CN111333620A - 一种免洗的高稳定性SNAP-tag探针及其制备方法和应用 - Google Patents

一种免洗的高稳定性SNAP-tag探针及其制备方法和应用 Download PDF

Info

Publication number
CN111333620A
CN111333620A CN201811554374.2A CN201811554374A CN111333620A CN 111333620 A CN111333620 A CN 111333620A CN 201811554374 A CN201811554374 A CN 201811554374A CN 111333620 A CN111333620 A CN 111333620A
Authority
CN
China
Prior art keywords
snap
naphthalimide
tag
probe
benzyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811554374.2A
Other languages
English (en)
Inventor
徐兆超
乔庆龙
刘文娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201811554374.2A priority Critical patent/CN111333620A/zh
Publication of CN111333620A publication Critical patent/CN111333620A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/02Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
    • C07D473/18Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 one oxygen and one nitrogen atom, e.g. guanine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/08Naphthalimide dyes; Phthalimide dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Materials Engineering (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明提供了一种免洗的高稳定性SNAP‑tag探针及其制备方法和应用,该高稳定性SNAP‑tag探针是在萘酰亚胺4‑位引入氮杂环丁烷结构,具体结构式如(1)所示,其氮杂环丁烷的四元环结构限制了萘酰亚胺分子激发态的扭转,使分子保持了较高的稳定性与荧光亮度。计算发现四元环的平面结构与萘酰亚胺平面共平面,导致两分子探针在溶液形成荧光淬灭的二聚体,而与SNAP‑tag蛋白结合后二聚体解聚,荧光释放增强约39倍。该探针能够实现活细胞内对SNAP‑tag的特异性标记,实现免洗荧光成像;由于稳定性及亮度的提升,该探针还可用于SIM(结构光照明显微镜),STED(受激辐射损耗)等超分辨荧光成像领域。

Description

一种免洗的高稳定性SNAP-tag探针及其制备方法和应用
技术领域
本发明属荧光成像技术领域,具体涉及一种免洗的高稳定性SNAP-tag探针及其制备方法和应用。
背景技术
SNAP-tag是目前应用最为广泛的自标记的蛋白标签之一,这种标签的产生源于人源DNA修复蛋白O6-烷基鸟嘌呤-DNA-烷基转移酶(hAGT)的突变体。SNAP-tag能够快速并特异性地与苄基鸟嘌呤(BG)与苄基氯嘧啶(CP)衍生物反应从而使SNAP-tag标记上人工合成的探针。因此,借助荧光成像技术与有机小分子荧光探针研究工作者能够在单分子水平监测单个蛋白的行为、分布、数量等。尤其,近几年随着超分辨荧光成像技术的迅速发展,纳米尺度的分辨率使得单个蛋白的定位更为精准,目标蛋白的研究达到了新的高度。
通过有机分子的构建,不同染料分子通过共价键与SNAP-tag稳定结合后,能够对目标蛋白进行长时间的监测。目前,已开发出基于多种荧光团的SNAP-tag染料,并能满足不同需求的染色。但是,这类探针通常以罗丹明、花菁染料等为荧光团,苄基鸟嘌呤为靶向基团,与SNAP-tag结合后荧光增强通常只有1-2倍无法实现免洗荧光成像,这也使得活细胞的实时荧光成像变得极为困难。此外,长时间实时成像与超分辨成像等领域对探针的亮度、稳定性也提出了更高的要求。因此,如何在提升染料荧光性能的同时保持SNAP-tag探针的高荧光增强倍数是在活体成像、超分辨成像等领域探究目标蛋白中的关键因素。
发明内容
本发明的目的之一是提供一种免洗的高稳定性SNAP-tag探针,该探针与SNAP-tag蛋白结合后荧光增强倍数可达39倍,可实现活细胞内的免洗荧光成像。
本发明的另一目的是提供一种免洗SNAP-tag探针的制备方法,该方法具有通用性,拥有步骤简单、易于提纯等优点。
本发明一种免洗的高稳定性SNAP-tag探针,以萘酰亚胺为荧光团,通过氮杂环丁烷的引入大幅提升了萘酰亚胺的荧光稳定性及荧光亮度,实现了SNAP-tag蛋白的免洗荧光成像。此外,该探针通过SNAP-tag标签蛋白达到了对不同目标蛋白的超分辨荧光成像
一种免洗SNAP-tag荧光探针,该荧光探针具有如下结构:
Figure BDA0001911459850000021
一种免洗SNAP-tag荧光探针的合成方法,其合成路线,如下:
Figure BDA0001911459850000022
具体合成步骤如下:
(1)中间体N-(4-羟甲基)苄基-4-溴-1,8-萘酰亚胺的合成:
将4-溴-1,8-萘酐和4-氨甲基苄醇溶于无水乙醇中,将反应液加热至40-90℃,搅拌1-6h。将反应液泠却至室温后,过滤后干燥得灰白色固体N-(4-羟甲基)苄基-4-溴-1,8-萘酰亚胺;
(2)中间体N-(4-羟甲基)苄基-4-氮杂环丁基-1,8-萘酰亚胺的合成:
将N-(4-羟甲基)苄基-4-溴-1,8-萘酰亚胺溶于乙二醇甲醚中,并向其中加入氮杂环丁烷;将反应液缓慢升温至50-140℃,并在氮气保护下反应10-24h。减压除去溶剂,硅胶柱分离,以体积比为400-50:1的二氯甲烷和甲醇为洗脱剂,除去溶剂,得黄色固体N-(4-羟甲基)苄基-4-氮杂环丁基-1,8-萘酰亚胺;
(3)SNAP-tag探针的合成:
将N-(4-羟甲基)苄基-4-氮杂环丁基-1,8-萘酰亚胺、2-氨基-6-(N-甲基)四氢吡咯基鸟嘌呤和叔丁醇钾置于史莱克瓶中,氮气置换2-5次后加入干燥的N,N-二甲基甲酰胺;室温反应3-10h后,减压除去溶剂,硅胶柱分离,以体积比为100-10:1的二氯甲烷和甲醇为洗脱剂,除去溶剂得靶向SNAP-tag蛋白的荧光探针。
步骤(1)中:4-溴-1,8-萘酐:4-氨甲基苄醇的质量比为2:1-8;
4-溴-1,8-萘酐的质量与无水乙醇的体积比为1:30-120g/mL。
步骤(2)中:N-(4-羟甲基)苄基-4-溴-1,8-萘酰亚胺:氮杂环丁烷的质量比为3:1-12;
N-(4-羟甲基)苄基-4-溴-1,8-萘酰亚胺的质量与乙二醇甲醚的体积比为1:5-50g/mL。
步骤(3)中:N-(4-羟甲基)苄基-4-氮杂环丁基-1,8-萘酰亚胺:2-氨基-6-(N-甲基)四氢吡咯基鸟嘌呤的质量比为1:1-4;
N-(4-羟甲基)苄基-4-氮杂环丁基-1,8-萘酰亚胺:叔丁醇钾的质量比为1:1-5;
N-(4-羟甲基)苄基-4-氮杂环丁基-1,8-萘酰亚胺的质量与N,N-二甲基甲酰胺的体积比为1:80-250g/mL。
一种免洗SNAP-tag探针对SNAP-tag蛋白具有高度选择性,能够在复杂环境中对SNAP-tag进行特异性识别。
一种免洗的高稳定性SNAP-tag探针在细胞、组织及活体内的荧光成像领域的应用。
一种免洗的高稳定性SNAP-tag探针在SNAP-tag蛋白的识别与检测领域的应用。
一种免洗的高稳定性SNAP-tag探针在STED及SIM超分辨成像领域的应用。
本发明的SNAP-tag探针拥有合成原料低价、方法简单通用等优点。
该SNAP-tag探针在水中分子间发生聚集而导致荧光淬灭,而在结合SNAP-tag蛋白后,探针逐渐被解聚,荧光恢复。因此,该系列探针在与SNAP-tag结合前后达到off-on的效果,荧光增强倍数可达39倍。该SNAP-tag探针分子由于4,5-位刚性结构对分子内扭转的限制使探针在结合SNAP-tag蛋白后荧光量子产率均大于0.80,亮度高、光稳定性好。该SNAP-tag探针在结合SNAP-tag蛋白后荧光波长及峰型不随极性变化而改变,能够保持荧光信号的准确性。
该SNAP-tag探针能够对活细胞内SNAP-tag蛋白进行特异性识别,并实现免洗荧光成像。此外,探针可用于SIM,STED等超分辨荧光成像。
附图说明
图1为实施例1制备的BA-Aze的核磁谱图氢谱。
图2为实施例1制备的BA-Aze的核磁谱图碳谱。
图3为实施例1制备的BGAN-Aze的核磁谱图氢谱。
图4为实施例1制备的BGAN-Aze的核磁谱图碳谱。
图5为实施例1制备的BGAN-Aze在不同溶剂中归一化的荧光发射谱图,横坐标为波长,纵坐标为归一化荧光强度,荧光探针的浓度为10μM。
图6为实施例1制备的BA-Aze在加入十二烷基磺酸钠后的荧光发射光谱图,横坐标为波长,纵坐标为荧光强度,荧光探针的浓度为10μM。
图7为实施例1制备的探针BGAN-Aze在加入十二烷基磺酸钠后的荧光发射光谱图,横坐标为波长,纵坐标为荧光强度,荧光探针的浓度为10μM。
图8为实施例1制备的探针BGAN-Aze在水中不同温度下(20℃,25℃,30℃,35℃,40℃,45℃,50℃,55℃,60℃)的荧光发射谱图,横坐标为波长,纵坐标为荧光强度,荧光探针的浓度为10μM。
图9为实施例1制备的探针BGAN-Aze在PBS中与5μM SNAP-tag蛋白结合前后荧光光谱,横坐标为波长,纵坐标为荧光强度,荧光探针的浓度为5μM。
图10为实施例1制备的探针BGAN-Aze在PBS中与5μM SNAP-tag蛋白结合的动力学曲线图,横坐标为时间,纵坐标为荧光强度,荧光探针的浓度为5μM。
图11为实施例1制备的探针BGAN-Aze在转染的Hela细胞荧光共聚焦成像图。
图12为实施例1制备的探针BGAN-Aze在转染的Hela细胞超分辨荧光成像图。
具体实施方式
实施例1
SNAP-tag探针BGAN-Aze的合成方法。
中间体N-(4-羟甲基)苄基-4-溴-1,8萘酰亚胺(BA-Br)的合成:
Figure BDA0001911459850000061
将4-溴-1,8-萘酐(1.38g,5mmol)溶于60mL无水乙醇中,向反应液加入4-氨甲基苄醇(0.69g,5mmol)并将其加热至70℃。搅拌3h后,将反应液冷却至室温并过滤,滤饼经干燥后得灰白色固体1.54g,产率78%。其核磁谱图氢谱数据如下:
1H NMR(400MHz,DMSO-d6)δ8.57(d,J=7.2Hz,1H),8.53(d,J=8.5Hz,1H),8.33(d,J=7.9Hz,1H),8.20(d,J=7.9Hz,1H),7.98(t,J=7.9Hz,1H),7.33(d,J=7.9Hz,2H),7.25(d,J=8.0Hz,2H),5.22(s,2H),5.14(t,J=5.7Hz,1H),4.44(d,J=5.6Hz,2H).
中间体BA-Aze的合成:
Figure BDA0001911459850000062
将BA-Br(500mg,1.26mmol)溶于5mL乙二醇甲醚中,并向其中加入氮杂环丁烷(216mg,3.78mmol)。反应液被缓慢加热至120℃后在氮气保护下反应10h。减压除去溶剂,残余物经硅胶柱分离(二氯甲烷:甲醇=50:1,V/V)得黄色粉末340mg,产率75%。其核磁谱图氢谱和碳谱如图1、2所示,具体数据如下:
1H NMR(400MHz,DMSO-d6)δ8.39(d,J=7.2Hz,1H),8.32(d,J=8.4Hz,1H),8.18(d,J=8.5Hz,1H),7.56(t,J=7.8Hz,1H),7.29(d,J=7.8Hz,2H),7.23(d,J=7.8Hz,2H),6.40(d,J=8.5Hz,1H),5.19(s,2H),5.12(s,1H),4.58–4.25(m,6H),2.46(m,2H).
13C NMR(101MHz,DMSO-d6)δ164.16,163.25,152.74,141.71,136.74,133.45,131.45,131.35,130.43,127.91,126.89,124.32,121.94,120.54,108.34,106.50,63.13,55.59,42.78,16.91.
BA-Aze的高分辨质谱数据如下:
C23H21N2O3[M+H]+理论值373.1552,实测值373.1539。
BGAN-Aze的合成:
Figure BDA0001911459850000071
将BA-Aze(50mg,0.13mmol)、2-氨基-6-(N-甲基)四氢吡咯基鸟嘌呤(103mg,0.40mmol)和叔丁醇钾(90mg,0.80mmol)置于10mL史莱克瓶中,并用氮气置换3次后加入5mL干燥的N,N-二甲基甲酰胺。室温搅拌8h后,减压除去溶剂,残余物经硅胶柱分离(二氯甲烷:甲醇=15:1,V/V)得黄色粉末28mg,产率41%。其核磁谱图氢谱和碳谱如图3、4所示,具体数据如下:
1H NMR(400MHz,DMSO-d6)δ12.82–11.88(m,1H),8.47(d,J=7.2Hz,1H),8.41(d,J=8.4Hz,1H),8.26(d,J=8.5Hz,1H),7.84(s,1H),7.63(s,1H),7.48(d,J=7.6Hz,2H),7.40(d,J=7.8Hz,2H),6.48(d,J=8.6Hz,1H),6.32(s,2H),5.47(s,2H),5.27(s,2H),4.53(t,J=7.3Hz,4H),2.52(s,2H).
13C NMR(101MHz,DMSO-d6)δ164.21,163.29,160.30,160.08,155.66,152.87,138.22,135.94,133.55,131.53,131.44,130.51,128.97,128.09,124.38,121.96,120.61,113.97,108.36,106.57,66.93,55.63,42.81,16.92.
BGAN-Aze的高分辨质谱数据如下:
C28H24N7O3[M+H]+理论值506.1941,实测值506.1933。
经检测,其结构如上式BGAN-Aze所示,其荧光性能如下:
将该染料溶解于DMSO溶液中,配制成浓度为2mM的母液,每次取20μLBGAN-Aze母液加入4mL乙腈、乙醇、氯仿、水中,配制成10μM的荧光染料测试液,进行荧光发射光谱的测试。BGAN-Aze在乙腈、乙醇、氯仿、水中荧光发射光谱图如图5所示:
BGAN-Aze随着溶剂极性的增加荧光波长逐渐红移,在水中荧光波长可达560nm。
实施例2
SNAP-tag探针BGAN-Aze的合成方法。
中间体N-(4-羟甲基)苄基-4-溴-1,8萘酰亚胺(BA-Br)的合成:
Figure BDA0001911459850000091
将4-溴-1,8-萘酐(1.38g,5mmol)溶于42mL无水乙醇中,向反应液加入4-氨甲基苄醇(1.38g,10mmol)并将其加热至40℃。搅拌6h后,将反应液冷却至室温并过滤,滤饼经干燥后得灰白色固体1.36g,产率69%。
中间体BA-Aze的合成:
Figure BDA0001911459850000092
将BA-Br(500mg,1.26mmol)溶于2.5mL乙二醇甲醚中,并向其中加入氮杂环丁烷(167mg,2.92mmol)。反应液被缓慢加热至50℃后在氮气保护下反应24h。减压除去溶剂,残余物经硅胶柱分离(二氯甲烷:甲醇=50:1,V/V)得黄色粉末322mg,产率71%。
BGAN-Aze的合成:
Figure BDA0001911459850000101
将BA-Aze(50mg,0.13mmol)、2-氨基-6-(N-甲基)四氢吡咯基鸟嘌呤(50mg,0.19mmol)和叔丁醇钾(50mg,0.44mmol)置于10mL史莱克瓶中,并用氮气置换3次后加入4mL干燥的N,N-二甲基甲酰胺。室温搅拌3h后,减压除去溶剂,残余物经硅胶柱分离(二氯甲烷:甲醇=15:1,V/V)得黄色粉末26mg,产率38%。
经检测,其结构如上式BGAN-Aze所示,BGAN-Aze随着溶剂极性的增加荧光波长逐渐红移,在水中荧光波长可达560nm。
实施例3
SNAP-tag探针BGAN-Aze的合成方法。
中间体N-(4-羟甲基)苄基-4-溴-1,8萘酰亚胺(BA-Br)的合成:
Figure BDA0001911459850000102
将4-溴-1,8-萘酐(1.38g,5mmol)溶于165mL无水乙醇中,向反应液加入4-氨甲基苄醇(5.52g,40mmol)并将其加热至90℃。搅拌1h后,将反应液冷却至室温并过滤,滤饼经干燥后得灰白色固体1.16g,产率59%。
中间体BA-Aze的合成:
Figure BDA0001911459850000111
将BA-Br(500mg,1.26mmol)溶于25mL乙二醇甲醚中,并向其中加入氮杂环丁烷(2.0g,35mmol)。反应液被缓慢加热至140℃后在氮气保护下反应12h。减压除去溶剂,残余物经硅胶柱分离(二氯甲烷:甲醇=50:1,V/V)得黄色粉末300mg,产率66%。BGAN-Aze的合成:
Figure BDA0001911459850000112
将BA-Aze(50mg,0.13mmol)、2-氨基-6-(N-甲基)四氢吡咯基鸟嘌呤(200mg,0.78mmol)和叔丁醇钾(250mg,2.22mmol)置于10mL史莱克瓶中,并用氮气置换3次后加入12.5mL干燥的N,N-二甲基甲酰胺。室温搅拌10h后,减压除去溶剂,残余物经硅胶柱分离(二氯甲烷:甲醇=15:1,V/V)得黄色粉末20mg,产率29%。
经检测,其结构如上式BGAN-Aze所示,BGAN-Aze随着溶剂极性的增加荧光波长逐渐红移,在水中荧光波长可达560nm。
实施例4
BA-Aze在水中加入十二烷基磺酸钠(SDS)前后荧光光谱测试。取20μLBA-Aze母液加入4mL水中,配制成10μM的荧光染料测试液,进行光谱测试。而后加入100μL 10mM SDS溶液后,继续进行荧光光谱测试。
BA-Aze在水中加入十二烷基磺酸钠(SDS)前后荧光光谱图如图6所示:
BA-Aze在加入SDS后荧光强度增加2.4倍,这是由于BA-Aze被分散后进入到SDS形成的胶束中,周围环境极性的减小使荧光强度增加2.4倍,荧光波长也由560nm蓝移至540nm。
实施例5
BGAN-Aze在水中加入十二烷基磺酸钠(SDS)前后荧光光谱测试。取20μLBGAN-Aze母液加入4mL水中,配制成10μM的荧光染料测试液,进行光谱测试。而后加入100μL 10mMSDS溶液后,继续进行荧光光谱测试。
BGAN-Aze在水中加入十二烷基磺酸钠(SDS)前后荧光光谱图如图7所示:
BGAN-Aze在加入SDS后荧光强度增加40倍,这是由于BGAN-Aze在水中发生聚集导致荧光淬灭,而SDS的加入使探针分子被分散到SDS形成的胶束中,周围环境极性的减小与聚集共同作用使荧光强度增加40倍,荧光波长也由555nm蓝移至540nm。
实施例6
BGAN-Aze在水中不同温度下(20℃,25℃,30℃,35℃,40℃,45℃,50℃,55℃,60℃)的荧光光谱测试。取20μL BGAN-Aze母液,加入4mL水中,配制成10μM的荧光探针测试液。通过金属加热块升温,水循环降温,调节至所需温度并稳定5min后进行荧光光谱的测试。
BGAN-Aze在水中不同温度下(20℃,25℃,30℃,35℃,40℃,45℃,50℃,55℃,60℃)的荧光光谱图如图8所示:
BGAN-Aze由于聚集体随着温度增加逐渐解离,荧光强度也逐渐增加。
实施例7
BGAN-Aze在PBS中与5μM SNAP-tag蛋白结合前后荧光光谱测试。取2.5μL BGAN-Aze母液溶于1mL PBS中进行荧光光谱测试,而后加入等浓度SNAP-tag蛋白半小时后进行荧光光谱测试。测试温度为37℃。
BGAN-Aze在PBS中与5μM SNAP-tag蛋白结合前后荧光光谱如图9所示:BGAN-Aze在与SNAP-tag蛋白结合后逐渐被解离,荧光强度增加39倍。由于蛋白空腔的非极性环境BGAN-Aze的荧光发射波长也有555nm蓝移至545nm。
实施例8
BGAN-Aze在PBS中与5μM SNAP-tag蛋白结合的动力学曲线测试。取2.5μL BGAN-Aze母液溶于1mL PBS中,而后加入等浓度蛋白后检测545nm处荧光强度,激发波长未440nm。
BGAN-Aze在PBS中与5μM SNAP-tag蛋白结合的动力学曲线如图10所示:
BGAN-Aze在加入SNAP-tag后逐渐与蛋白发生特异性结合,荧光恢复,荧光强度在5分钟内达到稳定。BGAN-Aze与SNAP-tag反应常数大于5000M-1S-1,t1/2=28s。
实施例9
探针BGAN-Aze在转染细胞中荧光共聚焦成像图如图11所示:
通过pSNAPf-Cox8A与pSNAPf-H2B诱导Hela细胞表达融合有SNAP-tag的Cox8A与H2B。(a)(d)为2μM探针BGAN-Aze通道染色效果图(采集500-550nm);(b)(e)为商业化染料Mitotracker Red(采集580-654nm)与Hochest 33342(采集417-477nm)染色效果图。探针能够分别对表达融合有SNAP-tag的Cox8A与H2B进行特异性标记,从而达到对线粒体和细胞核免洗成像,与商业染料能够有很好的共定位效果。
实施例10
探针BGAN-Aze在转染细胞中超分辨荧光成像。取0.5μL BGAN-Aze母液溶于2mL细胞培养液中,37℃,5%CO2下孵育30分钟后进行SIM(结构光照明显微镜)成像。
探针BGAN-Aze在转染细胞中超分辨荧光成像图如图12所示:BGAN-Aze能够对线粒体内融合有SNAP-tag的靶蛋白进行精准定位,线粒体结构清晰,分辨率达到150nm。

Claims (8)

1.一种免洗的高稳定性SNAP-tag探针,其特征在于该探针的结构如下所示:
Figure FDA0001911459840000011
2.一种如权利要求1所述的一种免洗的高稳定性SNAP-tag探针的制备方法,其特征在于该方法包含步骤如下:
(1)中间体N-(4-羟甲基)苄基-4-溴-1,8-萘酰亚胺的合成:
将4-溴-1,8-萘酐和4-氨甲基苄醇溶于无水乙醇中,将反应液加热至40-90℃,搅拌1-6h。将反应液泠却至室温后,过滤后干燥得灰白色固体N-(4-羟甲基)苄基-4-溴-1,8-萘酰亚胺;
(2)中间体N-(4-羟甲基)苄基-4-氮杂环丁基-1,8-萘酰亚胺的合成:
将N-(4-羟甲基)苄基-4-溴-1,8-萘酰亚胺溶于乙二醇甲醚中,并向其中加入氮杂环丁烷;将反应液缓慢升温至50-140℃,并在氮气保护下反应10-24h。减压除去溶剂,硅胶柱分离,以体积比为400-50:1的二氯甲烷和甲醇为洗脱剂,除去溶剂,得黄色固体N-(4-羟甲基)苄基-4-氮杂环丁基-1,8-萘酰亚胺;
(3)SNAP-tag探针的合成:
将N-(4-羟甲基)苄基-4-氮杂环丁基-1,8-萘酰亚胺、2-氨基-6-(N-甲基)四氢吡咯基鸟嘌呤和叔丁醇钾置于史莱克瓶中,氮气置换2-5次后加入干燥的N,N-二甲基甲酰胺;室温反应3-10h后,减压除去溶剂,硅胶柱分离,以体积比为100-10:1的二氯甲烷和甲醇为洗脱剂,除去溶剂得靶向SNAP-tag蛋白的荧光探针。
3.根据权利要求2所述的一种免洗的高稳定性SNAP-tag探针的制备方法,其特征在于步骤(1)中:4-溴-1,8-萘酐:4-氨甲基苄醇的质量比为2:1-8;
4-溴-1,8-萘酐的质量与无水乙醇的体积比为1:30-120g/mL。
4.根据权利要求2所述的一种免洗的高稳定性SNAP-tag探针的制备方法,其特征在于步骤(2)中:N-(4-羟甲基)苄基-4-溴-1,8-萘酰亚胺:氮杂环丁烷的质量比为3:1-12;
N-(4-羟甲基)苄基-4-溴-1,8-萘酰亚胺的质量与乙二醇甲醚的体积比为1:5-50g/mL。
5.根据权利要求2所述的一种免洗的高稳定性SNAP-tag探针的制备方法,其特征在于步骤(3)中:N-(4-羟甲基)苄基-4-氮杂环丁基-1,8-萘酰亚胺:2-氨基-6-(N-甲基)四氢吡咯基鸟嘌呤的质量比为1:1-4;
N-(4-羟甲基)苄基-4-氮杂环丁基-1,8-萘酰亚胺:叔丁醇钾的质量比为1:1-5;
N-(4-羟甲基)苄基-4-氮杂环丁基-1,8-萘酰亚胺的质量与N,N-二甲基甲酰胺的体积比为1:80-250g/mL。
6.一种如权利1所述的一种免洗的高稳定性SNAP-tag探针在细胞、组织及活体内的荧光成像领域的应用。
7.一种如权利1所述的一种免洗的高稳定性SNAP-tag探针在SNAP-tag蛋白的识别与检测领域的应用。
8.一种如权利1所述的一种免洗的高稳定性SNAP-tag探针在STED及SIM超分辨成像领域的应用。
CN201811554374.2A 2018-12-18 2018-12-18 一种免洗的高稳定性SNAP-tag探针及其制备方法和应用 Pending CN111333620A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811554374.2A CN111333620A (zh) 2018-12-18 2018-12-18 一种免洗的高稳定性SNAP-tag探针及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811554374.2A CN111333620A (zh) 2018-12-18 2018-12-18 一种免洗的高稳定性SNAP-tag探针及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111333620A true CN111333620A (zh) 2020-06-26

Family

ID=71177684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811554374.2A Pending CN111333620A (zh) 2018-12-18 2018-12-18 一种免洗的高稳定性SNAP-tag探针及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111333620A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867515A (zh) * 2015-12-11 2017-06-20 中国科学院大连化学物理研究所 一种用于蛋白标记及检测的荧光探针及其合成方法与应用
CN108069966A (zh) * 2016-11-14 2018-05-25 中国科学院大连化学物理研究所 用于snap蛋白标记的小分子荧光探针及其合成方法与应用
CN108069967A (zh) * 2016-11-15 2018-05-25 中国科学院大连化学物理研究所 一种用于细胞内蛋白标记的荧光探针及其合成方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867515A (zh) * 2015-12-11 2017-06-20 中国科学院大连化学物理研究所 一种用于蛋白标记及检测的荧光探针及其合成方法与应用
CN108069966A (zh) * 2016-11-14 2018-05-25 中国科学院大连化学物理研究所 用于snap蛋白标记的小分子荧光探针及其合成方法与应用
CN108069967A (zh) * 2016-11-15 2018-05-25 中国科学院大连化学物理研究所 一种用于细胞内蛋白标记的荧光探针及其合成方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LENG SHUANG,ET AL: "A Wash-Free SNAP-tag Fluorogenic Probe based on Additive Effects of Quencher Release and Environmental Sensitivity", 《CHEM. COMMUN.》 *
XIAOGANG LIU ET AL: "Aziridinyl Fluorophores Demonstrate Bright Fluorescence and Superior Photostability by Effectively Inhibiting Twisted Intramolecular Charge Transfer", 《J. AM. CHEM. SOC.》 *
乔庆龙: "萘酰亚胺类染料荧光构效关系研究及生物应用", 《中国博士学位论文全文数据库 工程I辑》 *

Similar Documents

Publication Publication Date Title
WO2020124688A1 (zh) 一种全光谱高亮度、高稳定性荧光染料及其合成和应用
CN111333641B (zh) 一种用于四嗪类生物正交标记的增强型荧光探针及其合成
CN108219780B (zh) 一种近红外荧光探针及其制备方法和应用
CN111333619B (zh) 一类488nm激发的高稳定性超分辨荧光染料及其合成和应用
CN111333660B (zh) 一类550nm激发的罗丹明类染料及其制备方法
CN111334081B (zh) 一类高亮度、脂滴细胞核多色成像荧光探针
CN111334076B (zh) 一类高亮度、高光稳定性的细胞核荧光探针
CN111334070B (zh) 一类532nm激发的罗丹明类荧光染料及其制备方法
CN111333618B (zh) 一种488nm激发的免洗SNAP-tag探针及其制备方法
CN111333646B (zh) 一种高亮度、高稳定性免洗SNAP-tag探针及其制备方法及应用
CN111333624B (zh) 一种高稳定性的免洗SNAP-tag探针及其制备方法和应用
CN111333620A (zh) 一种免洗的高稳定性SNAP-tag探针及其制备方法和应用
CN112940714B (zh) 一种高荧光量子产率的免洗Halo-tag探针及其合成方法和应用
CN112939960B (zh) 羰基氮杂环丁烷取代的nbd类荧光染料及其合成方法和应用
CN105037359A (zh) 一种具有半花菁-萘酰亚胺结构的化合物、其制备方法及应用
CN111337460B (zh) 一种高稳定性Halo-tag探针及其合成和生物应用
CN111334080B (zh) 一种高亮度、高光稳定性的碳酸酐酶荧光探针
CN111333621B (zh) 一种488nm激发的免洗Halo-tag探针及其合成和生物应用
CN114262335A (zh) 一类靶向溶酶体的超分辨自闪染料及其合成方法和生物应用
CN111333576B (zh) 一类高稳定性的免洗Halo-tag探针及其合成方法和生物应用
Yu et al. Two–photon excitable red fluorophores for imaging living cells
CN112939950A (zh) 羰基氮杂环丁烷取代的香豆素类荧光染料及其合成方法和应用
CN111333574A (zh) 一类高亮度、高光稳定性的碳酸酐酶检测荧光探针
CN111333640B (zh) 一种快速特异性标记SNAP-tag的荧光探针及其制备和生物应用
CN111333644B (zh) 一类近红外脂滴荧光染料及其的合成方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200626