CN111410531B - 基于光致变色效应的上转换发光可逆调控材料及制备方法 - Google Patents

基于光致变色效应的上转换发光可逆调控材料及制备方法 Download PDF

Info

Publication number
CN111410531B
CN111410531B CN202010335674.2A CN202010335674A CN111410531B CN 111410531 B CN111410531 B CN 111410531B CN 202010335674 A CN202010335674 A CN 202010335674A CN 111410531 B CN111410531 B CN 111410531B
Authority
CN
China
Prior art keywords
conversion luminescence
preparation
srbi
photochromic effect
reversible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010335674.2A
Other languages
English (en)
Other versions
CN111410531A (zh
Inventor
魏通
杨丰铭
申灵慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Civil Aviation University of China
Original Assignee
Civil Aviation University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Civil Aviation University of China filed Critical Civil Aviation University of China
Priority to CN202010335674.2A priority Critical patent/CN111410531B/zh
Publication of CN111410531A publication Critical patent/CN111410531A/zh
Application granted granted Critical
Publication of CN111410531B publication Critical patent/CN111410531B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Abstract

一种基于光致变色效应的上转换发光可逆调控材料及制备方法。材料的化学式为SrBi3.9‑ xHoxYb0.1Ti4O15,其中,x=0.005、0.02、0.05或0.1。制备方法是以SrCO3、Bi2O3、Yb2O3、Ho2O3和TiO2作为原料,按比例进行混合研磨,进而利用简单高温固相反应法而制备出SrBi3.9‑ xHoxYb0.1Ti4O15陶瓷材料。本发明优点:在近紫外光辐照下,材料展现明显的变色,与此同时材料的上转换发光强度也随之发生改变。同时,在热刺激下,变色可以被复原到辐照前的状态,材料上转换发光也回到初态。在近紫外辐照和热刺激的交替作用下,材料上转换发光表现出优异的可逆调控性能,而且响应迅速,这表明该材料未来可用于光开关、光学存储、安全防伪等领域。

Description

基于光致变色效应的上转换发光可逆调控材料及制备方法
技术领域
本发明属于稀土基上转换发光材料技术领域,具体涉及一种基于光致变色效应的上转换发光可逆调控材料及制备方法。
背景技术
目前,具有可逆发光调控能力的上转换发光材料因其在数据存储、光学开关、可擦写纸和多色显示器等方面具有广泛的应用前景而备受人们关注。光致变色通常是一种可逆过程,因而可以尝试利用该过程来调控某些材料的发光性能。迄今为止,科研人员对光致变色材料的研究大多集中于有机物,比如亚砜、二苯乙烯衍生物、腙类化合物、斯坦豪斯化合物、邻硝基苄基衍生物等。然而,大多数有机物材料热稳定性能差,且对环境有毒,因此限制了它们的应用。与有机光致变色材料相比,无机光致变色材料具有许多优势,比如化学稳定性好、机械强度高、抗氧化能力强等。然而,现存在的无机光致变色材料相对较少,性能也不是太理想,尤其是能基于光致变色效应实现上转换发光可逆调控的材料更少。为满足未来高性能动态调控光电器件的需求,这就需要科研工作者发明能实现上转换发光有效调控的新材料或新途径。
发明内容
为了解决上述问题,本发明的目的在于提供一种基于光致变色效应的上转换发光可逆调控材料及制备方法。
为了达到上述目的,本发明提供的基于光致变色效应的上转换发光可逆调控材料是化学式为SrBi3.9-xHoxYb0.1Ti4O15的陶瓷材料,其中,x=0.005、0.02、0.05或0.1。
本发明提供的基于光致变色效应的上转换发光可逆调控材料的制备方法是以SrCO3、Bi2O3、Yb2O3、Ho2O3和TiO2作为原料,将上述原料按比例进行混合,以无水乙醇作为溶剂,在球磨机中研磨成混合均匀的粉末,之后将粉末进行干燥,并于1050℃下进行预烧;然后将预烧后的粉末再次进行研磨,加入粘合剂并造粒,压片后在1100℃下进行烧结,冷却到室温,经碳化硅表面抛光减薄后,获得属于上转换发光可逆调控材料的SrBi3.9- xHoxYb0.1Ti4O15陶瓷材料,其中,x=0.005、0.02、0.05或0.1。
所述的SrCO3、Bi2O3、Yb2O3、Ho2O3和TiO2的质量比如下:
当x=0.005时,质量比为1/6.1470/0.0064/0.1322/2.1641;
当x=0.02时,质量比为1/6.1234/0.0254/0.1322/2.1641;
当x=0.05时,质量比为1/6.0760/0.0634/0.1322/2.1641;
当x=0.1时,质量比为1/5.9971/0.1269/0.1322/2.1641。
所述的球磨机采用行星式球磨机。
所述的球磨机中的研磨时间为24h。
所述的预烧时间为5小时。
所述的烧结时间为3小时。
所述的粘合剂采用聚乙烯醇缩丁醛酯。
本发明提供的基于光致变色效应的上转换发光可逆调控材料及制备方法具有如下优点和特点:
1、以SrCO3、Bi2O3、Yb2O3、Ho2O3和TiO2作为原料,并利用简单高温固相反应法而制备出SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料。
2、在980纳米近红外光激发下,SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料展现出明亮的绿光发射与相对较弱的红光发射,均属于两光子上转换过程。
3、研究表明SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料被近紫外光辐照一定时间后,材料漫反射谱强度明显降低,样品颜色发生变化,与之对应材料上转换发光强度相比于辐照前显著降低。
4、在980纳米近红外光激发下,SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料辐照前后上转换绿光峰强度调控率最高约为74%。
5、辐照后的SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料在200℃下加热1分钟后,材料颜色恢复到辐照前的初态,上转换发光也恢复到辐照前的状态。
6、研究表明,连续交替辐照与加热能实现对SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料上转换发光的可逆有效调控。
附图说明
图1是本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料的X射线衍射图谱。
图2是本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料在980纳米近红外光激发下的室温上转换发射谱。
图3是本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x=0.02)陶瓷材料在不同980纳米激发光功率下上转换发射光谱。
图4是本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x=0.02)陶瓷材料上转换绿光发射与红光发射强度的对数随激发功率的对数变化关系。
图5是本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料在405纳米近紫外光辐照前后的上转换发射光谱。
图6是本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x=0.005)陶瓷材料在近紫外光辐照前后的漫反射光谱。
图7是本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x=0.02)陶瓷材料在近紫外光辐照前后的漫反射光谱。
图8是本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x=0.05)陶瓷材料在近紫外光辐照前后的漫反射光谱。
图9是本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x 0.1)陶瓷材料在近紫外光辐照前后的漫反射光谱。
图10是本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x=0.02)陶瓷材料表面照片。
图11是405纳米近紫外光照射时间对本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料上转换发光调控率R的影响
图12是本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x=0.005)陶瓷材料在405纳米辐照与200℃热处理交替作用下调控率R随测试循环次数N的变化关系。
图13是本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x=0.02)陶瓷材料在405纳米辐照与200℃热处理交替作用下调控率R随测试循环次数N的变化关系。
图14是本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x=0.05)陶瓷材料在405纳米辐照与200℃热处理交替作用下调控率R随测试循环次数N的变化关系。
图15是本发明实施例提供的SrBi3.9-xHoxYb0.1Ti4O15(x=0.1)陶瓷材料在405纳米辐照与200℃热处理交替作用下调控率R随测试循环次数N的变化关系。
具体实施方式
现结合具体实施例对本发明做进一步地描述:
实施例1:
本实施例提供的上转换发光可逆调控材料为SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料,其中x=0.005,其制备方法如下:
使用精度为0.0001克的电子天平称取0.8947克碳酸锶(99%),5.4997克氧化铋(99%),0.1183克氧化镱(99.9%),1.9362克氧化钛(99%),0.0057克氧化钬(99.9%),放入干净的玛瑙罐中,加入约为罐体体积2/3的无水乙醇(99.7%),然后置于行星式球磨机中进行研磨,时间为24小时。将产物从玛瑙罐中取出,置入玻璃烧杯中,用烘箱进行干燥,之后用研钵研磨,将产物置入刚玉坩埚,放入箱式炉,连续升温至1050℃预烧5小时,降温至550℃。之后将随炉冷却后所得产物用玛瑙研钵磨细,加入粘合剂聚乙烯醇缩丁醛酯(PVB,与产物重量比为0.5%),充分研磨,混合均匀,进行造粒。在10MPa压力下制备成直径13mm的陶瓷生坯片。将陶瓷生坯片置于高温炉中,连续升温,在700℃下保温120分钟排塑,然后连续升温,在1100℃下烧结3小时,降温至550℃,自然冷却后获得x=0.005的SrBi3.9- xHoxYb0.1Ti4O15陶瓷材料。
实施例2:
本实施例提供的上转换发光可逆调控材料为SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料,其中x=0.02,其制备方法如下:
使用精度为0.0001克的电子天平称取0.8947克碳酸锶(99%),5.4786克氧化铋(99%),0.1183克氧化镱(99.9%),1.9362克氧化钛(99%),0.0227克氧化钬(99.9%),放入干净的玛瑙罐中,加入约为罐体体积2/3的无水乙醇(99.7%),然后置于行星式球磨机中进行研磨,时间为24小时。将产物从玛瑙罐中取出,置入玻璃烧杯中,用烘箱进行干燥,之后用研钵研磨,将产物置入刚玉坩埚,放入箱式炉,连续升温至1050℃预烧5小时,降温至550℃。之后将随炉冷却后所得产物用玛瑙研钵磨细,加入粘合剂PVB(与产物重量比为0.5%),充分研磨,混合均匀,进行造粒。在10MPa压力下制备成直径13mm的陶瓷生坯片。将陶瓷生坯片置于高温炉中,连续升温,在700℃下保温120分钟排塑,然后连续升温,在1100℃下烧结3小时,降温至550℃,自然冷却后获得x=0.02的SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料。
实施例3:
本实施例提供的上转换发光可逆调控材料为SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料,其中x=0.05,其制备方法如下:
使用精度为0.0001克的电子天平称取0.8947克碳酸锶(99%),5.4362克氧化铋(99%),0.1183克氧化镱(99.9%),1.9362克氧化钛(99%),0.0567克氧化钬(99.9%),放入干净的玛瑙罐中,加入约为罐体体积2/3的无水乙醇(99.7%),然后置于行星式球磨机中进行研磨,时间为24小时。将产物从玛瑙罐中取出,置入玻璃烧杯中,用烘箱进行干燥,之后用研钵研磨,将产物置入刚玉坩埚,放入箱式炉,连续升温至1050℃预烧5小时,降温至550℃。之后将随炉冷却后所得产物用玛瑙研钵磨细,加入粘合剂PVB(与产物重量比为0.5%),充分研磨,混合均匀,进行造粒。在10MPa压力下制备成直径13mm的陶瓷生坯片。将陶瓷生坯片置于高温炉中,连续升温,在700℃下保温120分钟排塑,然后连续升温,在1100℃下烧结3小时,降温至550℃,自然冷却后获得x=0.05的SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料。
实施例4:
本实施例提供的上转换发光可逆调控材料为SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料,其中x=0.1,其制备方法如下:
使用精度为0.0001克的电子天平称取0.8947克碳酸锶(99%),5.3656克氧化铋(99%),0.1183克氧化镱(99.9%),1.9362克氧化钛(99%),0.1135克氧化钬(99.9%),放入干净的玛瑙罐中,加入约为罐体体积2/3的无水乙醇(99.7%),然后置于行星式球磨机中进行研磨,时间为24小时。将产物从玛瑙罐中取出,置入玻璃烧杯中,用烘箱进行干燥,之后用研钵研磨,将产物置入刚玉坩埚,放入箱式炉,连续升温至1050℃预烧5小时,降温至550℃。之后将随炉冷却后所得产物用玛瑙研钵磨细,加入粘合剂PVB(与产物重量比为0.5%),充分研磨,混合均匀,进行造粒。在10MPa压力下制备成直径13mm的陶瓷生坯片。将陶瓷生坯片置于高温炉中,连续升温,在700℃下保温120分钟排塑,然后连续升温,在1100℃下烧结3小时,降温至550℃,自然冷却后获得x=0.1的SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料。
为了验证本发明的效果,本发明人进行了如下实验:
1、将上述实施例制备的SrBi3.9-xHoxYb0.1Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料利用碳化硅研磨粉减薄至0.5毫米厚度。
2、以980纳米近红外光为激发波长,利用光谱仪测试上述SrBi3.9-xHoxYb0.1Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料的室温上转换发射光谱。
3、利用405纳米近紫外光(设定功率为80毫瓦),辐照SrBi3.9-xHoxYb0.1Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料1分钟。
4、将步骤3中辐照后的SrBi3.9-xHoxYb0.1Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料按照步骤2中的测试条件,测试上转换发射光谱。
5、将步骤4测试完成后的SrBi3.9-xHoxYb0.1Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料在200℃下保温1分钟,取出冷却到室温,然后按照步骤2中的测试条件测试上转换发射光谱。
6、用带有图案的掩膜版覆盖SrBi3.9-xHoxYb0.1Ti4O15(x=0.02)陶瓷材料的表面,然后用405纳米近紫外光辐照1分钟,去除掩膜板,用普通相机对陶瓷表面进行拍照。
7、近紫外光辐照前后,利用反射谱测试仪表征SrBi3.9-xHoxYb0.1Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料的漫反射谱光谱。
本发明实施例制备的SrBi3.9-xHoxYb0.1Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料的晶体结构表征如图1所示,可见所有衍射峰都与标准数据很好地吻合,形成了单一的正交相。在980nm近红外光激发下,SrBi3.9-xHoxYb0.1Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料展现出明亮的上转换绿光发射与相对较弱的红光发射,分别对应5F4/5S25I85F55I85S25I7电子跃迁,如图2所示。图3给出了SrBi3.9-xHoxYb0.1Ti4O15(x=0.02)陶瓷材料在不同功率下的上转换发射光谱。图4表明SrBi3.9-xHoxYb0.1Ti4O15(x=0.02)陶瓷材料上转换绿光(5F4/5S25I8)与红光(5F55I85S25I7)发射均属于两光子上转换过程。图5给出了SrBi3.9-xHoxYb0.1Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料在405纳米近紫外光辐照前与辐照1分钟后的室温上转换发射光谱,辐照后SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料的上转换发光强度显著降低。标记辐照前后绿光发射峰积分强度分别为I1与I2,定义上转换调控率为R=(I1-I2)/I1,从图5计算得到的调控率R分别是67.3%(x=0.005)、74%(x=0.02)、66.4%(x=0.05)、62.6%(x=0.1)。图6到图9给出了SrBi3.9-xHoxYb0.1Ti4O15(x=0.0、0.005、0.02、0.05或0.1)陶瓷材料在近紫外光辐照前后的漫反射光谱。图10是SrBi3.9-xHoxYb0.1Ti4O15(x=0.02)陶瓷材料表面照片,可见中心被近紫外光照射的部分颜色由黄褐色变为了灰黑色。图11是405纳米近紫外光照射时间对SrBi3.9-xHoxYb0.1 Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料上转换发光调控率R的影响,可以看出在材料被近紫外光辐照的最初10s内,其调控率R迅速上升,说明本发明提供的陶瓷材料发光调控具有快速响应的特征。图12到图15是SrBi3.9-xHoxYb0.1Ti4O15(x=0.005、0.02、0.05或0.1)陶瓷材料在405nm辐照与200℃热处理交替作用下调控率R随测试循环次数N的变化关系。十次循环测试,调控率R的平均值分别为64.9%(x=0.005),73.5%(x=0.02),63.2%(x=0.05),58.5%(x=0.1)。可以看出200℃热处理(时间1分钟)能基本擦除辐照效应,使SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料上转换发光恢复辐照前的初态,并且SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料的上转换调控展现出很好的重复性。

Claims (6)

1.一种基于光致变色效应的上转换发光可逆调控材料,其特征在于:所述上转换发光可逆调控材料是化学式为SrBi3.9-xHoxYb0.1Ti4O15的陶瓷材料,其中,x=0.02;
所述基于光致变色效应的上转换发光可逆调控材料的制备方法是以SrCO3、Bi2O3、Yb2O3、Ho2O3和TiO2作为原料,将上述原料按比例进行混合,以无水乙醇作为溶剂,在球磨机中研磨成混合均匀的粉末,之后将粉末进行干燥,并于1050℃下进行预烧,所述的预烧时间为5小时;然后将预烧后的粉末再次进行研磨,加入粘合剂并造粒,压片后在1100℃下进行烧结,所述的烧结时间为3小时,冷却到室温,经碳化硅表面抛光减薄后,获得基于光致变色效应的上转换发光可逆调控SrBi3.9-xHoxYb0.1Ti4O15陶瓷材料,其中,x=0.02。
2.一种如权利要求1所述基于光致变色效应的上转换发光可逆调控材料的制备方法,其特征在于:所述的制备方法是以SrCO3、Bi2O3、Yb2O3、Ho2O3和TiO2作为原料,将上述原料按比例进行混合,以无水乙醇作为溶剂,在球磨机中研磨成混合均匀的粉末,之后将粉末进行干燥,并于1050℃下进行预烧,所述的预烧时间为5小时;然后将预烧后的粉末再次进行研磨,加入粘合剂并造粒,压片后在1100℃下进行烧结,所述的烧结时间为3小时,冷却到室温,经碳化硅表面抛光减薄后,获得基于光致变色效应的上转换发光可逆调控SrBi3.9- xHoxYb0.1Ti4O15陶瓷材料,其中,x=0.02。
3.根据权利要求2所述的基于光致变色效应的上转换发光可逆调控材料的制备方法,其特征在于:所述的SrCO3、Bi2O3、Yb2O3、Ho2O3和TiO2的质量比如下:
当x=0.02时,质量比为1/6.1234/0.0254/0.1322/2.1641。
4.根据权利要求2所述的基于光致变色效应的上转换发光可逆调控材料的制备方法,其特征在于:所述的球磨机采用行星式球磨机。
5.根据权利要求2所述的基于光致变色效应的上转换发光可逆调控材料的制备方法,其特征在于:所述的球磨机中的研磨时间为24h。
6.根据权利要求2所述的基于光致变色效应的上转换发光可逆调控材料的制备方法,其特征在于:所述的粘合剂采用聚乙烯醇缩丁醛酯。
CN202010335674.2A 2020-04-25 2020-04-25 基于光致变色效应的上转换发光可逆调控材料及制备方法 Active CN111410531B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010335674.2A CN111410531B (zh) 2020-04-25 2020-04-25 基于光致变色效应的上转换发光可逆调控材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010335674.2A CN111410531B (zh) 2020-04-25 2020-04-25 基于光致变色效应的上转换发光可逆调控材料及制备方法

Publications (2)

Publication Number Publication Date
CN111410531A CN111410531A (zh) 2020-07-14
CN111410531B true CN111410531B (zh) 2022-03-11

Family

ID=71490031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010335674.2A Active CN111410531B (zh) 2020-04-25 2020-04-25 基于光致变色效应的上转换发光可逆调控材料及制备方法

Country Status (1)

Country Link
CN (1) CN111410531B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112110724B (zh) * 2020-10-09 2022-05-10 中国民航大学 具有可逆调控性能的共生层状钙钛矿材料及制备方法
CN114507064A (zh) * 2020-11-16 2022-05-17 中国民航大学 一种新型光致变色材料及其制备方法
CN116925765B (zh) * 2023-07-18 2024-05-07 西华大学 一种钪铝酸盐光致变色可逆上转换发光荧光粉材料及其调制的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69923635T2 (de) * 1998-08-21 2005-07-07 Tdk Corp. Piezoelektrische Keramiken
JP2004253482A (ja) * 2003-02-18 2004-09-09 Dainippon Printing Co Ltd 機能性素子の製造方法
JP5633845B2 (ja) * 2009-11-30 2014-12-03 独立行政法人産業技術総合研究所 フォトクロミック物質及びその製造方法
EP2665966B8 (en) * 2011-01-19 2019-12-25 Elbit Systems Ltd. Enhanced response photochromic composition and device
CN102276248B (zh) * 2011-04-22 2014-07-16 同济大学 铋层状类钙钛矿结构的氧化物上转换发光压电材料及其制备方法
ITPD20130236A1 (it) * 2013-08-22 2015-02-23 Michele Back Composizioni fotoattive, sintesi ed uso delle stesse
CN106316386A (zh) * 2015-06-24 2017-01-11 中国民航大学 一种稀土掺杂铋系层状钙钛矿氧化物铁电上转换材料的制备方法
US20180348522A1 (en) * 2017-06-05 2018-12-06 Applied Materials, Inc. Photochromic background layer for augmented reality image enhancement
CN109273481A (zh) * 2017-07-17 2019-01-25 上海和辉光电有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
CN111410531A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
CN111410531B (zh) 基于光致变色效应的上转换发光可逆调控材料及制备方法
CN108017390B (zh) 基于稀土掺杂的无铅铁电光致色变材料及其制备方法和应用
Phogat et al. Crystallographic and judd-ofelt parametric investigation into Ca9Bi (VO4) 7: Eu3+ nanophosphor for NUV-WLEDs
CN109135724B (zh) 一种镓酸盐可逆光致变色材料及其制备方法和应用
CN108913131B (zh) 一种稀土离子掺杂镓酸盐可逆光致变色材料及其制备方法和应用
EP3502208A1 (en) Phosphor, method for preparing phosphor, optoelectronic component, and method for producing optoelectronic component
Zheng et al. Molten Salt Shielded Synthesis of Monodisperse Layered CaZnOS‐Based Semiconductors for Piezophotonic and X‐Ray Detection Applications
CN111333419B (zh) 一种上转换发光可逆调控材料及其制备方法
Katyayan et al. Investigation of spectral properties of Eu3+ and Tb3+ doped strontium zirconium trioxide orthorhombic perovskite for optical and sensing applications
CN106554777B (zh) 一种色度随温度可调的发光材料及其制备方法与应用
CN113667472A (zh) 一种Bi3+掺杂的紫外长余辉发光材料及其制备方法和应用
Gökçe et al. Structural and optical properties of Gd+ 3 doped Bi2O3–GeO2 glasses and glass-ceramics
CN107345134B (zh) 一种高灵敏度稀土掺杂钨青铜荧光探温材料
CN112110724B (zh) 具有可逆调控性能的共生层状钙钛矿材料及制备方法
Li et al. Synthesis and characterization of a far-red-emitting Sr2ScNbO6: Mn4+ phosphor for short-day plant cultivation
Du et al. Modulating trap distribution of persistent phosphors upon simple microwave-assisted solid-state reactions
Zaid et al. Enhanced luminescence properties of low-cost Mn 2+ doped willemite based glass–ceramics as potential green phosphor materials
CN106085407B (zh) 荧光可控的光致变色多功能材料及其制备方法
CN106753327A (zh) 一种荧光粉的表面热处理修饰方法以及由其制成的cob光源
CN114507064A (zh) 一种新型光致变色材料及其制备方法
CN108277001B (zh) 一种应用于wled器件的三价镝离子掺杂单基质白色荧光粉及其制备方法
CN110846033A (zh) 一种防潮性能优良的稀土掺杂上转换发光材料及其制备方法
CN114181701A (zh) 一种稀土掺杂上转换发光调控材料
CN114804871A (zh) 一种钨青铜基光致变色陶瓷材料及其制备方法
Ramasamy et al. Synthesis and TL emission properties of RE3+ (Tm, Tb, Ce, Gd and Dy) doped lithium based alkaline (Ca, Mg) earth metal borates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200714

Assignee: TIANJIN COLLABRATE CHEMTECH CO.,LTD.

Assignor: CIVIL AVIATION University OF CHINA

Contract record no.: X2024980003895

Denomination of invention: Reversible upconversion luminescence control material and preparation method based on photochromic effect

Granted publication date: 20220311

License type: Common License

Record date: 20240403

Application publication date: 20200714

Assignee: TIANJIN HONGTAI HUAKAI TECHNOLOGY CO.,LTD.

Assignor: CIVIL AVIATION University OF CHINA

Contract record no.: X2024980003728

Denomination of invention: Reversible upconversion luminescence control material and preparation method based on photochromic effect

Granted publication date: 20220311

License type: Common License

Record date: 20240401

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200714

Assignee: Tianjin water transport engineering survey and Design Institute Co.,Ltd.

Assignor: CIVIL AVIATION University OF CHINA

Contract record no.: X2024980004278

Denomination of invention: Reversible upconversion luminescence control material and preparation method based on photochromic effect

Granted publication date: 20220311

License type: Common License

Record date: 20240412