更容易脱落,解决普通陶瓷平板膜易污堵的缺陷。
3.本发明中的中空平板陶瓷膜,通过结构进行设计,由支撑本体和微孔膜经过烧结组合而成,微孔膜孔径较小可以分离较小的颗粒物质且不会影响液体向支撑本体方向流动,支撑本体孔径相对较大加速液体分离,两次分离操作可以保证固-液分离的效果。
4.本发明中的中空平板陶瓷膜,支撑本体和微孔膜均主要以球形氧化铝为主要原料,使得在最终的烧结过程中形成稳定可靠的整体。贯通多孔结构,不会影响微孔膜内的液体向支撑本体方向流动。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或有现技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1中的中空平板陶瓷膜的结构示意图。
图2为实施例2中的中空平板陶瓷膜微孔膜断面扫描电镜图。
图3为实施例2中的中空平板陶瓷膜端断面扫描电镜图。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。
下面结合附图对本发明/发明的实施例进行详细说明。
实施例1
中空平板陶瓷膜,其结构如附图1所示,结构包括微孔膜1和支撑本体2。微孔膜1和支撑本体2以球形氧化铝生产废料为主要原料加工而成。
支撑本体2,中空薄板结构,具有方形的贯通孔道,方形孔道尺寸为3~5*3~5mm,孔道壁厚1.5mm,孔隙率为30~50%,孔径分布0.5~5μm。
微孔膜1,烧结后一体化附着在支撑本体2两面,孔隙率为50~60%,孔径分布为0.01~0.5μm。
实施例二
一种中空平板陶瓷膜的制备方法,步骤包括,
S1.支撑本体用球形氧化铝制备:对球形氧化铝废料进行水力旋流筛分,获取其中3~50μm的物料,球磨机整形,整形后D50粒径为D1,D1取值于[5,20]。本实施例中D1=3μm;
微孔膜用球形氧化铝制备:对球形氧化铝废料进行水力旋流筛分,获取其中3~10μm的物料,球磨机整形,整形后D50粒径为D2,D2取值于[0.3,3]。本实施例中D2=0.3μm;
S2.支撑本体制备:以重量份计,支撑本体原料包括将陶瓷骨料60份、0.5μm 淀粉5份、甲基纤维素1份、聚乙二醇1份、水10份,陶瓷骨料包括支撑本体用球形氧化铝78份,1μm氧化镁1份,高岭土1份;将支撑本体原料混合均匀后倒入真空练泥机中进行练泥,练泥次数1次,最后放入密闭容器中陈腐20h,得到支撑本体泥料;
微孔膜浆料制备:以重量份计,微孔膜浆料原料包括微孔膜用球形氧化铝50份、高岭土10份、钾长石5份、聚乙二醇1份、硅溶胶2份、水适量;将微孔膜浆料原料混均匀后放入球磨机内球磨2h,放出得到微孔膜浆料,控制微孔膜浆料含水率在40~50wt%;
S3.支撑本体坯体制备:陈腐的支撑本体泥料挤出成型,挤出温度在10℃,挤出速度3m/min,挤出压力15MPa,得到支撑本体坯体;
S4.支撑本体坯体干燥:对得到支撑本体坯体进行微波干燥,时间1min,然后放置于烘箱中继续干燥,温度100℃,时间2h;
S5.支撑本体坯体烧结:将干燥后的支撑本体坯进行烧结,温度1000℃,时间2h,制得支撑本体;
S6.支撑本体喷浆:支撑本体表面吹扫,双面喷涂微孔膜浆料,单面喷浆次数3次,厚度100μm,喷浆后的支撑本体放入到烘箱中干燥,温度60℃,时间3h,水分0.1%,得到陶瓷膜坯;
S7.陶瓷膜烧成:将干燥后陶瓷膜坯进行烧结,温度1300℃,时间2h,得到中空平板陶瓷膜。
本实施例中,步骤S1中的支撑本体用球形氧化铝制备、微孔膜用球形氧化铝制备以及步骤S2支撑本体制备、微孔膜浆料制备没有先后顺序,可以根据实际情况进行调整。
采用本实施例中的方法制备的制得的中空平板陶瓷膜,支撑本体的孔隙率为30%,孔径分布0.5μm,微孔膜孔隙率为40%,孔径分布为0.04μm。
采用本实施例中的中空陶瓷平板膜制备方法,可将现有企业排放的一般工业废弃物转化为附加值较高的工业分离产品,提高球形氧化铝生产企业的综合利用率,实现资源的回收利用。
以球形氧化铝年产量为2000吨为例,现有企业有关球形氧化铝废料排放量约为6%~10%,即球形氧化铝生产废料年排放量约120吨~200吨。目前鉴于工业废弃物鉴定及类别筛选,此类废弃物一般定性为一般工业废弃物。参照一般工业废弃物市场处理价格约在100~300元/吨。因此企业为了消纳相关球形氧化铝生产废料需要支付年处理费用1.2万元~6万元。
