CN112110724B - 具有可逆调控性能的共生层状钙钛矿材料及制备方法 - Google Patents

具有可逆调控性能的共生层状钙钛矿材料及制备方法 Download PDF

Info

Publication number
CN112110724B
CN112110724B CN202011073586.6A CN202011073586A CN112110724B CN 112110724 B CN112110724 B CN 112110724B CN 202011073586 A CN202011073586 A CN 202011073586A CN 112110724 B CN112110724 B CN 112110724B
Authority
CN
China
Prior art keywords
srbi
ceramic material
preparation
ball mill
layered perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011073586.6A
Other languages
English (en)
Other versions
CN112110724A (zh
Inventor
魏通
申灵慧
石永超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Civil Aviation University of China
Original Assignee
Civil Aviation University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Civil Aviation University of China filed Critical Civil Aviation University of China
Priority to CN202011073586.6A priority Critical patent/CN112110724B/zh
Publication of CN112110724A publication Critical patent/CN112110724A/zh
Application granted granted Critical
Publication of CN112110724B publication Critical patent/CN112110724B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种具有可逆调控性能的共生层状钙钛矿材料及制备方法。材料的化学式为SrBi7.8‑ xErxYb0.2Ti7O27,其中,x=0,0.01,0.05,0.1或0.15。制备方法是以Bi2O3、SrCO3、Er2O3、Yb2O3和TiO2作为原料,按化学配比进行混合研磨,经高温固相反应法而合成。本发明优点:SrBi7.8‑ xErxYb0.2Ti7O27陶瓷材料在近紫外光(405nm)辐照下具有明显的变色效应,材料颜色从浅黄色变为灰黑色。同时,陶瓷材料具有近红外光(980nm)激发的上转换发光,且材料的上转换发光强度在近紫外光(405nm)和热退火激励下形成可逆调控,而且响应迅速,重复性好。SrBi7.8‑ xErxYb0.2Ti7O27材料未来可用于光开关、光学存储、安全防伪等领域。

Description

具有可逆调控性能的共生层状钙钛矿材料及制备方法
技术领域
本发明属于光调控材料技术领域,具体涉及一种具有可逆调控性能的共生层状钙钛矿材料及制备方法。
背景技术
材料物化性能的有效调控对开发高效电子元器件具有重要意义。光致变色是指材料受到特定光源激发后能够发生颜色变化的一种现象。以往对于光致变色材料的研究主要集中于有机物,对无机光致变色材料的研究相对较少,而无机光致变色材料的性能也不是太理想,限制了该类材料的实际应用,这就需要科研工作者开发新的无机光致光色材料。
上转换发光是在两个或者多个低能量光子激发下辐射一个高能量光子的过程。上转换发光材料在环境科学、电子工业、生物医学、农业生产等重要领域具有广泛应用。上转换发光性能的有效调控是当前科研工作者关注的重要方向之一。然而,以往上转换发光调控通常通过非可逆化学途径开展。为了适应新型光电器件的发展和需求,需科研工作者设计开发具有可逆调控发光性能的上转换材料。
若能发明一种稀土掺杂共生层状钙钛矿材料,同时实现光致变色和上转换发光性能的可逆调控,无疑具有重要意义。
发明内容
为了解决上述问题,本发明的目的在于提供一种具有可逆调控性能的共生层状钙钛矿材料及制备方法。
为了达到上述目的,本发明提供的具有可逆调控性能的共生层状钙钛矿材料是化学式为SrBi7.8-xErxYb0.2Ti7O27的陶瓷材料,其中,x=0,0.01,0.05,0.1或0.15。
本发明提供的具有可逆调控性能的共生层状钙钛矿材料的制备方法是:以SrCO3、Bi2O3、Er2O3、Yb2O3和TiO2作为原料,按比例混合后,利用乙醇作为溶剂在球磨机中进行研磨,之后将混合均匀的粉末进行干燥,于1100℃下预烧;然后将预烧的粉末重新研磨后利用压片机压成片状,在1200℃下烧结,冷却到室温后,经碳化硅表面抛光减薄,最终获得SrBi7.8-xErxYb0.2Ti7O27的陶瓷材料。
所述的SrCO3、Bi2O3、Er2O3、Yb2O3和TiO2的质量比如下:
当x=0时,为1/12.6777/0/0.2644/3.7868;
当x=0.01时,为1/12.6614/0.0127/0.2644/3.7868;
当x=0.05时,为1/12.5963/0.0641/0.2644/3.7868;
当x=0.1时,为1/12.5152/0.1283/0.2644/3.7868;
当x=0.15时,为1/12.4338/0.1927/0.2644/3.7868。
所述的球磨机采用行星式球磨机。
所述的球磨机中的研磨时间为24h。
所述的预烧时间为5小时。
所述的烧结时间为1.5小时。
本发明提供的具有可逆调控性能的共生层状钙钛矿材料及制备方法具有如下优点和特点:
1、以SrCO3、Bi2O3、Er2O3、Yb2O3、TiO2作为原料,并利用简单高温固相反应法而制备出SrBi7.8-xErxYb0.2Ti7O27陶瓷材料。
2、SrBi7.8-xErxYb0.2Ti7O27(x=0,0.01,0.05,0.1或0.15)陶瓷材料被近紫外光(405nm)辐照1分钟后,样品颜色发生变化,展现明显的光致变色效应,从浅黄色变为灰黑色,250℃加热1分钟后材料颜色又从灰黑色变为浅黄色,具有较好的可逆性能。
3、SrBi7.8-xErxYb0.2Ti7O27(x=0,0.01,0.05,0.1或0.15)陶瓷材料被近紫外光(405nm)辐照1分钟后,与光致变色相对应,材料漫反射谱强度明显降低。
4、在近红外光(980nm)激发下,SrBi7.8-xErxYb0.2Ti7O27(x=0.01,0.05,0.1或0.15)陶瓷材料展现出明亮的绿光发射与相对较弱的红光发射。
5、SrBi7.8-xErxYb0.2Ti7O27(x=0.01,0.05,0.1或0.15)陶瓷材料被近紫外光(405nm)辐照一定时间后,上转换发光强度相比于辐照前显著降低,辐照前后上转换绿光峰强度调控率(R,R=(I0-It)/I0,其中I0辐照前的上转换发光强度,It为辐照后的上转换发光强度)最高约为62.1%。
6、辐照后的SrBi7.8-xErxYb0.2Ti7O27(x=0.01,0.05,0.1或0.15)陶瓷材料在热处理后,上转换发光恢复到辐照前的状态,在连续交替辐照与加热作用下,SrBi7.8- xErxYb0.2Ti7O27陶瓷材料上转换发光展现出较好的可逆调控,因此在光开光、信息存储与安全防伪领域具有应用前景。
附图说明
图1是本发明实施例提供的SrBi7.8-xErxYb0.2Ti7O27(x=0,0.01,0.05,0.1或0.15)陶瓷材料的X射线衍射图谱。
图2是本发明实施例提供的SrBi7.8-xErxYb0.2Ti7O27(x=0,0.01,0.05,0.1或0.15)陶瓷材料在近紫外光辐照前后和加热前后的表面照片。
图3是本发明实施例提供的SrBi7.8-xErxYb0.2Ti7O27(x=0,0.01,0.05,0.1或0.15)陶瓷材料在近紫外光辐照前后的漫反射光谱。
图4是本发明实施例提供的SrBi7.8-xErxYb0.2Ti7O27(x=0.01,0.05,0.1或0.15)陶瓷材料在980纳米近红外光激发下的室温上转换发射谱。
图5是本发明实施例提供的SrBi7.8-xErxYb0.2Ti7O27(x=0.01,0.05,0.1或0.15)陶瓷材料在近紫外光(405nm)辐照前后的上转换发射光谱。
图6(a)—(d)是本发明实施例提供的SrBi7.8-xErxYb0.2Ti7O27(x=0.01,0.05,0.1或0.15)陶瓷材料在近紫外光(405nm)辐照与热处理(250℃)交替作用下调控率R随测试循环次数N的变化关系。
具体实施方式
现结合具体实施例对本发明进行详细描述:
实施例1:
制备SrBi7.8-xErxYb0.2Ti7O27陶瓷材料,其中x=0,制备方法如下:
称取0.4474克SrCO3、5.6720克Bi2O3、0.1183克Yb2O3,1.6942克TiO2置于干净的玛瑙罐中,以无水乙醇(99.7%)作为介质,在行星式球磨机上球磨,时间为24小时。将球磨产物用烘箱烘干,获得烘干粉体。将烘干粉体用玛瑙研钵研磨,然后置于刚玉坩埚中,放入箱式炉中,连续升温至1100℃预烧5小时,降温至550℃后程序终止。将随炉冷却后所得产物用玛瑙研钵磨细,通过压片机压制成直径为13mm的圆片,然后用氧化铝粉覆盖,置于氧化铝板上在空气中1200℃烧结1.5小时,最终获得片状SrBi7.8-xErxYb0.2Ti7O27陶瓷材料。
实施例2:
制备SrBi7.8-xErxYb0.2Ti7O27陶瓷材料,其中x=0.01,制备方法如下:
称取0.4474克SrCO3、5.6647克Bi2O3、0.0057克Er2O3、0.1183克Yb2O3,1.6942克TiO2置于干净的玛瑙罐中,以无水乙醇(99.7%)作为介质,在行星式球磨机上球磨,时间为24小时。将球磨产物用烘箱烘干,获得烘干粉体。将烘干粉体用玛瑙研钵研磨,然后置于刚玉坩埚中,放入箱式炉中,连续升温至1100℃预烧5小时,降温至550℃后程序终止。将随炉冷却后所得产物用玛瑙研钵磨细,通过压片机压制成直径为13mm的圆片,然后用氧化铝粉覆盖,置于氧化铝板上在空气中1200℃锻烧90分钟,最终获得片状SrBi7.8-xErxYb0.2Ti7O27陶瓷材料。
实施例3:
制备SrBi7.8-xErxYb0.2Ti7O27陶瓷材料,其中x=0.05,制备方法如下:
称取0.4474克SrCO3、5.6356克Bi2O3、0.0287克Er2O3、0.1183克Yb2O3,1.6942克TiO2置于干净的玛瑙罐中,以无水乙醇(99.7%)作为介质,在行星式球磨机上球磨,时间为24小时。将球磨产物用烘箱烘干,获得烘干粉体。将烘干粉体用玛瑙研钵研磨,然后置于刚玉坩埚中,放入箱式炉中,连续升温至1100℃预烧5小时,降温至550℃后程序终止。将随炉冷却后所得产物用玛瑙研钵磨细,通过压片机压制成直径为13mm的圆片,然后用氧化铝粉覆盖,置于氧化铝板上在空气中1200℃锻烧90分钟,最终获得片状SrBi7.8-xErxYb0.2Ti7O27陶瓷材料。
实施例4:
制备SrBi7.8-xErxYb0.2Ti7O27陶瓷材料,其中x=0.1,制备方法如下:
称取0.4474克SrCO3、5.5993克Bi2O3、0.0574克Er2O3、0.1183克Yb2O3,1.6942克TiO2置于干净的玛瑙罐中,以无水乙醇(99.7%)作为介质,在行星式球磨机上球磨,时间为24小时。将球磨产物用烘箱烘干,获得烘干粉体。将烘干粉体用玛瑙研钵研磨,然后置于刚玉坩埚中,放入箱式炉中,连续升温至1100℃预烧5小时,降温至550℃后程序终止。将随炉冷却后所得产物用玛瑙研钵磨细,通过压片机压制成直径为13mm的圆片,然后用氧化铝粉覆盖,置于氧化铝板上在空气中1200℃锻烧90分钟,最终获得片状SrBi7.8-xErxYb0.2Ti7O27陶瓷材料。
实施例5:
制备SrBi7.8-xErxYb0.2Ti7O27陶瓷材料,其中x=0.15,制备方法如下:
称取0.4474克SrCO3、5.5629克Bi2O3、0.0862克Er2O3、0.1183克Yb2O3,1.6942克TiO2置于干净的玛瑙罐中,以无水乙醇(99.7%)作为介质,在行星式球磨机上球磨,时间为24小时。将球磨产物用烘箱烘干,获得烘干粉体。将烘干粉体用玛瑙研钵研磨,然后置于刚玉坩埚中,放入箱式炉中,连续升温至1100℃预烧5小时,降温至550℃后程序终止。将随炉冷却后所得产物用玛瑙研钵磨细,通过压片机压制成直径为13mm的圆片,然后用氧化铝粉覆盖,置于氧化铝板上在空气中1200℃锻烧90分钟,最终获得片状SrBi7.8-xErxYb0.2Ti7O27陶瓷材料。
为了验证本发明的效果,本发明人进行了如下实验:
1、将上述实施例制备的SrBi7.8-xErxYb0.2Ti7O27(x=0,0.01,0.05,0.1或0.15)陶瓷材料利用碳化硅研磨粉减薄至0.5毫米厚度。
2、用普通相机拍摄SrBi7.8-xErxYb0.2Ti7O27(x=0,0.01,0.05,0.1或0.15)陶瓷材料的表面照片。
3、利用近紫外光(405nm,设定功率为80毫瓦)辐照SrBi7.8-xErxYb0.2Ti7O27(x=0,0.01,0.05,0.1或0.15)陶瓷材料1分钟,然后用普通相机拍摄陶瓷材料的表面照片。
4、将步骤3中辐照后的SrBi7.8-xErxYb0.2Ti7O27(x=0,0.01,0.05,0.1或0.15)陶瓷材料在250℃热处理1分钟,然后用普通相机拍摄陶瓷材料的表面照片。
5、近紫外光辐照前后,利用反射谱测试仪表征SrBi7.8-xErxYb0.2Ti7O27(x=0,0.01,0.05,0.1或0.15)陶瓷材料的漫反射谱光谱。
6、以近红外光(980nm)为激发波长,利用光谱仪测试上述SrBi7.8-xErxYb0.2Ti7O27(x=0.01,0.05,0.1或0.15)陶瓷材料的室温上转换发射光谱。
7、将步骤3中辐照后的SrBi7.8-xErxYb0.2Ti7O27(x=0.01,0.05,0.1或0.15)陶瓷材料按照步骤6中的测试条件,测试上转换发射光谱。
本发明实施例制备的SrBi7.8-xErxYb0.2Ti7O27(x=0,0.01,0.05,0.1或0.15)陶瓷材料的晶体结构表征如图1所示,所有衍射峰都与标准数据很好地吻合。图2给出了SrBi7.8- xErxYb0.2Ti7O27(x=0,0.01,0.05,0.1或0.15)陶瓷材料在近紫外光辐照前后和加热前后的表面照片,405nm辐照1分钟后样品颜色变为灰黑色,250℃加热1分钟后样品颜色褪色为浅黄色。图3给出了SrBi7.8-xErxYb0.2Ti7O27(x=0,0.01,0.05,0.1或0.15)陶瓷材料在近紫外光辐照前后的漫反射光谱。图4给出了SrBi7.8-xErxYb0.2Ti7O27(x=0.01,0.05,0.1或0.15)陶瓷材料在980纳米近红外光激发下的室温上转换发射谱,样品展现出有明亮的绿光向外发射。图5给出了SrBi7.8-xErxYb0.2Ti7O27(x=0.01,0.05,0.1,0.15)陶瓷材料在近紫外光(405nm)辐照前后的上转换发射光谱,调控率值最高为62.1%。图6给出了SrBi7.8-xErxYb0.2Ti7O27(x=0.01,0.05,0.1,0.15)陶瓷材料在近紫外光(405nm)辐照与热处理(250℃)交替作用下调控率R随测试循环次数N的变化关系,SrBi7.8-xErxYb0.2Ti7O27陶瓷材料的上转换调控展现出很好的重复性。

Claims (6)

1.一种具有可逆调控性能的共生层状钙钛矿材料,其特征在于:所述的共生层状钙钛矿材料是化学式为SrBi7.8-xErxYb0.2Ti7O27的陶瓷材料,其中,x=0,0.01,0.05,0.1或0.15;
其制备方法是:以SrCO3、Bi2O3、Er2O3、Yb2O3和TiO2作为原料,按比例混合后,利用乙醇作为溶剂在球磨机中进行研磨,之后将混合均匀的粉末进行干燥,于1100℃下预烧;然后将预烧的粉末重新研磨后利用压片机压成片状,在1200℃下烧结,冷却到室温后,经碳化硅表面抛光减薄,最终获得SrBi7.8-xErxYb0.2Ti7O27的陶瓷材料;
所述的SrCO3、Bi2O3、Er2O3、Yb2O3和TiO2的质量比如下:
当x=0时,为1/12.6777/0/0.2644/3.7868;
当x=0.01时,为1/ 12.6614/ 0.0127/0.2644/3.7868;
当x=0.05时,为1/ 12.5963/ 0.0641/ 0.2644/3.7868;
当x=0.1时,为1/ 12.5152/ 0.1283/ 0.2644/3.7868;
当x=0.15时,为1/12.4338/ 0.1927/ 0.2644/3.7868。
2.一种如权利要求1所述共生层状钙钛矿材料的制备方法,其特征在于:所述的制备方法是:以SrCO3、Bi2O3、Er2O3、Yb2O3和TiO2作为原料,按比例混合后,利用乙醇作为溶剂在球磨机中进行研磨,之后将混合均匀的粉末进行干燥,于1100℃下预烧;然后将预烧的粉末重新研磨后利用压片机压成片状,在1200℃下烧结,冷却到室温后,经碳化硅表面抛光减薄,最终获得SrBi7.8-xErxYb0.2Ti7O27的陶瓷材料。
3.根据权利要求2所述的制备方法,其特征在于:所述的球磨机采用行星式球磨机。
4.根据权利要求2所述的制备方法,其特征在于:所述的球磨机中的研磨时间为24h。
5.根据权利要求2所述的制备方法,其特征在于:所述的预烧时间为5小时。
6.根据权利要求2所述的制备方法,其特征在于:所述的烧结时间为1.5小时。
CN202011073586.6A 2020-10-09 2020-10-09 具有可逆调控性能的共生层状钙钛矿材料及制备方法 Active CN112110724B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011073586.6A CN112110724B (zh) 2020-10-09 2020-10-09 具有可逆调控性能的共生层状钙钛矿材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011073586.6A CN112110724B (zh) 2020-10-09 2020-10-09 具有可逆调控性能的共生层状钙钛矿材料及制备方法

Publications (2)

Publication Number Publication Date
CN112110724A CN112110724A (zh) 2020-12-22
CN112110724B true CN112110724B (zh) 2022-05-10

Family

ID=73797577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011073586.6A Active CN112110724B (zh) 2020-10-09 2020-10-09 具有可逆调控性能的共生层状钙钛矿材料及制备方法

Country Status (1)

Country Link
CN (1) CN112110724B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045200A (zh) * 2021-03-10 2021-06-29 昆明理工大学 光致变色Yb、Er共掺上转换发光玻璃及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124417A (ja) * 2006-10-17 2008-05-29 Sumitomo Chemical Co Ltd 熱電変換材料およびその製造方法
CN101558504A (zh) * 2006-10-17 2009-10-14 住友化学株式会社 热电转换材料、其制造方法、热电转换元件以及提高热电转换材料强度的方法
CN102276248B (zh) * 2011-04-22 2014-07-16 同济大学 铋层状类钙钛矿结构的氧化物上转换发光压电材料及其制备方法
CN104479677B (zh) * 2014-12-09 2016-08-17 同济大学 一类含稀土元素的上转换发光温度敏感材料、制备方法及其应用
CN111004031B (zh) * 2019-12-18 2022-07-05 宁波大学 一种光学存储材料及其制备方法
CN111410531B (zh) * 2020-04-25 2022-03-11 中国民航大学 基于光致变色效应的上转换发光可逆调控材料及制备方法

Also Published As

Publication number Publication date
CN112110724A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
CN111410531B (zh) 基于光致变色效应的上转换发光可逆调控材料及制备方法
CN109135724B (zh) 一种镓酸盐可逆光致变色材料及其制备方法和应用
Duan et al. Spectroscopic properties of Co2+: ZnAl2O4 nanocrystals in sol–gel derived glass–ceramics
CN106978175B (zh) 一类掺杂稀土元素的铋层状结构多功能材料及其制备方法
Tang et al. Luminescence modulation of the Eu3+ doped Srn+ 1SnnO3n+ 1 (n= 1, 2, 5,∞) ceramics based on photochromism and its application in anti-counterfeiting technology
CN111333419B (zh) 一种上转换发光可逆调控材料及其制备方法
CN112110724B (zh) 具有可逆调控性能的共生层状钙钛矿材料及制备方法
Rajkumar et al. A highly intense double perovskite BaSrYZrO5. 5: Eu3+ phosphor for latent fingerprint and security ink applications
CN104710173A (zh) 无铅铁电上转换荧光陶瓷材料及其制备方法和应用
Li et al. Synthesis and characterization of a far-red-emitting Sr2ScNbO6: Mn4+ phosphor for short-day plant cultivation
CN107345134B (zh) 一种高灵敏度稀土掺杂钨青铜荧光探温材料
CN106221690B (zh) 一种锡酸盐可逆光致变色材料及制备方法
Du et al. Modulating trap distribution of persistent phosphors upon simple microwave-assisted solid-state reactions
Zhou et al. Mn4+, Bi3+ Co-doped K0. 5La0. 5SrMgTeO6 far-red emitting phosphor
CN106085407B (zh) 荧光可控的光致变色多功能材料及其制备方法
CN114804871B (zh) 一种钨青铜基光致变色陶瓷材料及其制备方法
CN114956804B (zh) 一种钙钛矿型高熵陶瓷材料及其制备方法
CN114181701A (zh) 一种稀土掺杂上转换发光调控材料
Du et al. Novel red-emitting Cd2MgTeO6: Eu3+ phosphors with an abnormal thermal quenching for application in w-LEDs and potential fingerprint detection
CN110964497B (zh) 一种光学防伪材料及其制备方法
CN114507064A (zh) 一种新型光致变色材料及其制备方法
CN116925765B (zh) 一种钪铝酸盐光致变色可逆上转换发光荧光粉材料及其调制的方法
CN112094649A (zh) 稀土掺杂二氧化碲上转换发光材料及其制备方法
CN116515486B (zh) 一种稀土掺杂钪钨酸钡上转换发光材料及其制备方法
CN105602562B (zh) 缺陷基上转换荧光无铅铁电材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant