CN111342345B - 一种GaAs基量子点激光器的制备方法 - Google Patents

一种GaAs基量子点激光器的制备方法 Download PDF

Info

Publication number
CN111342345B
CN111342345B CN201811545610.4A CN201811545610A CN111342345B CN 111342345 B CN111342345 B CN 111342345B CN 201811545610 A CN201811545610 A CN 201811545610A CN 111342345 B CN111342345 B CN 111342345B
Authority
CN
China
Prior art keywords
layer
waveguide layer
growing
quantum dot
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811545610.4A
Other languages
English (en)
Other versions
CN111342345A (zh
Inventor
张雨
张新
朱振
于军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Huaguang Optoelectronics Co Ltd
Original Assignee
Shandong Huaguang Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Huaguang Optoelectronics Co Ltd filed Critical Shandong Huaguang Optoelectronics Co Ltd
Priority to CN201811545610.4A priority Critical patent/CN111342345B/zh
Publication of CN111342345A publication Critical patent/CN111342345A/zh
Application granted granted Critical
Publication of CN111342345B publication Critical patent/CN111342345B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/3436Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on InGa(Al)P

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种GaAs基量子点激光器的制备方法,通过三次生长N波导层,生长第二N波导层时相对生长第一N波导层的Ga通入量提高,而生长第三N波导层时相对第二N波导层时降低,通过三次生长P波导层,生长第二P波导层时相对生长第一P波导层的Ga通入量提高,而生长第三P波导层时相对第二P波导层时降低,实现了在量子点有源区下方生长三层不同流量的GaInP的应力缓冲层,在量子点有源区上方生长三层不同流量的GaInP的应力缓冲层,减低限制性生长所带来的应力,为量子点的形成提供最佳生长条件,有利于量子点的形成和聚集密度,并且通过应力释放,提高提高激光器功率,降低阈值电流,提高量子点质量。

Description

一种GaAs基量子点激光器的制备方法
技术领域
本发明涉及半导体激光器技术领域,具体涉及一种GaAs基量子点激光器的制备方法。
背景技术
量子点是一种重要的低维半导体材料,其三个维度上的尺寸都不大于其对应的半导体材料的激子玻尔半径的两倍。量子点一般为球形或类球形,其直径常在2-20nm之间。常见的量子点由IV、II-VI,IV-VI或III-V元素组成。具体的例子有硅量子点、锗量子点、硫化镉量子点、硒化镉量子点、碲化镉量子点、硒化锌量子点、硫化铅量子点、硒化铅量子点、磷化铟量子点和砷化铟量子点等。
量子点是把导带电子、价带空穴及激子在三个空间方向上束缚住的半导体纳米结构。量子点,电子运动在三维空间都受到了限制,因此有时被称为“人造原子”、“超晶格”、“超原子”或“量子点原子”,是20世纪90年代提出来的一个新概念。这种约束可以归结于静电势(由外部的电极,掺杂,应变,杂质产生),两种不同半导体材料的界面(例如:在自组装量子点中),半导体的表面(例如:半导体纳米晶体),或者以上三者的结合。量子点具有分离的量子化的能谱。所对应的波函数在空间上位于量子点中,但延伸于数个晶格周期中。一个量子点具有少量的(1-100个)整数个的电子、空穴或空穴电子对,即其所带的电量是元电荷的整数倍。
量子点中载流子在材料中的运动受到三维限制,也就是说电子的能量在三个维度上都是量子化的。量子点具有类似于原子的分立能级,这使它的性质远比量子阱和量子线更为独特,各种量子化效应诸如量子尺寸效应、量子干涉效应、量子隧穿效应和库仑阻塞效应等更加显著。这些效应直接影响量子点的电子结构、输运和光学等各种物理性质,在新一代的量子器件中具有十分诱人的应用前景。如果量子点的最低两个分立量子能级的能量差大于几倍的kT(室温约26meV),那么就不会出现增益函数的热依赖特性,因此也不存在激光发射波长的热依赖特性,从而表现出极好的温度稳定性,不会导致由激光器随工作温度升高而造成的性能退化。这种具有类原子的态密度函数分布的量子点激光器具有比量子阱、量子线激光器更加优异的性能,如超低阈值电流密度、极高的阈值、电流密度温度稳定性、超高微分增益和极高的调制带宽等。
发明内容
本发明为了针对现有量子阱半导体激光器阈值较高,功率低等问题,提供了一种阀值较低、功率稳定的GaAs基量子点激光器的制备方法。
本发明克服其技术问题所采用的技术方案是:
一种GaAs基量子点激光器的制备方法,包括:
a)将GaAs衬底放入MOCVD设备的反应室中,在300-800℃的温度下生长一层GaAs缓冲层;
b)在400-800℃的温度下于GaAs缓冲层上方生长一层N限制层;
c)在650-800℃的温度下于N限制层上生长材料为不掺杂的GaInP的第一N波导层,其中Ga的通入流量为12.5sccm-25sccm;
d)保持650-800℃的温度,于第一N波导层上生长材料为不掺杂的GaInP的第二N波导层,其中Ga的通入流量为25sccm-37.5sccm;
e)保持650-800℃的温度,于第二N波导层上生长材料为不掺杂的GaInP的第三N波导层,其中Ga的通入流量为12.5sccm-25sccm;
f)在400-600℃的温度下于第三N波导层上生长量子点有源区;
g)在400-800℃的温度下于量子点有源区上生长材料为不掺杂的GaInP的第一P波导层,其中Ga的通入流量为12.5sccm-25sccm;
h)保持400-800℃的温度于第一P波导层上生长材料为不掺杂的GaInP的第二P波导层,其中Ga的通入流量为25sccm-37.5sccm;
i)保持400-800℃的温度于第二P波导层上生长材料为不掺杂的GaInP的第三P波导层,其中Ga的通入流量为12.5sccm-25sccm;
j)在400-800℃的温度下于第三P波导层上生长P限制层;
k)在400-830℃的温度下于P限制层上生长GaInP腐蚀阻挡层;
l)反应室中通入TMGa和AsH3在530-570℃的温度下于P限制层上生长GaAs接触层。
优选的,步骤a)中GaAs缓冲层的厚度为0.1-0.5um,生长GaAs缓冲层时的掺杂源为Si2H6,生长GaAs缓冲层时的载流子浓度为1E17cm3-5E18cm3
优选的,步骤b)中N限制层采用AlxGa1-xInP材料制作,其中0.1≤x≤0.6,生长N限制层的掺杂源为Si2H6,生长N限制层时的载流子浓度为5E17cm3-5E18cm3
优选的,步骤c)中第一N波导层的厚度为0.1-0.2um,步骤d)中第二N波导层的厚度为0.1-0.2um,步骤e)中第三N波导层的厚度为0.1-0.2um。
优选的,步骤f)中量子点有源区的厚度为0.05-0.5um,生长量子点有源区的材料为In1-xGaxAs或GaAs,其中0.01≤x≤0.5。
优选的,步骤g)中第一P波导层的厚度为0.1-0.2um,步骤h)中第二P波导层的厚度为0.1-0.2um,步骤i)中第三P波导层的厚度为0.1-0.2um。
