CN111393153A - 一种制取陶瓷膜的方法 - Google Patents

一种制取陶瓷膜的方法 Download PDF

Info

Publication number
CN111393153A
CN111393153A CN202010204628.9A CN202010204628A CN111393153A CN 111393153 A CN111393153 A CN 111393153A CN 202010204628 A CN202010204628 A CN 202010204628A CN 111393153 A CN111393153 A CN 111393153A
Authority
CN
China
Prior art keywords
colloidal solution
ceramic membrane
base material
microgel
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010204628.9A
Other languages
English (en)
Inventor
章浩龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Yuda New Material Co ltd
Original Assignee
Zhejiang Yuda New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Yuda New Material Co ltd filed Critical Zhejiang Yuda New Material Co ltd
Priority to CN202010204628.9A priority Critical patent/CN111393153A/zh
Publication of CN111393153A publication Critical patent/CN111393153A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种制取陶瓷膜的方法,是以胶体溶液为原料,采用溶胶‑凝胶法制取陶瓷膜的。置于胶体溶液中的基材,其表面吸附胶体溶液中的微凝胶,微凝胶进一步堆积,使基材表面在胶体溶液中生成凝胶层,干燥该凝胶层得到陶瓷膜,其工艺步骤包括清理基材表面、加热胶体溶液至50~90℃,使胶体溶液中微凝胶的含量增加,然后胶体溶液浸泡基材或喷淋基材表面,在基材表面生成凝胶层,取出后用吹风或沥干方式减少基材从胶体溶液中移出时夹带的液体、自然晾干或加热干燥步骤。上述方法,工艺过程需控制参数较少,而所制得的陶瓷膜的质量更稳定。

Description

一种制取陶瓷膜的方法
技术领域
本发明属于新材料技术领域,涉及一种溶胶-凝胶法制取陶瓷膜的方法。
背景技术
陶瓷膜又称无机陶瓷膜,是以无机陶瓷材料经特殊工艺制备而形成的非对称膜。无机膜的制备方法很多,其中研究最多,工艺也最为成熟的方法是溶胶-凝胶法。溶胶-凝胶法起源于1846年,20世纪70年代起才被应用于材料的合成。溶胶-凝胶法制陶瓷膜具有工艺简便、设备要求低等优点,是目前制取陶瓷膜的主要方法之一。溶胶-凝胶法制膜技术中,最常见的是主要有喷涂法和浸渍提拉法。其中,喷涂法的主要工艺过程是将洗净的基板放到专用加热炉内,然后用专用喷枪以一定的压力和速度将溶胶喷至热的基板表面形成凝胶膜。薄膜的厚度受溶胶粘度、压力、喷涂速度和喷涂时间等多个参数的影响,且薄膜的均匀性取决于喷枪雾化溶胶成均匀细小液滴的效果。浸渍提拉法是将整个洗净的基板浸入预先制备好的溶胶之中,然后以精确控制的速度将基板平稳地从溶胶中提拉出来,在粘度和重力作用下基板表面形成一层均匀的液膜,紧接着溶剂迅速蒸发,于是附着在基板表面的溶胶迅速凝胶化而形成一层凝胶膜,经干燥制得陶瓷膜。浸渍提拉法对所需溶胶粘度、提拉速度等都有要求,薄膜的厚度取决于溶胶的浓度、粘度和提拉速度。但上述二种方法均存在着工艺参数控制要求高,陶瓷膜容易开裂等缺点。
王军等在《表面技术》第46卷第2期(2017年2月)发表的《浸渍式提拉法制备TiO2薄膜的微观结构和润湿性》文中介绍,以钛酸四丁酯为原料,乙醇为溶剂,采用溶胶-凝胶浸渍式提拉法,改变工艺参数(提拉次数、提拉速度),在玻璃衬底上制备了TiO2薄膜。文中也提到了,提拉1次的TiO2薄膜,薄膜中存在大量的微孔结构。而提拉3次时,局部出现了团簇,提拉4次,团簇面积增加,薄膜中出现了大量裂纹。从该文的介绍可以看出,提拉法存在着工艺复杂、对工艺参数控制的要求较高,膜的质量较难控制的问题。
发明内容
本发明的目的在于提出一种工艺简单、工艺参数容易控制的陶瓷膜的制造方法。
为了实现上述目的,本发明采用以下技术方案:一种制取陶瓷膜的方法,是以胶体溶液为原料,采用溶胶-凝胶法制取陶瓷膜的,它是把基材置于胶体溶液中,其表面吸附胶体溶液中的微凝胶,微凝胶进一步堆积,使基材表面在胶体溶液中生成凝胶层,干燥该凝胶层得到陶瓷膜,其具体工艺步骤为:
(1)清理基材表面;
(2)加热胶体溶液至50~90℃,使胶体溶液中微凝胶的含量增加;
(3)用步骤(2)得到的胶体溶液浸泡基材或者喷淋基材表面,使基材表面处于胶体溶液内,胶体溶液中的微凝胶沉积到基材表面上,并逐渐在基材表面生成凝胶层;
(4)把基材从胶体溶液中移出,并使用吹风或者沥干方式,减少基材从胶体溶液中移出时夹带的液体;
(5)通过自然晾干或加热干燥,使基材表面上的凝胶层干燥制得所述的陶瓷膜,所述加热干燥为热风干燥或焙烧处理。
上述制取陶瓷膜的方法,所述的胶体溶液是二氧化硅胶体溶液、氧化铝溶胶,所述的陶瓷膜是氧化硅陶瓷膜或氧化铝陶瓷膜,所述膜的厚度是50~900nm。所述的胶体溶液的浓度,以质量百分比浓度计算,其下限为0.1%,上限为胶体溶液能够稳定存在的最高浓度,优选为0.3~3%。步骤(2)所述的加热胶体溶液的温度,优选为60~75℃;所述的基材是玻璃、钢铁、铝板、合金材料和陶瓷膜支撑体。
采用了上述方法,通过简单的、容易控制的工艺过程,得到了一种质量稳定的陶瓷膜材料。
为了更充分了解本发明,进一步说明如下:
首先,本发明的凝胶是基材在胶体溶液内部时生成的,是在胶体溶液中自由移动的胶粒与微凝胶相互转换的动态平衡中,由微凝胶自由沉积到基材表面形成的,就是说,本发明方法的凝胶是在没有溶剂蒸发的状况下生成的。与本发明不同的是,溶胶-凝胶法现行二种工艺中,浸渍提拉法的凝胶是提拉出来的液膜通过溶剂蒸发生成的,而喷涂法的溶剂蒸发其实从溶胶喷射过程中就已经开始了,再然后溶胶到达被加热的基板表面时溶剂进一步蒸发生成凝胶。
而我们知道,溶胶干燥失去溶剂生成凝胶的过程中,存在许多影响凝胶和所成膜质量的因素,比如,不同部位由于蒸发速度不均匀引起的应力集中,又比如,溶胶干燥时,除了转变成凝胶外,还有可能生成另一种产物:结晶体。而混杂有即使很少量的微小结晶物的凝胶,在干燥过程中,往往会导致局部区域应力变大,大大增加了凝胶开裂的风险。
而使用本专利方法,因为少去了从溶胶到凝胶转换时强制脱溶剂的干燥过程,所以大大降低了因为凝胶开裂导致所成膜质量恶化的风险,也所以本专利方法对工艺过程的要求比提拉法要低的多,工艺更简单,工艺过程需控制参数较少,而所制得的陶瓷膜的质量更稳定。
具体实施方式
在具体实施例前,先分析下关于溶胶中微凝胶的问题。所谓的微凝胶,是溶胶内部从纳米级到近微米的凝胶团簇,是溶胶液体中具有交联结构的、多少不一的溶胶胶粒的聚集体。我们知道,所有胶体都是热力学的不稳定体系,由于胶粒的大比表面积和高表面能,胶粒有自动聚结在一起降低其表面能的趋势。但同时,由于Brown运动和表面荷电性,所以胶体又具有动力学的稳定性,也所以一般胶体往往有较长时间的稳定期。而处于稳定期的胶体内部,并不是每一个胶粒都是自由的单体,往往是,在一定区域里,一部分胶粒聚集生成微凝胶,而另一个区域里,一部分原来聚集在一起的微凝胶又重新分散生成单个的胶粒或者更小的微凝胶,这样形成一个相对稳定的动态平衡。当然,大致的,是越“新鲜”的胶体,其内部微凝胶越少,而随着胶体存放时间延长,生成微凝胶的速度大于微凝胶重新生成单个胶粒的速度,溶胶中微凝胶占比越来越多,然后进一步就是大量的微凝胶联成一个整体,胶体失去流动性失稳整体成为凝胶体。
所以说,即使平时看上去很稳定的胶体,内部往往也存在着部分微凝胶的,只是这些微凝胶与单个胶粒间存在着动态平衡。在本发明所述工艺步骤中,通过加热等方法,在保持胶体性状基本稳定的条件下,使胶体的稳定性有控制的下降,增加了溶胶中微凝胶的占比。同时,通过对基材表面的清洗和活化,生成的微凝胶更容易沉积到基材表面上去去,再由于基材表面活性基团(如羟基)与微凝胶基团的反应(如羟基间的脱水缩合反应),使沉积的微凝胶能更稳定的附着在基材表面上,达到了本发明的工艺要求。
特别说明下,按本专利方法制取陶瓷膜时,基材上沉积的凝胶的成分与胶体的成分并不完全一致,往往是胶体中胶粒对应的部分成分比例会较高,而作为胶体稳定剂的自由移动的离子含量会相对较少。这样,当用一批胶体溶液连续制取陶瓷膜后,胶体溶液的成分会发生变化,往往是胶体溶液中还有一定量的有效成分,但溶液已经不再适合继续制膜,包括制膜的效率会下降。
不再适宜制膜的旧胶体溶液,加热后可以用来清洗基材。
以下结合具体实施例对本发明的实施作进一步说明。
先说明下,本发明制膜的方法,工艺需要的胶体溶液制备,以及之后陶瓷膜的烧结等均都与现溶胶-凝胶法其他工艺方法相同,在本实施方式里不再赘述。
另外,关于膜厚的测试,因为不同的材质,测试膜厚的方法不尽相同,同时,即使是对同一种材质,不同测试设备得到的数据往往也不尽相同。在下述实施例中,就简单化的,也是相对更加容易一致的,采用称量膜重来估算膜厚。一般的,一种材料生成的膜的密度都变化不大,通过膜重往往就能大致估算出膜厚的。
实施例1
实验室用普通载玻片,依次用自来水、去离子水、无水乙醇洗净,再用3%KH560的95%乙醇溶液浸泡1小时,晾干,备用。
用铝溶胶,加去离子水稀释至氧化铝含量为0.1%,加热至90℃,把前述预处理好的载玻片放入。浸泡6分钟,取出后用N2送风吹干,自然干燥24小时后,检测涂膜的膜重为约0.1g/m2(折算为约50nm)。同时检测膜的附着力为0级,所制得的膜质量较好,而且还具有工艺简单、工艺过程容易控制的优点。
实施例2
用一种二氧化硅胶体溶液,加去离子水稀释至二氧化硅含量为2%,检测pH值为10.5,加热到50℃(保持恒温),把溶液分成二份,一份先连续浸泡铝板,检测同等工艺时间浸泡铝板涂膜膜重减半时,检测胶体溶液二氧化硅含量为约0.7%,pH值为10.7,停止继续浸泡铝板,把这个溶液作为清洗液,清洗新的铝板后,铝板备用。
另一份备好已加热好的胶体溶液连接喷淋装置,把前述清洗好的铝板放置到喷嘴对应位置,开启喷淋装置,使溶液连续、完全覆盖的喷淋到整个铝板上。喷淋10分钟后,关掉喷淋装置,取出铝板,沥干表面残余的胶体溶液,自然晾干0.5个小时后,放90℃烘箱60分钟,称重铝板涂膜的重量为约1g/m2(折算为约500nm)。同时检测膜的附着力为接近0级,所制得的膜质量较好,而且还具有工艺简单、工艺过程容易控制的优点。
这个实验说明铝板从胶体溶液中“拉出”的凝胶的成分与胶体溶液的成分并不完全一致,凝胶中二氧化硅的成分较高,而胶体中作为稳定剂的离子相对来较少,所以在连续浸泡处理铝板后,胶体溶液余下部分溶液的模数变大,pH值升高(从10.5提高到10.7)。
实施例3
铝合金样板,用二氧化硅含量为约0.3%,温度为60℃的胶体溶液清洗,然后继续泡在该清洗液中,备用。
取二氧化硅胶体溶液,加去离子水稀释至二氧化硅含量为3%,加热到60℃(保持恒温),连接喷淋装置,把前述清洗好的铝合金样板放置到喷嘴对应位置,开启喷淋装置,使溶液连续、完全覆盖的喷淋到整个样板上。喷淋2.5、5、7.5、10分钟后,分别取出样板,沥干表面残余的胶体溶液,自然晾干1个小时后,放120℃烘箱60分钟,称重样板涂膜的重量为约0.8、1.5、1.8、1.8g/m2(折算为约400、750、900、900nm)。同时检测膜的附着力均为0级到近0级,所制得的膜质量较好,而且还具有工艺简单、工艺过程容易控制的优点。
从这个实施例中可以看出,样板前期增重较快,后期增加不多,分析认为,开始是由于基材表面羟基较多,微凝胶沉积到基材表面,并且与基材表面羟基结合,所以膜重增加较快。当基材表面被凝胶完全覆盖后,新的微凝胶沉积到凝胶层上面,这时,微凝胶与凝胶层相互间的吸附力,与胶体溶液中微凝胶、胶粒间的吸附力相当,所以,这时开始出现有部分凝胶或者胶粒离开,而另一些微凝胶沉积,这样达到一种动态平衡。在其他条件不变时,基材上的膜重基本不再增加。当然,经历了这种动态平衡后的凝胶层,凝胶层的厚薄均匀度、薄涂层内部的应力分布等都会比较好,成膜后的缺陷也会相对较少。
实施例4
铁片用砂皮纸打磨,再用自来水洗净后,在含有氢氧化钠和亚硝酸钠的洗液中浸泡6分钟,用去离子水冲洗三遍,备用。
铝溶胶加去离子水稀释至氧化铝含量为0.3%,分成二份,一份加热至75℃,把前述洗净的铁片放入,浸泡5分钟,取出后甩干,自然干燥1小时后,热风干燥15分钟,称重铁片涂膜的重量为约0.3g/m2(折算为约100nm)。同时检测膜的附着力为接近0级,所制得的膜质量较好,而且还具有工艺简单、工艺过程容易控制的优点。
另一份同样0.3%的铝溶胶,不加热,测胶体溶液温度为20℃,用前同步处理备用的铁片,与前述一样的工艺处理:浸泡、取出甩干、自然干燥、热风干燥后,称重铁片与未处理前重量近似等重(小于本实验室天平的感量值,计算为小于0.1g/m2)。
这个实验说明在75℃处理时吸附在铁片上的是加热后沉积的微凝胶,因为如果是拉上的胶体溶液,那么因为在温度较低(20℃)时,胶体溶液的粘度更大些,拉上的液体会更多些。
实施例5
取二氧化硅胶体溶液,加去离子水稀释至二氧化硅含量为10%,加热到50℃。把自制的SiO2基平板陶瓷膜支撑体浸泡到其中,浸泡20分钟后,加热提高胶体溶液和其中的陶瓷膜支撑体的温度,10分钟后升到70℃,恒温,继续浸泡30分钟,把平板陶瓷膜支撑体从胶体溶液中取出,沥干,自然干燥24小时,送烘箱,以2℃/分钟的速度升温,到500℃恒温1小时,制得样品。检测平板陶瓷膜支撑体增重约4.5%,孔隙率从约50%降至约47%,孔径小于1μm。
说明:在70℃时,持续加热二氧化硅胶体溶液(不加样板),当胶体溶液浓度超过10%时,溶液中会有凝胶析出。

Claims (5)

1.一种制取陶瓷膜的方法,是以胶体溶液为原料,采用溶胶-凝胶法制取陶瓷膜的,其特征在于是置于胶体溶液中的基材,其表面吸附胶体溶液中的微凝胶,微凝胶进一步堆积,使基材表面在胶体溶液中生成凝胶层,干燥该凝胶层得到陶瓷膜,其具体工艺步骤为:
(1)清理基材表面;
(2)加热胶体溶液至50~90℃,使胶体溶液中微凝胶的含量增加;
(3)用步骤(2)得到的胶体溶液浸泡基材或者喷淋基材表面,使基材表面处于胶体溶液内,胶体溶液中的微凝胶沉积到基材表面上,并逐渐在基材表面生成凝胶层;
(4)把基材从胶体溶液中移出,并使用吹风或者沥干方式,减少基材从胶体溶液中移出时夹带的液体;
(5)通过自然晾干或加热干燥,使基材表面上的凝胶层干燥制得所述的陶瓷膜,所述加热干燥为热风干燥或焙烧处理。
2.根据权利要求1所述的制取陶瓷膜的方法,其特征在于所述的胶体溶液是二氧化硅胶体溶液、氧化铝溶胶,所述的陶瓷膜是氧化硅陶瓷膜或氧化铝陶瓷膜,所述膜的厚度是50~900nm。
3.根据权利要求1或2所述的制取陶瓷膜的方法,其特征在于所述的胶体溶液的浓度,以质量百分比浓度计算,其下限为0.1%,上限为胶体溶液能够稳定存在的最高浓度,优选为0.3~3%。
4.根据权利要求1或2所述的制取陶瓷膜的方法,其特征在于步骤(2)所述的加热胶体溶液的温度,优选为60~75℃。
5.根据权利要求1所述的制取陶瓷膜的方法,其特征在于所述的基材是玻璃、钢铁、铝板、合金材料和陶瓷膜支撑体。
CN202010204628.9A 2020-03-22 2020-03-22 一种制取陶瓷膜的方法 Pending CN111393153A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010204628.9A CN111393153A (zh) 2020-03-22 2020-03-22 一种制取陶瓷膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010204628.9A CN111393153A (zh) 2020-03-22 2020-03-22 一种制取陶瓷膜的方法

Publications (1)

Publication Number Publication Date
CN111393153A true CN111393153A (zh) 2020-07-10

Family

ID=71429101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010204628.9A Pending CN111393153A (zh) 2020-03-22 2020-03-22 一种制取陶瓷膜的方法

Country Status (1)

Country Link
CN (1) CN111393153A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HK1007889A1 (en) * 1995-03-22 1999-04-30 Univ Kingston Method for producing thick ceramic films by a sol gel coating process
CN101265123A (zh) * 2008-04-18 2008-09-17 南京工业大学 一种小孔径陶瓷膜的制备方法
CN104099557A (zh) * 2014-07-21 2014-10-15 兰州理工大学 无缺陷多孔陶瓷/Ti-Al合金复合膜的制备方法
CN107903071A (zh) * 2017-11-07 2018-04-13 上海亚澎新材料科技有限公司 高温耐蚀性涂层及其制备方法、及高温耐蚀性材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HK1007889A1 (en) * 1995-03-22 1999-04-30 Univ Kingston Method for producing thick ceramic films by a sol gel coating process
CN101265123A (zh) * 2008-04-18 2008-09-17 南京工业大学 一种小孔径陶瓷膜的制备方法
CN104099557A (zh) * 2014-07-21 2014-10-15 兰州理工大学 无缺陷多孔陶瓷/Ti-Al合金复合膜的制备方法
CN107903071A (zh) * 2017-11-07 2018-04-13 上海亚澎新材料科技有限公司 高温耐蚀性涂层及其制备方法、及高温耐蚀性材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
于琦: "《纳米氧化锌与金刚石复合结构的研究与应用》", 31 August 2016, 北京邮电大学出版社 *

Similar Documents

Publication Publication Date Title
CN101664646B (zh) 一种陶瓷超滤膜的制备方法及自动涂膜装置
CN103360080A (zh) 一种改进的溶胶-凝胶法制备陶瓷纳滤膜的方法
CN101407646B (zh) 一种透明疏水膜溶胶及其配制方法和镀制疏水膜方法
JP2014507686A (ja) 基板上に反射防止層を堆積させるための方法
CN106698966B (zh) 一种基于水滴模板法制备TiO2/SiO2薄膜的工艺
CN104906964B (zh) 一种晶种自组装负载支撑体合成高性能NaA型分子筛膜的制备方法
CN104961498A (zh) 一种耐高温抗氧化多相纳米陶瓷涂层的制备方法
US20100068404A1 (en) Draw-off coating apparatus for making coating articles, and/or methods of making coated articles using the same
CN111760467A (zh) 一种t型沸石分子筛膜的制备方法
CN111393153A (zh) 一种制取陶瓷膜的方法
JP4482679B2 (ja) 任意の表面特性及び表面形状を有する基体表面へのシリカ薄膜の製造方法及び複合構造体
WO2021104338A1 (zh) 分子筛膜的继代合成方法
JPH10221502A (ja) 光学薄膜の製造方法および光学薄膜
JP2016175073A (ja) 流体分離材料およびその製造方法
CN112844064A (zh) 一种双硅烷前体二氧化硅复合膜、其制备方法及应用
TWI477449B (zh) Method for producing zeolite film
CN111408287A (zh) 一种采用旋涂法在疏水介孔有机硅表面制备无缺陷微孔有机硅膜的方法
CN201596472U (zh) 一种自动涂膜装置
CN115178197B (zh) 一种超疏水亲油气凝胶及制备方法
RU2792616C1 (ru) Способ получения тонкопленочных покрытий на основе двойного оксида кобальта-никеля
CN112759951A (zh) 一种有序大孔二氧化硅涂层的制备方法
CN113698188B (zh) 以硅溶胶为原料制备矩形截面的二氧化硅纤维的方法
CN103288467B (zh) 一种复合陶瓷基板及其制备方法
RU2490074C1 (ru) Способ получения высокопористого покрытия на основе двойных оксидов кремния и никеля
US20040018301A1 (en) Process for improved inorganic polymerization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200710

WD01 Invention patent application deemed withdrawn after publication