CN111333612B - 一种全光谱的光开关分子及其合成和应用 - Google Patents

一种全光谱的光开关分子及其合成和应用 Download PDF

Info

Publication number
CN111333612B
CN111333612B CN201811554987.6A CN201811554987A CN111333612B CN 111333612 B CN111333612 B CN 111333612B CN 201811554987 A CN201811554987 A CN 201811554987A CN 111333612 B CN111333612 B CN 111333612B
Authority
CN
China
Prior art keywords
optical switch
naphthalimide
molecule
dye
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811554987.6A
Other languages
English (en)
Other versions
CN111333612A (zh
Inventor
徐兆超
刘晓刚
乔庆龙
李锦�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201811554987.6A priority Critical patent/CN111333612B/zh
Publication of CN111333612A publication Critical patent/CN111333612A/zh
Application granted granted Critical
Publication of CN111333612B publication Critical patent/CN111333612B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/20Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/08Naphthalimide dyes; Phthalimide dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供了一种全光谱的光开关分子及其合成和应用,该光分子开关为基于萘酰亚胺、罗丹明等荧光母体设计合成的全光谱的光开关分子,可以用于405nm,450nm,488nm,560nm,640nm激发。通过氮杂环丁烷、环丁酰胺等刚性结构限制了分子内的扭动,大幅提升了染料本身稳定性及亮度。本系列光开关分子不需要激活光的存在,只需要单色的激发光即可实现分子暗态到亮态的往复循环,以得到更精确的光点定位信息。其中基于罗丹明类染料的分子在基态存在开关平衡无需强激光的淬灭,在温和的激光便可实现细胞的超分辨成像。此系列染料提供了全光谱的新型光开分子,在活细胞超分辨成像、信息存储等领域具有较好应用前景。

Description

一种全光谱的光开关分子及其合成和应用
技术领域
本发明属于荧光成像领域,具体涉及一种全光谱的光开关分子及其合成和应用。
背景技术
近年来超分辨显微成像技术已逐渐成为生命科学研究中不可或缺的工具,其能够突破衍射极限的限制使研究工作者观察到未知的精细结构,完善整个生命体系。但正如超分辨技术的创始人Stefan.W.Hell所说:“在Ernst Abbe的时代,成像质量是由物镜决定的;而今天,成像质量则由荧光团决定。”顾名思义,荧光染料的性能决定了超分辨显微成像技术应用的普适性、成像的准确性等。目前,100nm分辨率以上应用最为广泛的超分辨技术为受激辐射损耗(STED)显微成像与单分子定位显微成像(SMLM)。其中,SMLM技术中需要荧光分子保持高的光稳定同时能够实现分子暗态到亮态的来回转换以捕捉单个光点的定位信息。
目前应用于SMLM技术中的荧光分子主要为荧光蛋白,能够通过激发光及激活光实现荧光往复的开关。然而,荧光蛋白的抗漂白性能较差,且同样时间内光子数明显少于有机分子从而降低了定位的准确性,这恰恰促使有机小分子荧光染料在此领域的应用。但是,此类有机荧光染料仍较为匮乏,能够实现高信噪比亮暗态的更为稀少。此外,此类染料通常需要较强的活化光实现分子从暗态到亮态,随机光学学重构技术(d-Storm)中更是需要加入几十甚至几百mM级别的硫醇分子实现开关,这严格限制了这项技术在活细胞中的应用。因此,如何开发能够在低激光功率下实现分子的光开关,是解决活细胞内超分辨荧光成像问题的一种重要途径。
发明内容
本发明的目的之一是提供一种全光谱的光开关分子,该该系列分子能够适用于405,450,488,560,640nm全部激光,实现全波段的成像。
本发明的另一目的是提供一种全光谱的光开关分子的合成法,该方法具有步骤简单、易于提纯等优点。
本发明提供一种全光谱的光开关分子,该系列染料以萘酰亚胺、氧罗丹明以及硅基罗丹明。在单个激发光下,此系列染料能够实现暗态与亮态的转换,从而实现单分子定位显微成像。
一种全光谱的光开关分子,该光开关分子不需要激活光的存在,只需要单色的激发光即可实现分子暗态到亮态的往复循环,以得到更精确的光点定位信息;该光开关分子由4-酰胺基萘酰亚胺类染料、胍基取代萘酰亚胺类染料、4,5-环己二胺取代萘酰亚胺类染料、硫内脂罗丹明染料或自闪硅基罗丹明染料中的一种或几种按任意比例混合,可用于不同激发光激发成像与检测。
所述的4-酰胺基萘酰亚胺类染料用于405nm激发的自开关分子,其结构式下:
Figure BDA0001911619210000021
所述的胍基取代萘酰亚胺类染料用于450nm激发的自开关分子,其结构式下:
Figure BDA0001911619210000031
所述的4,5-环己二胺取代萘酰亚胺类染料用于488nm激发的自开关分子,其结构式下:
Figure BDA0001911619210000032
所述的硫内脂罗丹明染料用于560nm激发的自开关分子,其结构式下:
Figure BDA0001911619210000033
所述的自闪硅基罗丹明染料用于640nm激发的自开关分子,其结构式下:
Figure BDA0001911619210000041
一种全光谱的光开关分子的合成方法,荧光染料合成路线
所述4-酰胺基萘酰亚胺类染料AB 405的合成:
Figure BDA0001911619210000042
(1)中间体N-丁基-4-(3-氯)丙酰胺基-1,8-萘酰亚胺的合成:
将N-丁基-4-氨基-1,8-萘酰亚胺溶于四氢呋喃中,并在0℃下向该反应液中滴加3-氯丙酰氯。滴加完毕后将混合液转移至室温反应6-10h。减压除去溶剂后,水洗涤残余物,抽滤得白色滤饼并用甲醇洗涤,真空干燥得N-丁基-4-(3-氯)丙酰胺基-1,8-萘酰亚胺。
(2)染料N-丁基-4-环丙酰胺基-1,8-萘酰亚胺的合成:
将N-丁基-4-环丙酰胺基-1,8-萘酰亚胺类化合物,溶于乙腈中,并向其中加入碳酸钾。将反应液缓慢升温至50-90℃,并持续反应1-3h。减压除去溶剂,经200-300目二氧化硅硅胶柱分离,以体积比为200~800:1的二氯甲烷和甲醇为洗脱剂,除去溶剂,得米白色固体N-丁基-4-环丙酰胺基-1,8-萘酰亚胺类化合物。
步骤(1)中,N-丁基-4-氨基-1,8-萘酰亚胺的质量与四氢呋喃的体积比为2-25:1mg/mL;
氯取代烷基酰氯与四氢呋喃体积比为1:20-80、
氯取代烷基酰氯与去离子水体积比为1:5-50、
氯取代烷基酰氯与甲醇的体积比为1:10-20。
步骤(2)中,N-丁基-4-酰胺基-1,8-萘酰亚胺类化合物与碳酸钾质量比1:1-4;
碳酸钾的质量与乙腈的体积比为10-20:1mg/mL。
所述胍基取代萘酰亚胺类染料AB 450的合成:
Figure BDA0001911619210000051
具体合成步骤如下:
(1)用于450nm激发的光开关染料AB 450的合成:
将N-丁基-4,5-二-丁胺基-1,8-萘酰亚胺溶于甲苯中,而后将反应液缓慢加热至90-120℃,并反应10-24h。减压除去甲苯,残余物经硅胶柱分离,得黄色固体AB 450。
步骤(1)中,N-丁基-4,5-二-丁胺基-1,8-萘酰亚胺的质量与甲苯的体积比为10-20:1mg/mL。
所述4,5-环己二胺取代萘酰亚胺类染料AB 488的合成:
Figure BDA0001911619210000061
(1)染料AB 488的合成:
将N-丁基-4-溴-5-硝基-1,8-萘酰亚胺,溶于乙二醇甲醚中,并向其中加入环己二胺。将反应液缓慢升温至100-140℃,并在氮气保护下反应10-24h。减压除去溶剂,硅胶柱分离,以二氯甲烷和甲醇为洗脱剂,除去溶剂,得棕黄色固体N-丁基-4,5-环己二胺基-1,8-萘酰亚胺。
步骤(1)中,N-丁基-4-溴-5-硝基-1,8-萘酰亚胺与环己二胺的质量比为1:0.5-3;
N-丁基-4-溴-5-硝基-1,8-萘酰亚胺的质量与乙二醇甲醚的体积比为10-20:1mg/mL。
所述硫内脂罗丹明染料AB 560的合成:
Figure BDA0001911619210000062
(1)硫酯螺环的罗丹明类自闪染料AB 560的合成
将罗丹明类染料AB 560S溶于1,2-二氯乙烷中,冰向反应液中加入三氯氧磷。反应液在80-100℃下搅拌2-10h后减压除去溶剂,并向反应瓶中加入硫脲,三乙胺,四氢呋喃。室温搅拌10-24h后,减压除去溶剂,残余物经硅胶柱分离残余物以石油醚和乙酸乙酯为展开剂,得白色固体AB 560。
步骤(1)中,AB 560S与硫脲的质量比为1:0.5-3;
AB 560S的质量与1,2-二氯乙烷的体积比为5-10:1mg/mL;
1,2-二氯乙烷、三氯氧磷、三乙胺、四氢呋喃的体积比为1:0:05-0.1:0.1-0.4:1-2;
所述自闪硅基罗丹明染料AB 640的合成:
Figure BDA0001911619210000071
(1)中间体叔丁基保护的硅基罗丹明AB640A的合成:
将中间体tBu-Br加入至25mL史莱克瓶中,反复抽真空通氮气三次,用注射器加入无水四氢呋喃,冷却至-78℃;之后加异丁基锂,反应30min,再加入中间体Si-TO;逐渐恢复到室温搅拌12-24h;反应完成后加入饱和氯化入铵淬灭反应,用乙酸乙酯萃取,收集有机相并用无水硫酸钠干燥,有机相减压蒸馏,反应产物经200-300目硅胶柱;以体积比30:1的二氯甲烷和甲醇为展开剂分离纯化获得蓝色固体中间体明AB640A;
(2)中间体明AB640B的合成:
将中间体明AB640A溶于三氟乙酸(CF3COOH)中,室温下搅拌2-4天。反应结束后减压蒸馏除去溶剂,经200-300目硅胶柱以体积比为10:1的二氯甲烷和甲醇为展开剂分离纯化得到蓝色固体中间体明AB640B;
(3)AB640的合成:
将中间体AB640B,N,N-二琥珀酰亚胺碳酸酯,4-二甲氨基吡啶(DMAP),三乙胺溶于DMF中,室温搅拌1-3h。反应结束后减压蒸馏除去溶剂,经200-300目硅胶柱以体积比为10:1的石油醚和乙酸乙酯为展开剂分离纯化得到白色粉末中间体AB640。
步骤(1)中:
中间体tBu-Br与异丁基锂的质量与体积比为1:0.85-3.4g/mL;
中间体tBu-Br与中间体Si-TO的质量比为1:0.07-0.30;
中间体tBu-Br与四氢呋喃的质量与体积比为1:18-72g/mL。
步骤(2)中:
中间体AB640A与三氟乙酸的质量与体积比为1:74-300g/mL。
步骤(3)中:
中间体AB640B与N,N-二琥珀酰亚胺碳酸酯的质量比为1:0.8-3.2;
中间体AB640B与4-二甲氨基吡啶的质量比为1:0.1-0.3;
中间体AB640B与三乙胺的质量与体积比为1:0.6-2.4g/mL;
中间体AB640B与DMF的质量与体积比为1:147-600g/mL。
上述全光谱的光开关分子能够在单色激光下实现光开关达到分子暗态与亮态的转换,能够通过单分子定位技术实现超分辨成像。
一种全光谱的光开关分子在细胞、组织中超分辨荧光成像中的应用。
一种全光谱的光开关分子用于蛋白荧光标记。
一种全光谱的光开关分子的开关性能用于信息存储。本发明具有以下特点:
本发明涉及的全光谱的光开关分子拥有合成原料低价、已提纯等优点。
本发明涉及的全光谱的光开关分子由于刚性结构(如:氮杂环丁烷、环丁酰胺等)的引入光稳定性、光亮度均得到了大幅提升。
本发明涉及的全光谱的光开关分子能够在单色激光下实现光开关达到分子暗态与亮态的转换,能够通过单分子定位技术实现超分辨成像。其中,AB 405,AB 450,AB 488在激光打灭之后会逐渐恢复荧光,而AB 560,AB 640则可以通过分子基态下螺环处自身的开关实现亮暗转换,只需低功率激发即可实现超分辨成像。
附图说明
图1实施例1制备的AB 405的核磁谱图氢谱。
图2实施例4制备的AB 450的核磁谱图氢谱。
图3实施例7制备的AB 488的核磁谱图氢谱。
图4实施例10制备的AB 560的核磁谱图氢谱。
图5实施例13制备的AB 640的核磁谱图氢谱。
图6本系列染料AB 405,AB 450,AB 488,AB 560,AB 640在水中归一化的荧光激发与发射谱图,横坐标为波长,纵坐标为归一化强度,荧光染料的浓度为10μM。
图7实施例1制备的AB 405在细胞内不同强度激发下荧光变化图。
图8实施例4制备的AB 450在细胞内不同强度激发下荧光变化图。
图9实施例7制备的AB 488在细胞内不同强度激发下荧光变化图。
图10实施例13制备的AB 640在不同pH下荧光开关变化图。
图11实施例13制备的AB 640在细胞内的细胞骨架超分辨成像图。
具体实施方式
实施例1
AB-405的合成
中间体N-丁基-4-(3-氯)丙酰胺基-1,8萘酰亚胺(ClPAm)的合成:
Figure BDA0001911619210000101
将N-丁基-4-氨基-1,8-萘酰亚胺(200mg,0.75mmol)溶于100mL四氢呋喃中,在0℃下向该反应液中滴加1.25mL 3-氯丙酰氯。滴加完毕后将混合液转移至室温反应6h。减压除去溶剂后,63mL水洗涤残余物,抽滤得白色滤饼,用25mL甲醇洗涤滤饼,真空干燥得N-丁基-4-(3-氯)丙酰胺基-1,8-萘酰亚胺180mg,产率67%。其核磁谱图氢谱数据如下:
1H NMR(400MHz,CD3CN)δ8.91(s,1H),8.59(dd,J=7.3,0.9Hz,1H),8.54(d,J=8.1Hz,1H),8.52–8.48(m,1H),8.29(d,J=8.1Hz,1H),7.85(dd,J=8.5,7.3Hz,1H),4.15–4.10(m,2H),3.98(t,J=6.3Hz,2H),3.08(t,J=6.3Hz,2H),1.69(dt,J=7.7,6.6Hz,2H),1.44(dq,J=14.8,7.4Hz,2H),1.00(t,J=7.4Hz,3H).
染料N-丁基-4-环丁酰胺基-1,8萘酰亚胺(PAm)的合成:
Figure BDA0001911619210000111
将N-丁基-4-(3-氯)丙酰胺基-1,8萘酰亚胺(100mg,0.28mmol),溶于10mL乙腈中,并向其中加入碳酸钾100mg。反应液缓慢升温至50℃,并在此温度持续反应3h。减压除去溶剂,硅胶柱(200-300目二氧化硅)分离,以二氯甲烷:甲醇=400:1(体积比)为洗脱剂,除去溶剂,得米白色固体N-丁基-4-环丁酰胺基-1,8萘酰亚胺(PAm)60mg,产率67%。实施例1制备的PAm的核磁谱图氢谱如图1所示,氢谱与碳谱具体数据为:
1H NMR(400MHz,CDCl3)δ8.82(dd,J=8.6,1.0Hz,1H),8.65(dd,J=7.3,1.0Hz,1H),8.57(d,J=8.1Hz,1H),7.77(dd,J=8.6,7.3Hz,1H),7.60(d,J=8.1Hz,1H),4.24–4.10(m,2H),4.06(t,J=4.8Hz,2H),3.32(t,J=4.8Hz,2H),1.78–1.64(m,2H),1.45(dq,J=14.8,7.4Hz,2H),0.98(t,J=7.4Hz,3H).13C NMR(101MHz,CDCl3)δ165.32,164.21,163.64,140.75,131.88,131.72,131.22,129.46,126.35,123.86,122.80,119.38,116.14,41.06,40.27,36.20,30.21,20.40,13.85.
经检测,其结构如上式PAm所示,其在水中最大吸收波长为390nm,在405nm有较强吸收,荧光发射在475nm。
实施例2
AB-405的合成
中间体N-丁基-4-(3-氯)丙酰胺基-1,8萘酰亚胺(ClPAm)的合成:
Figure BDA0001911619210000121
将N-丁基-4-氨基-1,8-萘酰亚胺(200mg,0.75mmol)溶于8mL四氢呋喃中,在0℃下向该反应液中滴加0.5mL 3-氯丙酰氯。滴加完毕后将混合液转移至室温反应10h。减压除去溶剂后,25mL水洗涤残余物,抽滤得白色滤饼,用10mL甲醇洗涤滤饼,真空干燥得N-丁基-4-(3-氯)丙酰胺基-1,8-萘酰亚胺142mg,产率53%。
染料N-丁基-4-环丁酰胺基-1,8萘酰亚胺(PAm)的合成:
Figure BDA0001911619210000122
将N-丁基-4-(3-氯)丙酰胺基-1,8萘酰亚胺(100mg,0.28mmol),溶于20mL乙腈中,并向其中加入碳酸钾400mg。反应液缓慢升温至90℃,并在此温度持续反应1h。减压除去溶剂,硅胶柱(200-300目二氧化硅)分离,以二氯甲烷:甲醇=400:1(体积比)为洗脱剂,除去溶剂,得米白色固体N-丁基-4-环丁酰胺基-1,8萘酰亚胺(PAm)63mg,产率70%。
经检测,其结构如上式PAm所示,其在水中最大吸收波长为390nm,在405nm有较强吸收,荧光发射在475nm。
实施例3
AB-405的合成
中间体N-丁基-4-(3-氯)丙酰胺基-1,8萘酰亚胺(ClPAm)的合成:
Figure BDA0001911619210000131
将N-丁基-4-氨基-1,8-萘酰亚胺(200mg,0.75mmol)溶于100mL四氢呋喃中,在0℃下向该反应液中滴加5mL 3-氯丙酰氯。滴加完毕后将混合液转移至室温反应8h。减压除去溶剂后,25mL水洗涤残余物,抽滤得白色滤饼,用60mL甲醇洗涤滤饼,真空干燥得N-丁基-4-(3-氯)丙酰胺基-1,8-萘酰亚胺161mg,产率60%。
染料N-丁基-4-环丁酰胺基-1,8萘酰亚胺(PAm)的合成:
Figure BDA0001911619210000132
将N-丁基-4-(3-氯)丙酰胺基-1,8萘酰亚胺(100mg,0.28mmol),溶于15mL乙腈中,并向其中加入碳酸钾200mg。反应液缓慢升温至70℃,并在此温度持续反应3h。减压除去溶剂,硅胶柱(200-300目二氧化硅)分离,以二氯甲烷:甲醇=400:1(体积比)为洗脱剂,除去溶剂,得米白色固体N-丁基-4-环丁酰胺基-1,8萘酰亚胺(PAm)62mg,产率68%。
经检测,其结构如上式PAm所示,其在水中最大吸收波长为390nm,在405nm有较强吸收,荧光发射在475nm。
实施例4
AB 450的合成
中间体AB 450D的合成
Figure BDA0001911619210000141
将N-丁基-4-溴-5-硝基-1,8-萘酰亚胺(300mg,0.80mmol)溶于30mL乙二醇甲醚中,并向其中加入正丁胺500mg。将反应液缓慢加热至80℃,并反应12h。减压除去乙二醇甲醚,残余物经硅胶柱分离残余物(二氯甲烷:甲醇=80:1,V/V),得黄色固体209mg,产率66%。其核磁谱图氢谱数据如下:
1H NMR(400MHz,CDCl3)δ8.42(d,J=8.4Hz,2H),6.75(d,J=8.5Hz,2H),5.79(t,J=4.9Hz,2H),4.20–4.08(m,2H),3.25(dd,J=12.2,6.9Hz,4H),1.82–1.65(m,6H),1.59–1.49(m,4H),1.43(dq,J=14.8,7.4Hz,2H),1.03(t,J=7.3Hz,6H),0.96(t,J=7.4Hz,3H).
AB 450的合成
Figure BDA0001911619210000151
将AB 450D(100mg,0.25mmol)溶于10mL甲苯中,而后将反应液缓慢加热至100℃,并反应24h。减压除去乙二醇甲醚,残余物经硅胶柱分离残余物(二氯甲烷:甲醇=200:1,V/V),得黄色固体39.6mg,产率40%。其核磁谱图氢谱如图2所示,具体数据为:
1H NMR(400MHz,CDCl3)δ8.55(d,J=8.2Hz,1H),8.50(d,J=8.4Hz,1H),7.23(d,J=8.2Hz,1H),6.75(d,J=8.5Hz,1H),4.26–4.12(m,2H),4.04–3.90(m,2H),2.84–2.72(m,2H),1.70(dt,J=7.7,6.5Hz,2H),1.61–1.50(m,2H),1.45(td,J=14.9,7.4Hz,2H),1.13(t,J=7.4Hz,3H),1.07(t,J=7.4Hz,3H),0.97(t,J=7.4Hz,3H).
其高分辨质谱数据如下:高分辨质谱理论值C24H30N3O2[M+H]+392.2338,实测值392.2352.
经检测,其结构如上式AB450所示,其紫外吸收波长为458nm,发射波长为470nm,荧光半峰宽窄,适合450nm激光激发。
实施例5
AB 450的合成
Figure BDA0001911619210000161
将AB 450D(100mg,0.25mmol)溶于5mL甲苯中,而后将反应液缓慢加热至90℃,并反应24h。减压除去乙二醇甲醚,残余物经硅胶柱分离残余物(二氯甲烷:甲醇=200:1,V/V),得黄色固体35mg,产率36%。
经检测,其结构如上式AB450所示,其紫外吸收波长为458nm,发射波长为470nm,荧光半峰宽窄,适合450nm激光激发。
实施例6
AB 450的合成
Figure BDA0001911619210000162
将AB 450D(200mg,0.50mmol)溶于10mL甲苯中,而后将反应液缓慢加热至120℃,并反应10h。减压除去乙二醇甲醚,残余物经硅胶柱分离残余物(二氯甲烷:甲醇=150:1,V/V),得黄色固体105mg,产率55%。
经检测,其结构如上式AB450所示,其紫外吸收波长为458nm,发射波长为470nm,荧光半峰宽窄,适合450nm激光激发。
实施例7
AB 488的合成
Figure BDA0001911619210000171
将N-丁基-4-溴-5-硝基-1,8-萘酰亚胺(100mg,0.27mmol)溶于10mL乙二醇甲醚中,并向其中加入环己二胺300mg。将反应液缓慢加热至120℃,并反应12h。减压除去乙二醇甲醚,残余物经硅胶柱分离残余物(二氯甲烷:甲醇=70:1,V/V),得黄色固体31mg,产率32%。其核磁谱图氢谱如图3所示,氢谱及碳谱数据如下:
1H NMR(400MHz,DMSO-d6)δ8.04(d,J=8.6Hz,2H),7.50(s,2H),6.83(d,J=8.7Hz,2H),4.04–3.83(m,2H),3.16(t,J=7.0Hz,2H),2.19(d,J=11.2Hz,2H),1.73(d,J=8.1Hz,2H),1.54(dt,J=14.9,7.6Hz,2H),1.30(dq,J=14.3,7.2Hz,6H),0.90(t,J=7.3Hz,3H).13C NMR(101MHz,DMSO-d6)δ163.43,154.52,134.70,133.32,110.56,107.86,106.52,59.52,55.38,32.09,30.40,23.64,20.35,14.28.
经检测,其结构如上式AB 488所示,其在水中荧光发射波长为485nm左右,吸收为478nm左右,可用于488nm激发,且强激光淬灭荧光后可自恢复。
实施例8
AB 488的合成
Figure BDA0001911619210000181
将N-丁基-4-溴-5-硝基-1,8-萘酰亚胺(100mg,0.27mmol)溶于5mL乙二醇甲醚中,并向其中加入环己二胺50mg。将反应液缓慢加热至100℃,并反应24h。减压除去乙二醇甲醚,残余物经硅胶柱分离残余物(二氯甲烷:甲醇=70:1,V/V),得黄色固体28mg,产率29%。
经检测,其结构如上式AB 488所示,其在水中荧光发射波长为485nm左右,吸收为478nm左右,可用于488nm激发,且强激光淬灭荧光后可自恢复。
实施例9
AB 488的合成
Figure BDA0001911619210000182
将N-丁基-4-溴-5-硝基-1,8-萘酰亚胺(100mg,0.27mmol)溶于10mL乙二醇甲醚中,并向其中加入环己二胺200mg。将反应液缓慢加热至140℃,并反应10h。减压除去乙二醇甲醚,残余物经硅胶柱分离残余物(二氯甲烷:甲醇=70:1,V/V),得黄色固体42mg,产率43%。
经检测,其结构如上式AB 488所示,其在水中荧光发射波长为485nm左右,吸收为478nm左右,可用于488nm激发,且强激光淬灭荧光后可自恢复。
实施例10
AB 560的合成
Figure BDA0001911619210000191
将AB 560S(100mg,0.23mmol)溶于10mL 1,2-二氯乙烷中,冰向反应液中加入0.5mL三氯氧磷。反应液在95℃下搅拌4h后减压除去溶剂,并向反应瓶中加入硫脲(50mg,0.69mmol),1.0mL三乙胺,10mL四氢呋喃。室温搅拌12h后,减压除去溶剂,残余物经硅胶柱分离残余物(石油醚:乙酸乙酯=20:1,V/V),得白色固体17mg,产率17%。其核磁谱图氢谱数据如图4所示,具体数据如下:
1H NMR(400MHz,DMSO-d6)δ7.80(d,J=7.7Hz,1H),7.75–7.65(m,2H),7.59(t,J=7.3Hz,1H),7.16(d,J=7.8Hz,1H),6.55(d,J=8.9Hz,1H),6.36(dd,J=9.0,2.4Hz,1H),6.29(s,2H),6.18(s,1H),6.16(s,1H),3.33–3.27(m,5H),2.40(t,J=6.3Hz,1H),1.68(dd,J=10.2,4.7Hz,2H),1.38(dd,J=15.0,7.4Hz,1H),1.07(t,J=6.9Hz,6H).
经检测,其结构如上式AB 560所示,其水中荧光发射波长为570nm,吸收波长为552nm,适合560nm激光激发。
实施例11
AB 560的合成
Figure BDA0001911619210000201
将AB 560S(100mg,0.23mmol)溶于20mL 1,2-二氯乙烷中,冰向反应液中加入2mL三氯氧磷。反应液在80℃下搅拌10h后减压除去溶剂,并向反应瓶中加入硫脲(300mg,4.14mmol),2.0mL三乙胺,20mL四氢呋喃。室温搅拌24h后,减压除去溶剂,残余物经硅胶柱分离残余物(石油醚:乙酸乙酯=20:1,V/V),得白色固体15mg,产率15%。
经检测,其结构如上式AB 560所示,其水中荧光发射波长为570nm,吸收波长为552nm,适合560nm激光激发。
实施例12
AB 560的合成
Figure BDA0001911619210000202
将AB 560S(100mg,0.23mmol)溶于10mL 1,2-二氯乙烷中,冰向反应液中加入1mL三氯氧磷。反应液在100℃下搅拌2h后减压除去溶剂,并向反应瓶中加入硫脲(150mg,2.07mmol),4.0mL三乙胺,20mL四氢呋喃。室温搅拌10h后,减压除去溶剂,残余物经硅胶柱分离残余物(石油醚:乙酸乙酯=20:1,V/V),得白色固体25mg,产率25%。
经检测,其结构如上式AB 560所示,其水中荧光发射波长为570nm,吸收波长为552nm,适合560nm激光激发。
实施例13
AB640的合成
中间体AB 640A的合成
Figure BDA0001911619210000211
将tBu-Br(0.275g,0.8mmol)加入至25ml史莱克瓶中,反复抽真空通氮气三次,用注射器加入10ml无水四氢呋喃,冷却至-78℃。之后加入0.47ml异丁基锂,反应30min,再加入Si-TO(40mg,0.114mmol)。逐渐恢复到室温搅拌12h。反应完成后加入饱和氯化铵淬灭反应,用乙酸乙酯萃取,收集有机相并用无水硫酸钠干燥,有机相减压蒸馏,反应产物经硅胶柱(200-300目)以二氯甲烷和甲醇(30:1)为展开剂分离纯化获得蓝色固体34mg,产率50%。其核磁氢谱数据如下:
1H NMR(400MHz,MeOD)δ8.06(d,J=1.4Hz,1H),7.94(dd,J=7.9,1.6Hz,1H),7.14(d,J=7.9Hz,1H),6.87(d,J=2.6Hz,2H),6.85(d,J=9.4Hz,2H),6.25(dd,J=9.4,2.5Hz,2H),4.28(s,8H),4.09(s,2H),2.54–2.38(m,4H),1.55(s,9H),0.83(s,9H),0.46(d,J=5.0Hz,6H).
中间体AB 640B的合成
Figure BDA0001911619210000221
将AB 640A(34mg,0.057mmol)溶于5ml三氟乙酸(CF3COOH)中,室温下搅拌2天。反应结束后减压蒸馏除去溶剂,经硅胶柱(200-300目)以二氯甲烷和甲醇(10:1)为展开剂分离纯化得到蓝色目标物17mg,产率60%。其核磁谱图氢谱数据如下:
1H NMR(400MHz,DMSO-d6)δ7.92(s,1H),7.75(d,J=7.9Hz,1H),7.01(d,J=8.6Hz,2H),6.78(d,J=8.0Hz,1H),6.34(dd,J=8.7,2.5Hz,2H),5.41(s,2H),3.79(t,J=7.3Hz,8H),2.28(dt,J=14.5,7.1Hz,4H),0.56(s,3H),0.44(s,3H).
AB 640的合成
Figure BDA0001911619210000222
将AB 640B(17mg,0.034mmol)、N,N-二琥珀酰亚胺碳酸酯(27mg,0.1mmol),DMAP(5.1mg),三乙胺(20μl)溶于5ml DMF中,室温搅拌1h。反应结束后减压蒸馏除去溶剂,经硅胶柱(200-300目)以石油醚和乙酸乙酯(10:1)为展开剂分离纯化得到白色粉末目标物10mg,产率53%。其核磁谱图氢谱如图5所示,具体数据如下:
1H NMR(400MHz,CDCl3)δ8.10(s,1H),8.03(d,J=8.1Hz,1H),7.15(d,J=8.1Hz,1H),6.88(d,J=8.6Hz,2H),6.66(d,J=2.6Hz,2H),6.32(dd,J=8.6,2.6Hz,2H),5.29(s,2H),3.89(t,J=7.2Hz,8H),2.91(s,4H),2.41–2.29(m,4H),0.59(s,3H),0.51(s,3H).
经检测,其结构如上式AB 640所示,其在水中荧光发射波长为670nm,吸收波长为655nm,适合640nm激光进行激发。
实施例14
AB640的合成
中间体AB 640A的合成
Figure BDA0001911619210000231
将tBu-Br(0.14g,0.8mmol)加入至25ml史莱克瓶中,反复抽真空通氮气三次,用注射器加入10ml无水四氢呋喃,冷却至-78℃。之后加入0.47ml异丁基锂,反应30min,再加入Si-TO(40mg,0.114mmol)。逐渐恢复到室温搅拌12h。反应完成后加入饱和氯化铵淬灭反应,用乙酸乙酯萃取,收集有机相并用无水硫酸钠干燥,有机相减压蒸馏,反应产物经硅胶柱(200-300目)以二氯甲烷和甲醇(30:1)为展开剂分离纯化获得蓝色固体34mg,产率50%。
中间体AB 640B的合成
Figure BDA0001911619210000241
将AB 640A(17mg,0.028mmol)溶于5ml三氟乙酸(CF3COOH)中,室温下搅拌2天。反应结束后减压蒸馏除去溶剂,经硅胶柱(200-300目)以二氯甲烷和甲醇(10:1)为展开剂分离纯化得到蓝色目标物9mg,产率60%。
1H NMR(400MHz,DMSO-d6)δ7.92(s,1H),7.75(d,J=7.9Hz,1H),7.01(d,J=8.6Hz,2H),6.78(d,J=8.0Hz,1H),6.34(dd,J=8.7,2.5Hz,2H),5.41(s,2H),3.79(t,J=7.3Hz,8H),2.28(dt,J=14.5,7.1Hz,4H),0.56(s,3H),0.44(s,3H).
AB 640的合成
Figure BDA0001911619210000242
将AB 640B(9mg,0.017mmol)、N,N-二琥珀酰亚胺碳酸酯(27mg,0.1mmol),DMAP(5.1mg),三乙胺(20μL)溶于5ml DMF中,室温搅拌3h。反应结束后减压蒸馏除去溶剂,经硅胶柱(200-300目)以石油醚和乙酸乙酯(10:1)为展开剂分离纯化得到白色粉末目标物5mg,产率53%。
经检测,其结构如上式AB 640所示,其在水中荧光发射波长为670nm,吸收波长为655nm,适合640nm激光进行激发。
实施例15
AB640的合成
中间体AB 640A的合成
Figure BDA0001911619210000251
将tBu-Br(0.28g,1.60mmol)加入至25ml史莱克瓶中,反复抽真空通氮气三次,用注射器加入10ml无水四氢呋喃,冷却至-78℃。之后加入0.24ml异丁基锂,反应30min,再加入Si-TO(20mg,0.057mmol)。逐渐恢复到室温搅拌12h。反应完成后加入饱和氯化铵淬灭反应,用乙酸乙酯萃取,收集有机相并用无水硫酸钠干燥,有机相减压蒸馏,反应产物经硅胶柱(200-300目)以二氯甲烷和甲醇(30:1)为展开剂分离纯化获得蓝色固体18mg,产率58%。
中间体AB 640B的合成
Figure BDA0001911619210000252
将AB 640A(34mg,0.056mmol)溶于5ml三氟乙酸(CF3COOH)中,室温下搅拌2天。反应结束后减压蒸馏除去溶剂,经硅胶柱(200-300目)以二氯甲烷和甲醇(10:1)为展开剂分离纯化得到蓝色目标物9mg,产率33%。
1H NMR(400MHz,DMSO-d6)δ7.92(s,1H),7.75(d,J=7.9Hz,1H),7.01(d,J=8.6Hz,2H),6.78(d,J=8.0Hz,1H),6.34(dd,J=8.7,2.5Hz,2H),5.41(s,2H),3.79(t,J=7.3Hz,8H),2.28(dt,J=14.5,7.1Hz,4H),0.56(s,3H),0.44(s,3H).
AB 640的合成
Figure BDA0001911619210000261
将AB 640B(17mg,0.032mmol)、N,N-二琥珀酰亚胺碳酸酯(14mg,0.05mmol),DMAP(2.5mg),三乙胺(10μL)溶于5ml DMF中,室温搅拌1h。反应结束后减压蒸馏除去溶剂,经硅胶柱(200-300目)以石油醚和乙酸乙酯(10:1)为展开剂分离纯化得到白色粉末目标物5mg,产率25%。
经检测,其结构如上式AB 640所示,其在水中荧光发射波长为670nm,吸收波长为655nm,适合640nm激光进行激发。
将该类染料分别溶解于DMSO溶液中,配制成不同染料的2mM母液,根据需要配制成不同浓度测试溶液,以检测其荧光光谱、吸收光谱及细胞内荧光成像检测。
实施例16
该系列染料在水中荧光激发与发射光谱测试。每次取20μL染料母液加入4mL乙水中,配制成10μM的荧光染料测试液,进行荧光激发与发射光谱测试。
该类染料在水中发射与激发谱图如图6所示:AB 405,AB 450,AB 488,AB 560,AB640的激发波长分别在405,450,488,560,640nm附近可用于此类激发波长激发,能够满足目前常用激光器的应用。
实施例17
该系列染料在细胞内不同强度激发下荧光变化测试。每次取0.5μL染料母液加入1mL细胞培养液中,孵育20min后用PBS洗涤3次。而后用于荧光成像,在成像2次后相应激发光对选择区域进行20s持续照射以打灭分子荧光态,之后继续进行荧光成像。选取照射区域进行荧光强度分析,并对时间作图,纵坐标为荧光强度图,横坐标为时间。
AB 405成像图如图7所示:在50s采用405nm激光对圆形区域内进行持续照射,荧光分子出现暗态,而后随着时间变化荧光分子逐渐由暗态恢复至亮态,1000s后恢复90%以上的亮度,可实现光开关。
AB 450成像图如图8所示:采用458nm激光对圆形区域内进行持续照射后,荧光分子出现暗态,而后随着时间变化荧光分子逐渐由暗态恢复至亮态,0.5h后恢复98%以上的亮度,可实现光开关。
AB 488成像图如图9所示:采用488nm激光对圆形区域内进行持续照射后,荧光分子出现暗态,而后随着时间变化荧光分子逐渐由暗态恢复至亮态,2000s后恢复92%以上的亮度,可实现光开关。
实施例18
AB 640在不同pH下荧光开关变化测试。每次取400μL染料母液加入80mL乙水中,配制成10μM的荧光染料测试液,通过5M氢氧化钠溶液与5M盐酸溶液调节pH,每个pH下稳定5min后进行荧光发射光谱测试。
AB 640在不同pH下荧光光谱如图10所示:AB 640随着酸性的增加荧光分子逐渐由暗态变为亮态,实现从关到开的现象。在生理条件下AB 640处于大部分关闭状态,而由于热力学平衡仍存在开的分子,即可实现少数光点的采集用于超分辨成像。
实施例19
AB 640标记多克隆抗体标记微管蛋白。将AB 640标记多克隆抗体溶于水溶液中配制成0.5mg/mL的母液备用。将Hela细胞(增殖表皮癌细胞)铺在培养皿中,皿中含有10%胎牛血清的DMED高糖培养基1mL,在37℃和5%二氧化碳条件下培养至细胞密度约为70%,用PBS缓冲液轻柔洗涤细胞2次后,用4%多聚甲醛固定30min,弃掉固定液用PBS洗3次,然后用0.2%的TritonX-100透化20min后用PBS洗3次,每次5min,然后用5%的BSA封闭液封闭20分钟后再用PBS洗3次。加入含有抗α-微管蛋白的单克隆抗体(约10μg/mL)的200μLPBS溶液,4℃孵育过夜。第二天用PBS洗3遍后加入含AB 640标记的多克隆抗体(约10μg/mL)的200μLPBS溶液,37℃孵育3小时。最后用PBS清洗3遍后在超分辨荧光成像。激发波长640nm,激光强度40W/cm2
AB 640标记多克隆抗体标记微管蛋白在细胞内成像如图11所示:AB 640能够在640nm单色激光激发下实现光开关现象,通过分子的闪烁光点通过尼康Storm显微镜进行成像,其标记的微管蛋白轮廓清晰,分辨率较高。

Claims (8)

1.一种全光谱的光开关分子,其特征在于:该光开关分子不需要激活光的存在,只需要单色的激发光即可实现分子暗态到亮态的往复循环,以得到更精确的光点定位信息;该光开关分子由胍基取代萘酰亚胺类染料或硫内脂罗丹明染料中的一种或几种按任意比例混合,可用于不同激发光激发成像与检测;
所述的胍基取代萘酰亚胺类染料用于450 nm激发的自开关分子,其结构式如下:
Figure 247215DEST_PATH_IMAGE001
所述的硫内脂罗丹明染料用于560 nm激发的自开关分子,其结构式如下:
Figure DEST_PATH_IMAGE003A
2.一种如权利要求1所述的全光谱的光开关分子的合成方法,其特征在于所述的胍基取代萘酰亚胺类染料的合成包含步骤如下:
N-丁基-4,5-二-丁胺基-1,8-萘酰亚胺溶于甲苯中,而后将反应液缓慢加热至90-120 ºC,并反应10-24 h;减压除去甲苯,残余物经硅胶柱分离,得黄色固体AB 450。
3.根据权利要求2所述的全光谱的光开关分子的合成方法,其特征在于:N-丁基-4,5-二-丁胺基-1,8-萘酰亚胺的质量与甲苯的体积比为10-20:1 mg/mL。
4.一种如权利要求1所述的全光谱的光开关分子的合成方法,其特征在于所述的硫内脂罗丹明染料的合成包含步骤如下:
将罗丹明类染料AB 560S溶于1,2-二氯乙烷中,并向反应液中加入三氯氧磷;反应液在80-100 °C下搅拌2-10 h后减压除去溶剂,并向反应瓶中加入硫脲,三乙胺,四氢呋喃,室温搅拌10-24 h后,减压除去溶剂,残余物经硅胶柱分离残余物以石油醚和乙酸乙酯为展开剂,得白色固体AB 560;
AB 560S为以下结构:
Figure 167898DEST_PATH_IMAGE004
5.根据权利要求4所述的全光谱的光开分子的合成方法,其特征在于:AB 560S与硫脲的质量比为1:0.5-3;
AB 560S的质量与1,2-二氯乙烷的体积比为5-10:1 mg/mL;
1,2-二氯乙烷、三氯氧磷、三乙胺、四氢呋喃的体积比为1: 0.05-0.1: 0.1-0.4:1-2。
6.一种以非疾病的诊断和治疗为目的的如权利要求1所述的全光谱的光开关分子在细胞、组织中超分辨荧光成像中的应用。
7.一种以非疾病的诊断和治疗为目的的如权利要求1所述的全光谱的光开关分子用于蛋白荧光标记的应用。
8.一种以非疾病的诊断和治疗为目的的如权利要求1所述的全光谱的光开关分子的开关性能用于信息存储中的应用。
CN201811554987.6A 2018-12-18 2018-12-18 一种全光谱的光开关分子及其合成和应用 Active CN111333612B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811554987.6A CN111333612B (zh) 2018-12-18 2018-12-18 一种全光谱的光开关分子及其合成和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811554987.6A CN111333612B (zh) 2018-12-18 2018-12-18 一种全光谱的光开关分子及其合成和应用

Publications (2)

Publication Number Publication Date
CN111333612A CN111333612A (zh) 2020-06-26
CN111333612B true CN111333612B (zh) 2022-11-15

Family

ID=71177712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811554987.6A Active CN111333612B (zh) 2018-12-18 2018-12-18 一种全光谱的光开关分子及其合成和应用

Country Status (1)

Country Link
CN (1) CN111333612B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116199674B (zh) * 2021-11-30 2024-09-20 中国科学院大连化学物理研究所 基于扭转分子内电荷转移的罗丹明荧光淬灭剂及合成和应用
CN115746008B (zh) * 2022-11-14 2024-03-01 安徽大学 一种同步光激活荧光探针及其制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867515A (zh) * 2015-12-11 2017-06-20 中国科学院大连化学物理研究所 一种用于蛋白标记及检测的荧光探针及其合成方法与应用
CN107603269A (zh) * 2016-07-11 2018-01-19 华东理工大学 一类基于萘酰亚胺的荧光染料、其制备方法及应用
CN111334078B (zh) * 2018-12-18 2021-12-21 中国科学院大连化学物理研究所 一种405nm激发的高亮度、高稳定性荧光染料及其合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867515A (zh) * 2015-12-11 2017-06-20 中国科学院大连化学物理研究所 一种用于蛋白标记及检测的荧光探针及其合成方法与应用
CN107603269A (zh) * 2016-07-11 2018-01-19 华东理工大学 一类基于萘酰亚胺的荧光染料、其制备方法及应用
CN111334078B (zh) * 2018-12-18 2021-12-21 中国科学院大连化学物理研究所 一种405nm激发的高亮度、高稳定性荧光染料及其合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Aziridinyl Fluorophores Demonstrate Bright Fluorescence and Superior Photostability by Effectively Inhibiting Twisted Intramolecular Charge Transfer;Xiaogang Liu,et al.;《J. Am. Chem. Soc.》;20160520;第138卷;6960-6963 *

Also Published As

Publication number Publication date
CN111333612A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
Wang et al. Rational design of novel near-infrared fluorescent DCM derivatives and their application in bioimaging
CN111333612B (zh) 一种全光谱的光开关分子及其合成和应用
WO2020124688A1 (zh) 一种全光谱高亮度、高稳定性荧光染料及其合成和应用
Zhao et al. Maximizing the thiol-activated photodynamic and fluorescence imaging functionalities of theranostic reagents by modularization of Bodipy-based dyad triplet photosensitizers
CN111334083B (zh) 一类高亮度、高稳定性的活性荧光染料及其合成和应用
CN112940709A (zh) 一类自闪烁罗丹明螺硫酯荧光染料及其合成方法和在超分辨成像领域的应用
CN111334068B (zh) 一种基于SNAP-tag技术的自闪烁超分辨荧光染料及其合成和应用
CN108640902A (zh) 一种识别纯水体系内二氧化硫的荧光探针及其应用
CN111333649B (zh) 一种基于SNAP-tag技术的细胞膜荧光探针及其制备和应用
CN110272437B (zh) 可见光光控的snap蛋白标签类耐酸荧光分子开关及其合成
WO2023009503A1 (en) 2-diazo-3-oxo-2,3-dihydrospiro[indene-1,9'-xanthene] derivatives and similar compounds as photoactive fluorescent compounds for protein labeling
CN112939960B (zh) 羰基氮杂环丁烷取代的nbd类荧光染料及其合成方法和应用
CN111334080B (zh) 一种高亮度、高光稳定性的碳酸酐酶荧光探针
CN111333646B (zh) 一种高亮度、高稳定性免洗SNAP-tag探针及其制备方法及应用
CN112940714B (zh) 一种高荧光量子产率的免洗Halo-tag探针及其合成方法和应用
CN111333618B (zh) 一种488nm激发的免洗SNAP-tag探针及其制备方法
CN111334074A (zh) 一种高亮度、高稳定性线粒体荧光染料
CN111333621B (zh) 一种488nm激发的免洗Halo-tag探针及其合成和生物应用
CN111334084B (zh) 一种高亮度、高稳定性、高渗透性线粒体荧光染料
CN116655653B (zh) 一种扭曲砜类多功能分子的制备及其应用
CN116120354B (zh) 一种荧光开启型探针及其制备方法与应用
CN112940520B (zh) 一类具有细胞器定位性质的荧光染料在细胞器成像中的应用
US20240353433A1 (en) Amino-substituted chromenoquinoline-based fluorescent marker, and preparation and use thereof
CN118724882A (zh) 一种线粒体dna荧光探针、制备方法及其生物成像应用
Zhang et al. Rigidify styryl-pyridinium dyes to benzo [h] coumarin-based bright two-photon fluorescent probes for cellular bioimaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant