CN111333419A - 一种上转换发光可逆调控材料及其制备方法 - Google Patents

一种上转换发光可逆调控材料及其制备方法 Download PDF

Info

Publication number
CN111333419A
CN111333419A CN202010241683.5A CN202010241683A CN111333419A CN 111333419 A CN111333419 A CN 111333419A CN 202010241683 A CN202010241683 A CN 202010241683A CN 111333419 A CN111333419 A CN 111333419A
Authority
CN
China
Prior art keywords
reversible
conversion luminescence
srco
baco
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010241683.5A
Other languages
English (en)
Other versions
CN111333419B (zh
Inventor
魏通
贾兵
申灵慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Civil Aviation University of China
Original Assignee
Civil Aviation University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Civil Aviation University of China filed Critical Civil Aviation University of China
Priority to CN202010241683.5A priority Critical patent/CN111333419B/zh
Publication of CN111333419A publication Critical patent/CN111333419A/zh
Application granted granted Critical
Publication of CN111333419B publication Critical patent/CN111333419B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • C09K11/7703Chalogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种上转换发光可逆调控材料及其制备方法。上转换发光可逆调控材料是化学式为Ba0.7Sr0.3‑1.5xErxNb2O6的陶瓷材料,其中,x=0.02、0.04、0.08、0.12、0.15或0.2。制备方法是以BaCO3、SrCO3、Er2O3和Nb2O5作为原料,利用简单高温固相反应法而制备出Ba0.7Sr0.3‑1.5xErxNb2O6陶瓷材料。本发明优点:辐照后的Ba0.7Sr0.3‑ 1.5xErxNb2O6陶瓷材料上转换发光强度相比于辐照前明显降低。辐照前后上转换绿光峰强度调控率最高约为79%。对Ba0.7Sr0.3‑1.5xErxNb2O6陶瓷材料的辐照与加热能实现对其上转换光谱的可逆有效调控。近紫外光辐照前后所有Ba0.7Sr0.3‑1.5xErxNb2O6陶瓷材料的颜色没有明显改变,辐照前后反射谱只有微小差别。

Description

一种上转换发光可逆调控材料及其制备方法
技术领域
本发明属于稀土基上转换发光材料技术领域,具体涉及一种上转换发光可逆调控材料及其制备方法。
背景技术
上转换发光在显示与照明、超分辨成像、温度传感、光学理疗、固态激光、光学防伪、光电子器件等重要领域均具有广泛应用,因此已引起世界范围内科学家的广泛关注。上转换发光材料的应用通常是根据其发光特性来实现的。具有新奇发光性能或光谱调控属性的上转换材料是目前科学家研究的热点。以往研究报道的上转换发光调控通常是利用改变掺杂稀土元素的种类、掺杂的浓度、激发波长、基体材料等因素来实现,而这些上转换调控手段属于不可逆过程,这显然不能满足未来高性能动态调控光电器件的需求,因此需要科研工作者发明能有效可逆调控上转换发光的新途径。
发明内容
为了解决上述问题,本发明的目的在于提供一种上转换发光可逆调控材料及其制备方法。
为了达到上述目的,本发明提供的上转换发光可逆调控材料是化学式为Ba0.7Sr0.3-1.5xErxNb2O6的陶瓷材料,其中,x=0.02、0.04、0.08、0.12、0.15或0.2。
本发明提供的上转换发光可逆调控材料的制备方法是以BaCO3、SrCO3、Er2O3和Nb2O5作为原料,将上述原料按比例进行混合,以乙醇作为溶剂,在球磨机中研磨成混合均匀的粉末,之后将粉末进行干燥,并于1300℃下进行预烧;然后将预烧后的粉末再次进行研磨,加入粘合剂并造粒,压片后在1350℃下进行烧结,冷却到室温,经碳化硅表面抛光减薄后,获得属于上转换发光可逆调控材料的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料。
所述的BaCO3、SrCO3、Er2O3和Nb2O5的用量比根据Ba0.7Sr0.3-1.5xErxNb2O6中x的数值确定,当x=0.02时,BaCO3、SrCO3、Er2O3和Nb2O5的用量比为1:0.2885:0.0274:1.9052;当x=0.04时,BaCO3、SrCO3、Er2O3和Nb2O5的用量比为1:0.2565:0.0549:1.9052;当x=0.08时,BaCO3、SrCO3、Er2O3和Nb2O5的用量比为1:0.1924:0.1098:1.9052;当x=0.12时,BaCO3、SrCO3、Er2O3和Nb2O5的用量比为1:0.1282:0.1646:1.9052;当x=0.15时,BaCO3、SrCO3、Er2O3和Nb2O5的用量比为1:0.0802:0.2058:1.9052;当x=0.2时,BaCO3、SrCO3、Er2O3和Nb2O5的用量比为1:0:0.2744:1.9052。
所述的球磨机采用行星式球磨机。
所述的球磨机中的研磨时间为24h。
所述的预烧时间为3小时。
所述的烧结时间为3小时。
本发明提供的上转换发光可逆调控材料及其制备方法具有如下优点和特点:
1、以BaCO3、SrCO3、Er2O3和Nb2O5作为原料,并利用简单高温固相反应法而制备出Ba0.7-1.5xSr0.3-xErxNb2O6陶瓷材料。
2、利用近紫外光辐照Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料一定时间。研究发现,辐照后的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料上转换发光强度相比于辐照前明显降低。辐照前后上转换绿光峰强度调控率最高约为79%。
3、辐照后的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料在600摄氏度下保温1分钟后,上转换发射可恢复到辐照前的状态。
4、对Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料的辐照与加热能实现对其上转换光谱的可逆有效调控。
5、近紫外光辐照前后所有Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料的颜色没有明显改变,辐照前后反射谱只有微小差别。
6,随x增加,Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料上转换调控性能的显著增强是一种基于非光致变色效应的新型上转换可逆调控。
附图说明
图1是本发明实施例提供的Ba0.7Sr0.3-1.5xErxNb2O6(0.02≤x≤0.2)陶瓷材料的X射线衍射图谱。
图2(a)是本发明实施例提供的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料在980nm近红外光激发下的上转换发射谱。图2(b)是上转换绿光发射与红光发射强度的对数随激发功率的对数变化关系。
图3分别是当x=0.02、0.04、0.08、0.12、0.15和0.2时本发明实施例提供的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料在405nm近紫外光辐照前后的上转换发射光谱。
图4分别是当x=0.02、0.04、0.08、0.12、0.15和0.2时本发明实施例提供的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料在405nm辐照与600摄氏度热处理交替作用下调控率R随测试循环次数的变化关系。
图5是辐照前后本发明实施例提供的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料的照片。
图6分别是当x=0.02、0.04、0.08、0.12、0.15和0.2时本发明实施例提供的Ba0.7Sr0.3-1.5xErxNb2O6材料在近紫外光辐照前后的反射光谱。
具体实施方式
现结合具体实施例对本发明做进一步地描述:
实施例1:
本实施例提供的上转换发光可逆调控材料为Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料,其中x=0.02,其制备方法如下:
称取2.0930克BaCO3(99%)、0.6039克SrCO3(99%)、0.0574克Er2O3(99.9%)和3.9875克Nb2O5(99.99%),置于干净的玛瑙罐中,以无水乙醇(99.7%)作为溶剂,在行星式球磨机上进行研磨而制成混合均匀的粉末,时间为24小时。然后将上述粉末用烘箱进行干燥,之后置于刚玉坩埚中,放入箱式炉中,连续升温至1300℃预烧3小时,降温至550℃。之后将随炉冷却后所得产物用玛瑙研钵磨细,加入粘合剂PVB(与产物重量比为0.5%),充分研磨,混合均匀,进行造粒。在10MPa压力下制备成直径13mm的陶瓷生坯片。将陶瓷生坯片置于高温炉中,连续升温,在700℃下保温120分钟排塑,然后连续升温,在1350℃下烧结3小时,降温至550℃,自然冷却后获得x=0.02的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料。
实施例2:
本实施例提供的上转换发光可逆调控材料为Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料,其中x=0.04,其制备方法如下:
称取2.0930克BaCO3(99%)、0.5368克SrCO3(99%)、0.1149克Er2O3(99.9%)和3.9875克Nb2O5(99.99%),置于干净的玛瑙罐中,以无水乙醇(99.7%)作为溶剂,在行星式球磨机上进行研磨而制成混合均匀的粉末,时间为24小时。然后将上述粉末用烘箱进行干燥,之后置于刚玉坩埚中,放入箱式炉中,连续升温至1300℃预烧3小时,降温至550℃。之后将随炉冷却后所得产物用玛瑙研钵磨细,加入粘合剂PVB(与产物重量比为0.5%),充分研磨,混合均匀,进行造粒。在10MPa压力下制备成直径13mm的陶瓷生坯片。将陶瓷生坯片置于高温炉中,连续升温,在700℃下保温120分钟排塑,然后连续升温,在1350℃下烧结3小时,降温至550℃,自然冷却后获得x=0.04的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料。
实施例3:
本实施例提供的上转换发光可逆调控材料为Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料,其中x=0.12,其制备方法如下:
称取2.0930克BaCO3(99%)、0.2684克SrCO3(99%)、0.3446克Er2O3(99.9%)和3.9875克Nb2O5(99.99%),置于干净的玛瑙罐中,以无水乙醇(99.7%)作为溶剂,在行星式球磨机上进行研磨而制成混合均匀的粉末,时间为24小时。然后将上述粉末用烘箱进行干燥,之后置于刚玉坩埚中,放入箱式炉中,连续升温至1300℃预烧3小时,降温至550℃。之后将随炉冷却后所得产物用玛瑙研钵磨细,加入粘合剂PVB(与产物重量比为0.5%),充分研磨,混合均匀,进行造粒。在10MPa压力下制备成直径13mm的陶瓷生坯片。将陶瓷生坯片置于高温炉中,连续升温,在700℃下保温120分钟排塑,然后连续升温,在1350℃下烧结3小时,降温至550℃,自然冷却后获得x=0.12的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料。
实施例4:
本实施例提供的上转换发光可逆调控材料为Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料,其中x=0.2,其制备方法如下:
称取2.0930克BaCO3(99%)、0克SrCO3(99%)、0.5744克Er2O3(99.9%)和3.9875克Nb2O5(99.99%),置于干净的玛瑙罐中,以无水乙醇(99.7%)作为溶剂,在行星式球磨机上进行研磨而制成混合均匀的粉末,时间为24小时。然后将上述粉末用烘箱进行干燥,之后置于刚玉坩埚中,放入箱式炉中,连续升温至1300℃预烧3小时,降温至550℃。之后将随炉冷却后所得产物用玛瑙研钵磨细,加入粘合剂PVB(与产物重量比为0.5%),充分研磨,混合均匀,进行造粒。在10MPa压力下制备成直径13mm的陶瓷生坯片。将陶瓷生坯片置于高温炉中,连续升温,在700℃下保温120分钟排塑,然后连续升温,在1350℃下烧结3小时,降温至550℃,自然冷却后获得x=0.2的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料。
为了验证本发明的效果,本发明人进行了如下实验:
1、将上述实施例制备的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料利用碳化硅研磨粉减薄至厚度0.5mm。
2、以980nm近红外光为激发波长,利用光谱仪测试上述Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料的室温上转换发射光谱。
3、打开405nm的近紫外光,设定功率为80毫瓦,将上述Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料放置到405nm近紫外光中辐照3分钟。
4、将步骤3中辐照后的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料按照步骤2中的测试条件,测试上转换发射光谱。
5、将步骤4测试完成后的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料在600摄氏度下保温1分钟,取出冷却到室温,然后按照步骤2中的测试条件测试上转换发射光谱。
6、用普通相机分别对上述被近紫外光辐照前后的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料的表面进行拍照。
7、利用反射谱测试仪表征上述Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料被近紫外光辐照前后的漫反射谱光谱。
本发明实施例制备的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料的晶体结构表征如图1所示,与标准卡(No.73-0126)对比,该Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料属于四方钨青铜结构。在980nm近红外光激发下,Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料展现明亮的上转换绿光发射与相对较弱的红光发射,分别对应2H11:2:4S3:24I15:24F9:24I15:2转变,如图2(a)所示。上转换绿光与红光发射均属于两光子上转换过程,如图2(b)所示。图3(a)—图3(f)分别为当x=0.02、0.04、0.08、0.12、0.15和0.2时给出的室温下Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料在405nm近紫外光辐照前与辐照3分钟后的上转换发射光谱,可以看出辐照后Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料的发光强度显著降低。标记辐照前后绿光发射峰积分强度分别为I1与I2,定义上转换调控率为R=(I1-I2):I1,从图3计算得到的调控率R分别是22.8%(x=0.02),29.1%(x=0.04),44.3%(x=0.08),64.4%(x=0.12),70.7%(x=0.15)和79.4%(x=0.20)。图4(a)—图4(f)分别为当x=0.02、0.04、0.08、0.12、0.15和0.2时给出的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料在405nm辐照与600摄氏度热处理交替作用下,调控率R随测试循环次数的变化。十次循环测试,调控率R的平均值分别为21.4%(x=0.02),29.5%(x=0.04),43.2%(x=0.08),64.2%(x=0.12),71.2%(x=0.15),78.4%(x=0.20)。可以看出600摄氏度热处理(时间1分钟)能完全擦除辐照效应,使Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料上转换发光恢复辐照前的初态,并且Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料的上转换调控展现出很好的重复性。图5给出了Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料在近紫外光辐照前后用相机拍摄的照片,可以看出辐照前后Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料的颜色没有明显改变。图6分别为当x=0.02、0.04、0.08、0.12、0.15和0.2时给出的Ba0.7Sr0.3-1.5xErxNb2O6陶瓷材料在近紫外光辐照前后的反射光谱,可以看出辐照前后反射谱只有微小差别。从图5和图6可以确认,随x增加,Ba0.7Sr0.3- 1.5xErxNb2O6陶瓷材料上转换调控性能的显著增强不是由光致变色效应而引起的。

Claims (7)

1.一种上转换发光可逆调控材料,其特征在于:所述的上转换发光可逆调控材料是化学式为Ba0.7Sr0.3-1.5xErxNb2O6的陶瓷材料,其中,x=0.02、0.04、0.08、0.12、0.15或0.2。
2.一种如权利要求1所述上转换发光可逆调控材料的制备方法,其特征在于:所述的制备方法是以BaCO3、SrCO3、Er2O3和Nb2O5作为原料,将上述原料按比例进行混合,以乙醇作为溶剂,在球磨机中研磨成混合均匀的粉末,之后将粉末进行干燥,并于1300℃下进行预烧;然后将预烧后的粉末再次进行研磨,加入粘合剂并造粒,压片后在1350℃下进行烧结,冷却到室温,经碳化硅表面抛光减薄后,获得属于上转换发光可逆调控材料的Ba0.7Sr0.3- 1.5xErxNb2O6陶瓷材料。
3.根据权利要求2所述的所述上转换发光可逆调控材料的制备方法,其特征在于:所述的BaCO3、SrCO3、Er2O3和Nb2O5的用量比根据Ba0.7Sr0.3-1.5xErxNb2O6中x的数值确定,当x=0.02时,BaCO3、SrCO3、Er2O3和Nb2O5的用量比为1:0.2885:0.0274:1.9052;当x=0.04时,BaCO3、SrCO3、Er2O3和Nb2O5的用量比为1:0.2565:0.0549:1.9052;当x=0.08时,BaCO3、SrCO3、Er2O3和Nb2O5的用量比为1:0.1924:0.1098:1.9052;当x=0.12时,BaCO3、SrCO3、Er2O3和Nb2O5的用量比为1:0.1282:0.1646:1.9052;当x=0.15时,BaCO3、SrCO3、Er2O3和Nb2O5的用量比为1:0.0802:0.2058:1.9052;当x=0.2时,BaCO3、SrCO3、Er2O3和Nb2O5的用量比为1:0:0.2744:1.9052。
4.根据权利要求2所述的所述上转换发光可逆调控材料的制备方法,其特征在于:所述的球磨机采用行星式球磨机。
5.根据权利要求2所述的所述上转换发光可逆调控材料的制备方法,其特征在于:所述的球磨机中的研磨时间为24h。
6.根据权利要求2所述的所述上转换发光可逆调控材料的制备方法,其特征在于:所述的预烧时间为3小时。
7.根据权利要求2所述的所述上转换发光可逆调控材料的制备方法,其特征在于:所述的烧结时间为3小时。
CN202010241683.5A 2020-03-31 2020-03-31 一种上转换发光可逆调控材料及其制备方法 Active CN111333419B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010241683.5A CN111333419B (zh) 2020-03-31 2020-03-31 一种上转换发光可逆调控材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010241683.5A CN111333419B (zh) 2020-03-31 2020-03-31 一种上转换发光可逆调控材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111333419A true CN111333419A (zh) 2020-06-26
CN111333419B CN111333419B (zh) 2021-11-23

Family

ID=71178612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010241683.5A Active CN111333419B (zh) 2020-03-31 2020-03-31 一种上转换发光可逆调控材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111333419B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114149262A (zh) * 2021-11-23 2022-03-08 松山湖材料实验室 可逆光致变色透明陶瓷及其制备方法和应用
CN114507064A (zh) * 2020-11-16 2022-05-17 中国民航大学 一种新型光致变色材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977533A (ja) * 1995-09-18 1997-03-25 Nichia Chem Ind Ltd 夜光ガラス成型品
CN102276248A (zh) * 2011-04-22 2011-12-14 同济大学 铋层状类钙钛矿结构的氧化物上转换发光压电材料及其制备方法
WO2013058066A1 (ja) * 2011-10-18 2013-04-25 株式会社村田製作所 発光セラミックス
CN103288448A (zh) * 2012-02-29 2013-09-11 Tdk株式会社 介电体陶瓷组合物以及电子部件
JP2017082186A (ja) * 2015-10-29 2017-05-18 株式会社豊田中央研究所 発光材料
CN107345134A (zh) * 2016-05-05 2017-11-14 中国民航大学 一种高灵敏度稀土掺杂钨青铜荧光探温材料
CN110668816A (zh) * 2019-10-16 2020-01-10 电子科技大学 一种钨青铜结构的无铅储能介质陶瓷材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977533A (ja) * 1995-09-18 1997-03-25 Nichia Chem Ind Ltd 夜光ガラス成型品
CN102276248A (zh) * 2011-04-22 2011-12-14 同济大学 铋层状类钙钛矿结构的氧化物上转换发光压电材料及其制备方法
WO2013058066A1 (ja) * 2011-10-18 2013-04-25 株式会社村田製作所 発光セラミックス
CN103288448A (zh) * 2012-02-29 2013-09-11 Tdk株式会社 介电体陶瓷组合物以及电子部件
JP2017082186A (ja) * 2015-10-29 2017-05-18 株式会社豊田中央研究所 発光材料
CN107345134A (zh) * 2016-05-05 2017-11-14 中国民航大学 一种高灵敏度稀土掺杂钨青铜荧光探温材料
CN110668816A (zh) * 2019-10-16 2020-01-10 电子科技大学 一种钨青铜结构的无铅储能介质陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. O. RAMIREZ: ""Thermal hysteresis in the luminescence of Yb3+ ions in Sr0.6Ba0.4Nb2O6",M. O. Ramirez,《PHYSICAL REVIEW》,第1-8页,20061231", 《PHYSICAL REVIEW》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507064A (zh) * 2020-11-16 2022-05-17 中国民航大学 一种新型光致变色材料及其制备方法
CN114149262A (zh) * 2021-11-23 2022-03-08 松山湖材料实验室 可逆光致变色透明陶瓷及其制备方法和应用
CN114149262B (zh) * 2021-11-23 2023-05-12 松山湖材料实验室 可逆光致变色透明陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN111333419B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
KR102391310B1 (ko) 근적외선 형광 분말 및 상기 형광 분말을 함유하는 발광 장치
EP1760794B1 (en) White light emitting diode device
Xiao et al. A transparent surface-crystallized Eu2+, Dy3+ co-doped strontium aluminate long-lasting phosphorescent glass-ceramic
CN111410531B (zh) 基于光致变色效应的上转换发光可逆调控材料及制备方法
CN108017390B (zh) 基于稀土掺杂的无铅铁电光致色变材料及其制备方法和应用
Kang et al. Processing-dependence and the nature of the blue-shift of Bi 3+-related photoemission in ScVO 4 at elevated temperatures
CN111333419B (zh) 一种上转换发光可逆调控材料及其制备方法
CN109135724B (zh) 一种镓酸盐可逆光致变色材料及其制备方法和应用
Hua et al. Advantageous occupation of europium (III) in the B site of double-perovskite Ca2BB′ O6 (B= Y, Gd, La; B′= Sb, Nb) frameworks for white-light-emitting diodes
EP3502208A1 (en) Phosphor, method for preparing phosphor, optoelectronic component, and method for producing optoelectronic component
Ramakrishna et al. White-light emitting Eu3+ co-doped ZnO/Zn2SiO4: Mn2+ composite microphosphor
DE112018000135T5 (de) Nitrid-Lumineszenzmaterial und lumineszierende Vorrichtung mit diesem Nitrid-Lumineszenzmaterial
CN101628811A (zh) 透明陶瓷及其制备方法
Baklanova et al. Novel orange-red-emitting Li5+ xCaxLa3-xTa2O12: Sm3+ (x= 0; 1) phosphors: crystal structure, luminescence and thermal quenching studies
Li et al. Two-stage ultra-broadband luminescence of Cr3+-doped multisite layered phosphor Sr3Ga2Ge4O14 and its application in pc-LEDs
CN106554777B (zh) 一种色度随温度可调的发光材料及其制备方法与应用
Li et al. Ce/Mn/Cr: Y3Al5O12 phosphor ceramics for white LED and LD lighting with a high color rendering index
WO2019196376A1 (zh) 尖晶石基颜色可调控的上转换发光材料及其制备方法和应用
CN112110724B (zh) 具有可逆调控性能的共生层状钙钛矿材料及制备方法
WO2021237799A1 (zh) 一种氮化物近红外荧光材料及其制备方法和应用
CN106085407B (zh) 荧光可控的光致变色多功能材料及其制备方法
CN114804871B (zh) 一种钨青铜基光致变色陶瓷材料及其制备方法
CN108277001B (zh) 一种应用于wled器件的三价镝离子掺杂单基质白色荧光粉及其制备方法
CN114507064A (zh) 一种新型光致变色材料及其制备方法
Shao et al. Rapid synthesis and characterization of SrS: Eu, Sm infrared up-conversion materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200626

Assignee: TIANJIN COLLABRATE CHEMTECH CO.,LTD.

Assignor: CIVIL AVIATION University OF CHINA

Contract record no.: X2024980003895

Denomination of invention: A reversible upconversion luminescent control material and its preparation method

Granted publication date: 20211123

License type: Common License

Record date: 20240403

Application publication date: 20200626

Assignee: TIANJIN HONGTAI HUAKAI TECHNOLOGY CO.,LTD.

Assignor: CIVIL AVIATION University OF CHINA

Contract record no.: X2024980003728

Denomination of invention: A reversible upconversion luminescent control material and its preparation method

Granted publication date: 20211123

License type: Common License

Record date: 20240401

EE01 Entry into force of recordation of patent licensing contract