采用本实施例中的中空陶瓷平板膜制备方法,可以实现球形氧化铝废料价值回收,避免浪费。该法可实现中空平板陶瓷膜生产2.5万平~4.5万平。以市场价80%折算,球形氧化铝生产废料转化产品可实现转化收益900万~1620万元,具备极高的价值。
本实施例中制备的中空陶瓷平板膜可用于水处理、空气分离等多种应用场合,因为其主要原材料是基于废料综合利用,可有效提升产品的综合性价比,促进产业发展。
本实施例中,微孔膜端面以及中空陶瓷平板膜的端面扫描电镜检测结果如附图2和3所示。从图中可以看出,本实施例中制备的中空陶瓷平板膜的支撑本体和微孔膜均以球形氧化铝为主要原料,其内部贯通孔道阻力小,可有效降低现有分离过滤产品的分离压降。
实施三
一种中空平板陶瓷膜的制备方法,步骤包括,
S1.支撑本体用球形氧化铝制备:对球形氧化铝废料进行空气旋流筛分,获取其中3~50μm的物料,球磨机整形,整形后D50粒径为D1 ,D1取值于[5,20]。本实施例中D1=30μm;
微孔膜用球形氧化铝制备:对球形氧化铝废料进行空气旋流筛分,获取其中3~10μm的物料,气流磨整形,整形后D50粒径为D2,D2取值于[0.3,3]。本实施例中D2=15μm;
S2.支撑本体制备:以重量份计,支撑本体原料包括将陶瓷骨料80份、2μm 活性炭15份、聚乙烯醇10份、聚乙二醇5份、水20份,陶瓷骨料包括支撑本体用球形氧化铝90份,氧化镁5份,高岭土5份;将支撑本体原料混合均匀后倒入真空练泥机中进行练泥,练泥次数6次,最后放入密闭容器中陈腐40h,得到支撑本体泥料;
微孔膜浆料制备:以重量份计,微孔膜浆料原料包括微孔膜用球形氧化铝50份、高岭土15份、钾长石10份、聚乙二醇3份、硅溶胶5份、水适量;将微孔膜浆料原料混均匀后放入球磨机内球磨4h,放出得到微孔膜浆料,控制微孔膜浆料含水率在50wt%;
S3.支撑本体坯体制备:陈腐的支撑本体泥料挤出成型,挤出温度在50℃,挤出速度3m/min,挤出压力5MPa,得到支撑本体坯体;
S4.支撑本体坯体干燥:对得到支撑本体坯体进行微波干燥,时间10min,然后放置于烘箱中继续干燥,温度50℃,时间12h;
S5.支撑本体坯体烧结:将干燥后的支撑本体坯进行烧结,温度1700℃,时间2h,制得支撑本体;
S6.支撑本体喷浆:支撑本体表面吹扫,双面喷涂微孔膜浆料,单面喷浆次数2次,厚度20μm,喷浆后的支撑本体放入到烘箱中干燥,温度100℃,时间3h,水分0.5%,得到陶瓷膜坯;
S7.陶瓷膜烧成:将干燥后陶瓷膜坯进行烧结,温度1300℃,时间3h,得到中空平板陶瓷膜。
采用本实施例中的方法制备的制得的中空平板陶瓷膜,支撑本体的孔隙率为50%,孔径分布5μm,微孔膜孔隙率为60%,孔径分布为0.5μm。
对采用上述制备方法得到的中空平板陶瓷膜进行定型,封装。将其用于生活污水MBR处理,经使用后,产水浊度为0.46NTU,产水SS为0.6mg/L。过滤跨膜压差为4kPa。此法制备的中空平板陶瓷膜与现有市面普通的MBR污水处理专用膜无明显差距(产水浊度一般在0.1NTU~2NTU,产水SS一般在0.1~2mg/L,跨膜压差一般在3~15kPa)。
实施例四
一种中空平板陶瓷膜的制备方法,步骤包括,
S1.支撑本体用球形氧化铝制备:对球形氧化铝废料进行空气旋流筛分,获取其中3~50μm的物料,球磨机整形,整形后D50粒径为D1,D1取值于[5,20]。本实施例中,D1=15μm;
微孔膜用球形氧化铝制备:对球形氧化铝废料进行空气旋流和水力旋流筛分,获取其中3~10μm的物料,球磨机整形,整形后D50粒径为D2,D2取值于[0.3,3]。本实施例中D2=3μm;
S2.支撑本体制备:以重量份计,支撑本体原料包括将陶瓷骨料76份、1μm 石墨粉13份、聚丙烯酰胺8份、聚乙二醇3份、水16份,陶瓷骨料包括支撑本体用球形氧化铝91份,氧化镁7份,高岭土6份;将支撑本体原料混合均匀后倒入真空练泥机中进行练泥,练泥次数4次,最后放入密闭容器中陈腐30h,得到支撑本体泥料;
微孔膜浆料制备:以重量份计,微孔膜浆料原料包括微孔膜用球形氧化铝50份、高岭土12份、钾长石11份、聚乙二醇2份、硅溶胶3份、水适量;将微孔膜浆料原料混均匀后放入球磨机内球磨4h,放出得到微孔膜浆料,控制微孔膜浆料含水率在50wt%;
S3.支撑本体坯体制备:陈腐的支撑本体泥料挤出成型,挤出温度在30℃,挤出速度1.5m/min,挤出压力8MPa,得到支撑本体坯体;
S4.支撑本体坯体干燥:对得到支撑本体坯体进行微波干燥,时间5min,然后放置于烘箱中继续干燥,温度70℃,时间6h;
S5.支撑本体坯体烧结:将干燥后的支撑本体坯进行烧结,温度1300℃,时间2h,制得支撑本体;
S6.支撑本体喷浆:支撑本体表面吹扫,双面喷涂微孔膜浆料,单面喷浆次数3次,厚度50μm,喷浆后的支撑本体放入到烘箱中干燥,温度70℃,时间2h,水分0.3%,得到陶瓷膜坯;
S7.陶瓷膜烧成:将干燥后陶瓷膜坯进行烧结,温度1200℃,时间5h,得到中空平板陶瓷膜。
采用本实施例中的方法制备的制得的中空平板陶瓷膜,支撑本体的孔隙率为46%,孔径分布2μm,微孔膜孔隙率为50%,孔径分布为0.3μm。
Claims (5)
1.一种中空平板陶瓷膜的制备方法,其特征在于,步骤包括,
S1.支撑本体用球形氧化铝制备:对球形氧化铝废料进行分级,获取其中3~50μm的物料,整形,整形后D50粒径为D1,D1取值于[5,20];
微孔膜用球形氧化铝制备:对球形氧化铝废料进行分级,获取其中3~10μm的物料,整形,整形后D50粒径为D2,D2取值于[0.3,3];
S2.支撑本体制备:以重量份计,支撑本体原料包括将陶瓷骨料60~80份、造孔剂5~15份、坯体粘结剂1~10份、聚乙二醇1~5份、水10~20份,所述陶瓷骨料包括支撑本体用球形氧化铝60~120份,氧化镁1~10份,高岭土1~10份;将支撑本体原料混合均匀后倒入真空练泥机中进行练泥,练泥次数1~6次,最后放入密闭容器中陈腐20~40h,得到支撑本体泥料;
微孔膜浆料制备:以重量份计,微孔膜浆料原料包括微孔膜用球形氧化铝50~60份、高岭土10~15份、钾长石5~10份、聚乙二醇1~3份、硅溶胶2~5份、水适量;将微孔膜浆料原料混均匀后放入球磨机内球磨2~4h,放出得到微孔膜浆料,控制微孔膜浆料含水率在40~50wt%;
S3.支撑本体坯体制备:陈腐的支撑本体泥料挤出成型,挤出温度在10~50℃,挤出速度0.2~3m/min,挤出压力5~15MPa,得到支撑本体坯体;
S4.支撑本体坯体干燥:对得到支撑本体坯体进行微波干燥,时间1~10min,然后放置于烘箱中继续干燥,温度50~100℃,时间2~12h;
S5.支撑本体坯体烧结:将干燥后的支撑本体坯进行烧结,温度1000~1700℃,时间2~4h,制得支撑本体;
S6.支撑本体喷浆:支撑本体表面吹扫,双面喷涂微孔膜浆料,单面喷浆次数2~3次,厚度20~100μm,喷浆后的支撑本体放入到烘箱中干燥,温度60~100℃,时间1~3h,将水分控制在0.5%以下,得到陶瓷膜坯;
S7.陶瓷膜烧成:将干燥后陶瓷膜坯进行烧结,温度1000~1300℃,时间1~3h,得到中空平板陶瓷膜。
2.根据权利要求1所述的中空平板陶瓷膜的制备方法,其特征在于,所述步骤S1中,球形氧化铝整形操作可采用球磨机、万能粉碎机或气流磨机进行,或者球磨机、万能粉碎机,气流磨机中两者或三者组合进行。
3.根据权利要求1所述的中空陶瓷平板膜的制备方法,其特征在于,步骤S2中,所述造孔剂为淀粉、石墨粉、活性炭粉、酚醛树脂微球、聚甲基丙烯酸甲酯微球或者聚苯乙烯微球中的一种,粒径0.5~2μm之间。
4.根据权利要求1所述的中空陶瓷平板膜的制备方法,其特征在于:步骤S2中,所述坯体粘结剂为甲基纤维素、羧甲基纤维素、聚乙烯醇、聚丙烯酰胺、阿拉伯树胶、海藻酸钠或者黄糊精中的一种。
5.由权利要求1~4中任意一项所述中空陶瓷平板膜的制备方法制备的中空平板陶瓷膜,其特征在于:包括
支撑本体,中空薄板结构,具有方形的贯通孔道,方形孔道尺寸为3~5*3~5mm,孔道壁厚1.5mm,孔隙率为30~50%,孔径分布0.5~5μm;
微孔膜,烧结后一体化附着在所述支撑本体两面,孔隙率为40~60%,孔径分布为0.01~0.2μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010194974.3A CN111420562A (zh) | 2020-03-19 | 2020-03-19 | 一种中空平板陶瓷膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010194974.3A CN111420562A (zh) | 2020-03-19 | 2020-03-19 | 一种中空平板陶瓷膜及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111420562A true CN111420562A (zh) | 2020-07-17 |
Family
ID=71549526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010194974.3A Withdrawn CN111420562A (zh) | 2020-03-19 | 2020-03-19 | 一种中空平板陶瓷膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111420562A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7004042B1 (ja) | 2020-08-21 | 2022-02-10 | 株式会社明電舎 | セラミック平膜 |
JP7004043B1 (ja) | 2020-08-21 | 2022-02-10 | 株式会社明電舎 | セラミック平膜 |
CN114133270A (zh) * | 2021-12-28 | 2022-03-04 | 攀枝花学院 | 中空平板陶瓷过滤膜及其制备方法 |
CN115340400A (zh) * | 2022-09-07 | 2022-11-15 | 湖南大学 | 一种陶瓷生坯及其制备方法和应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4746537A (en) * | 1985-01-09 | 1988-05-24 | Nippondenso Co., Ltd. | Method of coating porous ceramic structures with γ-alumina |
CN103623711A (zh) * | 2013-11-01 | 2014-03-12 | 郭庆 | 一种中空平板结构过滤陶瓷膜元件制备方法 |
EP3072853A1 (de) * | 2015-03-24 | 2016-09-28 | Real Alloy Germany GmbH | Verfahren zur herstellung von aluminiumoxid-kalzinaten |
CN106396643A (zh) * | 2016-09-14 | 2017-02-15 | 长沙市西欧电子科技有限公司 | 一种氧化铝陶瓷废弃物回收再利用的方法 |
CN106975369A (zh) * | 2017-05-05 | 2017-07-25 | 天津工业大学 | 一种用于油水分离的三氧化二铝陶瓷复合膜及其制备方法 |
CN110256059A (zh) * | 2019-06-12 | 2019-09-20 | 山东工业陶瓷研究设计院有限公司 | 一种高通量陶瓷平板膜及其制备方法 |
CN110483022A (zh) * | 2019-09-17 | 2019-11-22 | 东莞理工学院 | 一种环保高强多孔陶瓷膜支撑体及其制备方法 |
-
2020
- 2020-03-19 CN CN202010194974.3A patent/CN111420562A/zh not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4746537A (en) * | 1985-01-09 | 1988-05-24 | Nippondenso Co., Ltd. | Method of coating porous ceramic structures with γ-alumina |
CN103623711A (zh) * | 2013-11-01 | 2014-03-12 | 郭庆 | 一种中空平板结构过滤陶瓷膜元件制备方法 |
EP3072853A1 (de) * | 2015-03-24 | 2016-09-28 | Real Alloy Germany GmbH | Verfahren zur herstellung von aluminiumoxid-kalzinaten |
CN106396643A (zh) * | 2016-09-14 | 2017-02-15 | 长沙市西欧电子科技有限公司 | 一种氧化铝陶瓷废弃物回收再利用的方法 |
CN106975369A (zh) * | 2017-05-05 | 2017-07-25 | 天津工业大学 | 一种用于油水分离的三氧化二铝陶瓷复合膜及其制备方法 |
CN110256059A (zh) * | 2019-06-12 | 2019-09-20 | 山东工业陶瓷研究设计院有限公司 | 一种高通量陶瓷平板膜及其制备方法 |
CN110483022A (zh) * | 2019-09-17 | 2019-11-22 | 东莞理工学院 | 一种环保高强多孔陶瓷膜支撑体及其制备方法 |
Non-Patent Citations (1)
Title |
---|
刘学文: "《氧化铝基陶瓷膜的制备及应用研究》", 30 November 2016, 中国石油大学出版社 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7004042B1 (ja) | 2020-08-21 | 2022-02-10 | 株式会社明電舎 | セラミック平膜 |
JP7004043B1 (ja) | 2020-08-21 | 2022-02-10 | 株式会社明電舎 | セラミック平膜 |
JP2022035413A (ja) * | 2020-08-21 | 2022-03-04 | 株式会社明電舎 | セラミック平膜 |
JP2022035415A (ja) * | 2020-08-21 | 2022-03-04 | 株式会社明電舎 | セラミック平膜 |
CN114133270A (zh) * | 2021-12-28 | 2022-03-04 | 攀枝花学院 | 中空平板陶瓷过滤膜及其制备方法 |
CN115340400A (zh) * | 2022-09-07 | 2022-11-15 | 湖南大学 | 一种陶瓷生坯及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111420562A (zh) | 一种中空平板陶瓷膜及其制备方法 | |
CN110256059B (zh) | 一种高通量陶瓷平板膜及其制备方法 | |
CN102688700B (zh) | 一种平板结构多孔陶瓷膜支撑体及其制备方法 | |
CN107619281B (zh) | 一种低温烧结耐酸碱多孔碳化硅陶瓷支撑体的制备方法 | |
CN109876668B (zh) | 一种凹凸棒石基的陶瓷微滤膜制膜液 | |
CN101318808B (zh) | 高强度无机分离膜用多孔陶瓷支撑体 | |
CN113648848B (zh) | 一种中空平板陶瓷膜及其制备方法 | |
CN111545078A (zh) | 平板陶瓷膜及其制备方法 | |
CN111470869A (zh) | 一种基于高固含量碳化硅浆料的分离膜的制备方法 | |
CN105000871B (zh) | 一种多功能平板陶瓷膜及其制备工艺 | |
CN113563103A (zh) | 一种采用流延成型法制备梯度氧化铝多孔陶瓷的方法 | |
CN110559872B (zh) | 一种轴盘式旋转陶瓷膜的制备方法 | |
CN111393155A (zh) | 一种薄壁大孔径的堇青石蜂窝陶瓷载体及其制备方法 | |
CN109851328A (zh) | 一种高性能陶瓷平板膜支撑体的制备工艺 | |
CN115259861A (zh) | 一种高孔隙率多孔陶瓷膜支撑体及其制备方法 | |
CN101823885A (zh) | 一种由纳米TiO2和Al2O3组成的微孔陶瓷膜材料及其制备方法 | |
CN111747774A (zh) | 一种赤泥陶瓷膜支撑体及其制备方法和应用 | |
CN105837185A (zh) | 刚玉臭氧释放曝气器及其制作方法 | |
CN100471546C (zh) | 双控制膜层无机膜管及其制备方法 | |
CN110511005B (zh) | 一种轴盘式旋转陶瓷支撑体的制备方法 | |
CN100393638C (zh) | 一种石英微孔曝气器 | |
CN111662080A (zh) | 薄壁蜂窝scr催化剂及其混炼工艺 | |
CN114133270B (zh) | 中空平板陶瓷过滤膜及其制备方法 | |
CN115159957B (zh) | 用于生产煤基固废物多孔陶瓷的组合物、煤基固废物多孔陶瓷及其制备方法和应用 | |
CN112851390B (zh) | 铸钢用三维网络多孔陶瓷及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200717 |