优选的,步骤j)中P限制层采用AlxGa1-xInP材料制作,其中0.1≤x≤0.6,生长P限制层的掺杂源为DEZn或CBr4,生长P限制层时的载流子浓度为5E17cm3-5E18cm3
优选的,步骤k)中GaInP腐蚀阻挡层厚度为3-10um,生长GaInP腐蚀阻挡层时的载流子浓度为5E17cm3-5E18cm3
优选的,步骤l)中生长GaAs接触层的掺杂源为DEZn或CBr4
本发明的有益效果是:通过三次生长N波导层,生长第二N波导层时相对生长第一N波导层的Ga通入量提高,而生长第三N波导层时相对第二N波导层时降低,通过三次生长P波导层,生长第二P波导层时相对生长第一P波导层的Ga通入量提高,而生长第三P波导层时相对第二P波导层时降低,实现了在量子点有源区下方生长三层不同流量的GaInP的应力缓冲层,在量子点有源区上方生长三层不同流量的GaInP的应力缓冲层,减低限制性生长所带来的应力,为量子点的形成提供最佳生长条件,有利于量子点的形成和聚集密度,并且通过应力释放,提高提高激光器功率,降低阈值电流,提高量子点质量。
具体实施方式
下面对本发明做进一步说明。
一种GaAs基量子点激光器的制备方法,包括:
a)将GaAs衬底放入MOCVD设备的反应室中,在300-800℃的温度下生长一层GaAs缓冲层;
b)在400-800℃的温度下于GaAs缓冲层上方生长一层N限制层;
c)在650-800℃的温度下于N限制层上生长材料为不掺杂的GaInP的第一N波导层,其中Ga的通入流量为12.5sccm-25sccm;
d)保持650-800℃的温度,于第一N波导层上生长材料为不掺杂的GaInP的第二N波导层,其中Ga的通入流量为25sccm-37.5sccm;
e)保持650-800℃的温度,于第二N波导层上生长材料为不掺杂的GaInP的第三N波导层,其中Ga的通入流量为12.5sccm-25sccm;
f)在400-600℃的温度下于第三N波导层上生长量子点有源区;
g)在400-800℃的温度下于量子点有源区上生长材料为不掺杂的GaInP的第一P波导层,其中Ga的通入流量为12.5sccm-25sccm;
h)保持400-800℃的温度于第一P波导层上生长材料为不掺杂的GaInP的第二P波导层,其中Ga的通入流量为25sccm-37.5sccm;
i)保持400-800℃的温度于第二P波导层上生长材料为不掺杂的GaInP的第三P波导层,其中Ga的通入流量为12.5sccm-25sccm;
j)在400-800℃的温度下于第三P波导层上生长P限制层;
k)在400-830℃的温度下于P限制层上生长GaInP腐蚀阻挡层;
l)反应室中通入TMGa和AsH3在530-570℃的温度下于P限制层上生长GaAs接触层。
通过三次生长N波导层,生长第二N波导层时相对生长第一N波导层的Ga通入量提高,而生长第三N波导层时相对第二N波导层时降低,通过三次生长P波导层,生长第二P波导层时相对生长第一P波导层的Ga通入量提高,而生长第三P波导层时相对第二P波导层时降低,实现了在量子点有源区下方生长三层不同流量的GaInP的应力缓冲层,在量子点有源区上方生长三层不同流量的GaInP的应力缓冲层,减低限制性生长所带来的应力,为量子点的形成提供最佳生长条件,有利于量子点的形成和聚集密度,并且通过应力释放,提高提高激光器功率,降低阈值电流,提高量子点质量。
实施例1:
步骤a)中GaAs缓冲层的厚度为0.1-0.5um,生长GaAs缓冲层时的掺杂源为Si2H6,生长GaAs缓冲层时的载流子浓度为1E17cm3-5E18cm3
实施例2:
步骤b)中N限制层采用AlxGa1-xInP材料制作,其中0.1≤x≤0.6,通过优化x的取值范围提高量子点有源区的性能,生长N限制层的掺杂源为Si2H6,生长N限制层时的载流子浓度为5E17cm3-5E18cm3
实施例3:
步骤c)中第一N波导层的厚度为0.1-0.2um,步骤d)中第二N波导层的厚度为0.1-0.2um,步骤e)中第三N波导层的厚度为0.1-0.2um。
实施例4:
步骤f)中量子点有源区的厚度为0.05-0.5um,生长量子点有源区的材料为In1- xGaxAs或GaAs,其中0.01≤x≤0.5,通过优化x的取值范围提高量子点有源区的性能。
实施例5:
步骤g)中第一P波导层的厚度为0.1-0.2um,步骤h)中第二P波导层的厚度为0.1-0.2um,步骤i)中第三P波导层的厚度为0.1-0.2um。
实施例6:
步骤j)中P限制层采用AlxGa1-xInP材料制作,其中0.1≤x≤0.6,通过优化x的取值范围提高量子点有源区的性能,生长P限制层的掺杂源为DEZn或CBr4,生长P限制层时的载流子浓度为5E17cm3-5E18cm3
实施例7:
步骤k)中GaInP腐蚀阻挡层厚度为3-10um,生长GaInP腐蚀阻挡层时的载流子浓度为5E17cm3-5E18cm3
实施例8:
步骤l)中生长GaAs接触层的掺杂源为DEZn或CBr4

Claims (9)

1.一种GaAs基量子点激光器的制备方法,其特征在于,包括:
a)将GaAs衬底放入MOCVD设备的反应室中,在300-800℃的温度下生长一层GaAs缓冲层;
b)在400-800℃的温度下于GaAs缓冲层上方生长一层N限制层;
c)在650-800℃的温度下于N限制层上生长材料为不掺杂的GaInP的第一N波导层,其中Ga的通入流量为12.5sccm-25sccm;
d)保持650-800℃的温度,于第一N波导层上生长材料为不掺杂的GaInP的第二N波导层,其中Ga的通入流量为25sccm-37.5sccm;
e)保持650-800℃的温度,于第二N波导层上生长材料为不掺杂的GaInP的第三N波导层,其中Ga的通入流量为12.5sccm-25sccm;
f)在400-600℃的温度下于第三N波导层上生长量子点有源区;
g)在400-800℃的温度下于量子点有源区上生长材料为不掺杂的GaInP的第一P波导层,其中Ga的通入流量为12.5sccm-25sccm;
h)保持400-800℃的温度于第一P波导层上生长材料为不掺杂的GaInP的第二P波导层,其中Ga的通入流量为25sccm-37.5sccm;
i)保持400-800℃的温度于第二P波导层上生长材料为不掺杂的GaInP的第三P波导层,其中Ga的通入流量为12.5sccm-25sccm;
j)在400-800℃的温度下于第三P波导层上生长P限制层;
k)在400-830℃的温度下于P限制层上生长GaInP腐蚀阻挡层;
l)反应室中通入TMGa和AsH3在530-570℃的温度下于P限制层上生长GaAs接触层。
2.根据权利要求1所述的GaAs基量子点激光器的制备方法,其特征在于:步骤a)中GaAs缓冲层的厚度为0.1-0.5um,生长GaAs缓冲层时的掺杂源为Si2H6,生长GaAs缓冲层时的载流子浓度为1E17cm3-5E18cm3
3.根据权利要求1所述的GaAs基量子点激光器的制备方法,其特征在于:步骤b)中N限制层采用AlxGa1-xInP材料制作,其中0.1≤x≤0.6,生长N限制层的掺杂源为Si2H6,生长N限制层时的载流子浓度为5E17cm3-5E18cm3
4.根据权利要求1所述的GaAs基量子点激光器的制备方法,其特征在于:步骤c)中第一N波导层的厚度为0.1-0.2um,步骤d)中第二N波导层的厚度为0.1-0.2um,步骤e)中第三N波导层的厚度为0.1-0.2um。
5.根据权利要求1所述的GaAs基量子点激光器的制备方法,其特征在于:步骤f)中量子点有源区的厚度为0.05-0.5um,生长量子点有源区的材料为In1-xGaxAs或GaAs,其中0.01≤x≤0.5。
6.根据权利要求1所述的GaAs基量子点激光器的制备方法,其特征在于:步骤g)中第一P波导层的厚度为0.1-0.2um,步骤h)中第二P波导层的厚度为0.1-0.2um,步骤i)中第三P波导层的厚度为0.1-0.2um。
7.根据权利要求1所述的GaAs基量子点激光器的制备方法,其特征在于:步骤j)中P限制层采用AlxGa1-xInP材料制作,其中0.1≤x≤0.6,生长P限制层的掺杂源为DEZn或CBr4,生长P限制层时的载流子浓度为5E17cm3-5E18cm3
8.根据权利要求1所述的GaAs基量子点激光器的制备方法,其特征在于:步骤k)中GaInP腐蚀阻挡层厚度为3-10um,生长GaInP腐蚀阻挡层时的载流子浓度为5E17cm3-5E18cm3
9.根据权利要求1所述的GaAs基量子点激光器的制备方法,其特征在于:步骤l)中生长GaAs接触层的掺杂源为DEZn或CBr4
CN201811545610.4A 2018-12-18 2018-12-18 一种GaAs基量子点激光器的制备方法 Active CN111342345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811545610.4A CN111342345B (zh) 2018-12-18 2018-12-18 一种GaAs基量子点激光器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811545610.4A CN111342345B (zh) 2018-12-18 2018-12-18 一种GaAs基量子点激光器的制备方法

Publications (2)

Publication Number Publication Date
CN111342345A CN111342345A (zh) 2020-06-26
CN111342345B true CN111342345B (zh) 2021-05-07

Family

ID=71186894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811545610.4A Active CN111342345B (zh) 2018-12-18 2018-12-18 一种GaAs基量子点激光器的制备方法

Country Status (1)

Country Link
CN (1) CN111342345B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1825722A (zh) * 2005-02-25 2006-08-30 中国科学院半导体研究所 无铝1.3μm铟砷/镓砷量子点激光器
JP2008192799A (ja) * 2007-02-05 2008-08-21 Sony Corp 半導体発光素子およびこれを用いたレーザプロジェクタ
CN100511734C (zh) * 2005-08-31 2009-07-08 中国科学院半导体研究所 1.02-1.08微米波段InGaAs/GaAs量子点外延结构及其制造方法
CN102064472A (zh) * 2010-12-08 2011-05-18 中国科学院半导体研究所 InP基长波长2-3μm准量子点激光器结构
CN102414844A (zh) * 2009-04-28 2012-04-11 应用材料公司 Led的群集工具
CN108346973A (zh) * 2017-01-24 2018-07-31 山东华光光电子股份有限公司 一种基于AlGaAs/GaInP有源区的795nm量子阱激光器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694342B2 (ja) * 2005-10-14 2011-06-08 三菱電機株式会社 半導体レーザ装置およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1825722A (zh) * 2005-02-25 2006-08-30 中国科学院半导体研究所 无铝1.3μm铟砷/镓砷量子点激光器
CN100511734C (zh) * 2005-08-31 2009-07-08 中国科学院半导体研究所 1.02-1.08微米波段InGaAs/GaAs量子点外延结构及其制造方法
JP2008192799A (ja) * 2007-02-05 2008-08-21 Sony Corp 半導体発光素子およびこれを用いたレーザプロジェクタ
CN102414844A (zh) * 2009-04-28 2012-04-11 应用材料公司 Led的群集工具
CN102064472A (zh) * 2010-12-08 2011-05-18 中国科学院半导体研究所 InP基长波长2-3μm准量子点激光器结构
CN108346973A (zh) * 2017-01-24 2018-07-31 山东华光光电子股份有限公司 一种基于AlGaAs/GaInP有源区的795nm量子阱激光器

Also Published As

Publication number Publication date
CN111342345A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
JP5929115B2 (ja) 半導体ナノデバイス
JP4704215B2 (ja) 半導体量子ドット装置
WO2021212597A1 (zh) 一种四元系张应变半导体激光外延片及其制备方法
JP5366279B1 (ja) 多重量子井戸型太陽電池及び多重量子井戸型太陽電池の製造方法
CN112382929A (zh) 半导体红光激光器及其制作方法
CN111342345B (zh) 一种GaAs基量子点激光器的制备方法
JPS60260181A (ja) 半導体発光装置
CN117096235A (zh) 一种红外发光二极管的外延片及其制备方法
JP5096824B2 (ja) ナノ構造およびナノ構造の作製方法
US7358523B2 (en) Method and structure for deep well structures for long wavelength active regions
JP5457392B2 (ja) 半導体レーザ
JPH09199783A (ja) 半導体発光素子
JP2010062401A (ja) 半導体構造及びその半導体構造を用いた光半導体素子
JP2000277867A (ja) 半導体レーザ装置
CN113594854A (zh) 一种边发射半导体激光器
KR100334344B1 (ko) 비정질 실리콘 양자점 미세구조를 포함하는 실리콘 질화물 박막 및 이를 이용한 발광소자
JP2005136267A (ja) 半導体量子ドット素子
JPH1117284A (ja) 半導体レーザ素子
KR101695922B1 (ko) 그래핀을 이용하여 성장된 나노와이어를 기반으로 하는 광전도 소자 및 그 제조 방법
CN216699076U (zh) 一种边发射半导体激光器
JP3061321B2 (ja) 結晶改善された化合物半導体デバイスの製造方法
JPH11261155A (ja) 半導体レ−ザ素子
JP4100817B2 (ja) 半導体発光素子
JP2005159152A (ja) Iii−v族化合物半導体結晶の製造方法及び該製造方法を用いた半導体デバイスの製造方法。
JP2967719B2 (ja) 半導体結晶成長方法および半導体素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant