CN111321484B - 一种强离子电导率多孔复合纳米纤维及其制备方法和应用 - Google Patents

一种强离子电导率多孔复合纳米纤维及其制备方法和应用 Download PDF

Info

Publication number
CN111321484B
CN111321484B CN201811529970.5A CN201811529970A CN111321484B CN 111321484 B CN111321484 B CN 111321484B CN 201811529970 A CN201811529970 A CN 201811529970A CN 111321484 B CN111321484 B CN 111321484B
Authority
CN
China
Prior art keywords
composite nanofiber
porous composite
electrostatic spinning
nanofiber
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811529970.5A
Other languages
English (en)
Other versions
CN111321484A (zh
Inventor
王素力
孙瑞利
孙公权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201811529970.5A priority Critical patent/CN111321484B/zh
Publication of CN111321484A publication Critical patent/CN111321484A/zh
Application granted granted Critical
Publication of CN111321484B publication Critical patent/CN111321484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/06Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

一种强离子电导率多孔复合纳米纤维,所述多孔复合纳米纤维由金属材料和离子聚合物复合而成,金属材料包覆于离子聚合物纤维外表面,其中金属材料属于纳米纤维的质量含量为60‑99.9%,较优为70‑95%,最优为75‑90%。所述多孔复合纳米纤维的制备方法包括:采用静电纺丝的方法将含有溶剂、高分子聚合物、金属前体的静电纺丝液置于静电纺丝针头的外部腔室,将溶剂和离子聚合物置于静电纺丝针头的内部腔室,纺制成丝,得复合纳米纤维;采用还原方法和电化学方法对上述复合纳米纤维进行处理,得多孔复合纳米纤维。与现有技术相比,本发明所述强离子电导率多孔复合纳米纤维的制备方法具有简便,易于实施和规模化放大等特点,在燃料电池、生物医疗以及传感等方面存在较大应用前景。

Description

一种强离子电导率多孔复合纳米纤维及其制备方法和应用
技术领域
本发明属于电池领域,具体的说涉及一种强离子电导率多孔复合纳米纤维及其制备方法和应用。
背景技术
多孔纳米纤维是近些年发展起来的一种新型纳米结构材料,由于具有电化学表面积高、密度小、结构灵活可调等优点,使得多孔纳米纤维在催化、医药、传感等方面存在广泛应用前景。
静电纺丝方法是生产多孔纳米纤维材料最方便、最直接和最经济的方法之一,很多聚合物和熔体均可用作原材料。
燃料电池电极是电化学反应场所,直接决定燃料电池性能。电化学反应发生在三相界面区域即电子、质子、气体。合理设计电极结构,保证反应物以低传质阻力传质至反应区域,提供良好电子和质子通道,成为燃料电池电极设计重点。
多孔纤维因具有较大电化学比表面积、良好孔结构等优点成为燃料电池电极研究热点。目前文献报道的多孔纤维制备方法为将催化剂前体盐和聚合物电纺成丝后高温去除聚合物制备多孔碳纸催化剂或者采用调控静电纺丝溶剂和纺丝条件方法,但很少有文献涉及多孔复合纳米纤维即金属和离子聚合物纳米纤维。因而制备金属复合的多孔纳米纤维具有挑战性和应用前景。
本文设计采用静电纺丝方法,通过对纺丝纤维还原和电化学处理制备具有强离子电导率的多孔复合纳米纤维。
发明内容
本发明的目的在于制备一种强离子电导率多孔复合纳米纤维,其具有较高离子电导率以及电化学活性,可用于燃料电池、生物医疗、环境科学等方面。
为实现上述目的,本发明采用以下具体方案来实现:
一种强离子电导率多孔复合纳米纤维的制备方法,包括以下两个步骤:
采用静电纺丝的方法将含有溶剂、高分子聚合物、金属前体的静电纺丝液置于静电纺丝针头的外部腔室,将溶剂和离子聚合物置于静电纺丝针头的腔室,纺制成丝,得复合纳米纤维;采用还原技术和电化学方法处理上述纳米纤维,得多孔复合纳米纤维。
所述外部腔室静电纺丝液主要特征为:溶剂为水、乙醇、异丙醇的一种或者两种以上的混合物;高分子聚合物为聚丙烯酸、聚乙烯吡咯烷酮、聚乙烯醇的一种或者两种以上混合物,高分子聚合物的质量浓度1.5%-10%;金属前体为含铂、金、银、镍、钴、钌、铁中的一种或者两种以上的盐或酸,金属前体的质量浓度20%-85%。
所述内部腔室静电纺丝液主要特征为:溶剂溶剂为水、乙醇、异丙醇的一种或者两种以上的混合物;所述离子聚合物为Nafion、有机磷酸中的一种,离子聚合物的质量浓度1.5%-50%;
所述采用静电纺丝方法制备纳米纤维的过程,静电纺丝电压为滚轮基底与纺丝溶液间所加压力,为6kV-30kV;纺丝间距为滚轮基底与纺丝溶液间的距离为10-20cm;
所述还原技术为化学还原、电化学还原、电子束还原、辐射还原中的一种或者两种以上;
所述采用电化学方法处理复合电极获得多孔复合纳米纤维的过程,电化学处理方法为恒电位法或循环伏安法;所述恒电位法电位为相对于标准氢0.5V-0.8V,所述电化学处理时间为1000-6000s;所述循环伏安法扫描范围为相对标准氢电极0-1.2V,所述扫描圈数为1000-6000圈;所述测试温度为60-90℃。
所述多孔复合纳米纤维由金属材料和离子聚合物复合而成,金属材料包覆于离子聚合物纤维外表面,其中金属材料于复合纳米纤维中的质量含量为60-99.9%,较优为70-95%,最优为75-90%。
所述多孔复合纳米纤维交联呈网状分布于气体扩散层或者电解质膜表面构成燃料电池电极;所述多孔复合纳米纤维外部直径100-1000nm,长度为1μm以上,孔隙率为20-85%;多孔复合纳米纤维上的孔直径为10-100nm;金属材料粒子粒径为2-20nm,均匀分布于多孔复合纳米纤维;所述电极厚度为1μm以上;
与现有技术相比,本发明所述强离子电导率多孔复合纳米纤维的制备方法具有简便,易于实施和规模化放大等特点,在燃料电池、生物医疗以及传感等方面存在较大应用前景。
附图说明:
图1为对比例1的PtCo纳米纤维的SEM图;
图2为对比例2的Pt/C/Nafion/PAA纳米纤维的SEM图;
图3为实施例2的多孔复合纳米纤维Pt-Nafion的SEM图;
图4为实施例2的多孔复合纳米纤维Pt-Nafion的离子电导率图。
具体实施方式
对比例1:
加拿大Drew C.Higgins等制备PtCo纳米纤维;将34.9mg PVP溶0.9m甲醇;18.75mgH2PtCl6.6H2O和8.15mgCo(CH3COO)2.6H2O溶于0.1ml去离子水;将上述溶液混合并搅拌1h;采用上述混合溶液在6kV电压静电纺丝,并将纺丝纤维置于480℃去除PVP,然后在氢气氛围中处理2h即获得PtCo纳米纤维;PtCo纳米纤维呈实心纤维,直径为40nm。
对比例2:
美国范德堡大学Zhang WJ等制备Pt/C/PAA/Nafion;将PAA和Nafion以及Pt/C以质量分数75%:15%:10%混合均匀,纺丝溶液质量分数为13.4%,在7kV电压静电纺丝,并将纺丝纤维置于140℃真空热压10min,即获得纺丝纤维电极;纺丝纤维表面存在Pt催化剂颗粒,直径为400nm,催化剂为2-3nm。
实施例1:
1)复合纳米纤维的制备
外部静电纺丝溶液制备:将75mg PAA溶于1g高纯水,搅拌均匀后加入1g5wt%Nafion溶液,在70℃蒸发溶液至1g;将4g质量分数为8%的氯铂酸水溶液,在70℃蒸发至0.5g,并与上述溶液混合均匀;内部静电纺丝溶液为1g 5wt%Nafion溶液;将上述两种溶液在16kV电压,200r/min,35℃条件进行静电纺丝,以气体扩散层作为接收材料;将上述纺丝纤维置于40℃真空干燥12h,然后在140℃干燥2h;在150℃氢气氛围中处理2h。
2)多孔复合纳米纤维的制备
将复合纳米纤维置于70℃0.5M H2SO4水溶液中进行3000CV测试,真空干燥后获得多孔复合纳米纤维;所制备多孔复合纳米纤维外部直径为400nm,内部直径(离子聚合物)为200nm,孔隙率60%,交织呈网状分布于气体扩散层表面,电极厚度为1μm以上;
实施例2:
与上述实施例1不同之处在于:内腔静电纺丝溶液中Nafion溶液质量为0.5g;多孔复合纳米纤维直径为400nm,平均孔径为240nm,孔隙率40%,交织呈网状分布于气体扩散层表面,电极厚度为1μm以上。
实施例3:
与上述实施例1不同之处在于:外部静电纺丝溶液中PAA含量为25mg;多孔复合纳米纤维直径为300nm,平均孔径为200nm,孔隙率60%,交织呈网状分布于气体扩散层表面,电极厚度为1μm以上。
实施例4:
与上述实施例1不同之处在于:外部静电纺丝溶液中氯铂酸溶液质量为3g;多孔复合纳米纤维直径为600nm,平均孔径为200nm,孔隙率65%,交织呈网状分布于气体扩散层表面,电极厚度为1μm以上。
实施例5:
与上述实施例1不同之处在于:外部静电纺丝溶液中Nafion溶液为2g;多孔复合纳米纤维直径为700nm,平均孔径为200nm,孔隙率40%,交织呈网状分布于气体扩散层表面,电极厚度为1μm以上。
实施例6:
与上述实施例1不同之处在于:合纳米纤维置于70℃0.5M H2SO4水溶液中进行1000CV测试,;多孔复合纳米纤维直径为400nm,平均孔径为200nm,孔隙率50%,交织呈网状分布于气体扩散层表面,电极厚度为1μm以上。

Claims (4)

1.一种基于多孔复合纳米纤维电极在聚合物电解质膜燃料电池中的应用,其特征在于:所述多孔复合纳米纤维由金属材料和离子聚合物复合而成,金属材料包覆于离子聚合物纤维外表面,其中金属材料于多孔复合纳米纤维中的质量含量为60-99.9%;
包括以下步骤,
(1)采用静电纺丝的方法将含有溶剂、高分子聚合物、金属前体的静电纺丝液置于静电纺丝针头的外部腔室;将溶剂和离子聚合物置于静电纺丝针头的内部腔室;纺制成丝,得复合纳米纤维;
(2)采用还原技术和电化学方法对步骤(1)所述复合纳米纤维进行处理,得多孔复合纳米纤维;
所述电极为以气体扩散层或电解质膜为静电纺丝收集器基底;所述多孔复合纳米纤维直径为100-1000nm,长度为1μm以上,孔隙率为40-85%;孔平均直径为10-100nm;
所述离子聚合物为Nafion、有机磷酸中的一种或两种;离子聚合物的质量浓度1.5%-50%;所述高分子聚合物为聚丙烯酸、聚乙烯吡咯烷酮、聚乙烯醇的一种或者两种以上混合物,高分子聚合物的质量浓度1.5%-10%;
金属前体为含铂、金、银、镍、钴、钌、铁中的一种或者两种以上的盐或酸,金属前体的质量浓度20%-85%;
步骤(2)所述电化学方法为于60-90℃条件下采用恒电位法或循环伏安法对复合纳米纤维进行处理去除高分子聚合物;所述恒电位法处理的电位相对于标准氢电极为0.5V-0.8V,处理时间为1000-6000s;所述循环伏安法处理的电化学扫描范围相对标准氢电极为0-1.2V,扫描圈数为1000-6000圈。
2.如权利要求1所述的应用,其特征在于:所述多孔复合纳米纤维直径为50-500nm。
3.如权利要求1所述的应用,其特征在于:步骤(1)外部腔静电纺丝液中溶剂为水、乙醇、异丙醇的一种或者两种以上的混合物;步骤(1)内部腔中溶剂溶剂为水、乙醇、异丙醇的一种或者两种以上的混合物。
4.如权利要求1所述的应用,其特征在于:步骤(2)所述还原技术为化学还原、电化学还原、电子束还原、辐射还原中的一种或者两种以上使金属前体还原成金属。
CN201811529970.5A 2018-12-14 2018-12-14 一种强离子电导率多孔复合纳米纤维及其制备方法和应用 Active CN111321484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811529970.5A CN111321484B (zh) 2018-12-14 2018-12-14 一种强离子电导率多孔复合纳米纤维及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811529970.5A CN111321484B (zh) 2018-12-14 2018-12-14 一种强离子电导率多孔复合纳米纤维及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111321484A CN111321484A (zh) 2020-06-23
CN111321484B true CN111321484B (zh) 2022-03-04

Family

ID=71166747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811529970.5A Active CN111321484B (zh) 2018-12-14 2018-12-14 一种强离子电导率多孔复合纳米纤维及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111321484B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112853529B (zh) * 2020-12-31 2021-11-19 厦门大学 一种镍基造孔剂及其在燃料电池中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102908653A (zh) * 2012-11-09 2013-02-06 无锡中科光远生物材料有限公司 一种用于深度感染性伤口的抗菌敷料制备方法
CN103643347A (zh) * 2013-12-09 2014-03-19 北京化工大学常州先进材料研究院 金属/聚合物核壳结构纳米纤维及其制备方法
CN104593892A (zh) * 2015-01-25 2015-05-06 北京化工大学 一种纳米金增强荧光的芯鞘结构纳米纤维的制备方法
CN107385562A (zh) * 2017-07-13 2017-11-24 青岛大学 一种海藻酸/纳米银复合纳米纤维及其制备方法
CN108166091A (zh) * 2016-12-07 2018-06-15 中国科学院大连化学物理研究所 一种多孔复合纳米纤维及其制备及电极
US20180320308A1 (en) * 2015-12-23 2018-11-08 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Method For The Production of Conductive Structures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102908653A (zh) * 2012-11-09 2013-02-06 无锡中科光远生物材料有限公司 一种用于深度感染性伤口的抗菌敷料制备方法
CN103643347A (zh) * 2013-12-09 2014-03-19 北京化工大学常州先进材料研究院 金属/聚合物核壳结构纳米纤维及其制备方法
CN104593892A (zh) * 2015-01-25 2015-05-06 北京化工大学 一种纳米金增强荧光的芯鞘结构纳米纤维的制备方法
US20180320308A1 (en) * 2015-12-23 2018-11-08 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Method For The Production of Conductive Structures
CN108166091A (zh) * 2016-12-07 2018-06-15 中国科学院大连化学物理研究所 一种多孔复合纳米纤维及其制备及电极
CN107385562A (zh) * 2017-07-13 2017-11-24 青岛大学 一种海藻酸/纳米银复合纳米纤维及其制备方法

Also Published As

Publication number Publication date
CN111321484A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
Chen et al. Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells
Fu et al. Nitrogen-doped porous activated carbon derived from cocoon silk as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction
Li et al. Porous ceramic nanofibers as new catalysts toward heterogeneous reactions
KR20190022161A (ko) 전이금속과 질소가 도핑된 다공성 탄소 나노섬유를 포함하는 산소환원반응 촉매 및 이의 제조방법
Ekrami-Kakhki et al. Pt nanoparticles supported on a novel electrospun polyvinyl alcohol-CuOCo3O4/chitosan based on Sesbania sesban plant as an electrocatalyst for direct methanol fuel cells
JP5375022B2 (ja) 繊維の製造方法および触媒層の製造方法
Sokka et al. Iron and cobalt containing electrospun carbon nanofibre-based cathode catalysts for anion exchange membrane fuel cell
Wang et al. Freestanding non‐precious metal electrocatalysts for oxygen evolution and reduction reactions
CN1773755A (zh) 一种质子交换膜燃料电池用的膜电极及其制备方法
CN106757539B (zh) 一种铁、氮共掺杂多孔碳的制备方法
CN108166091A (zh) 一种多孔复合纳米纤维及其制备及电极
US20170250431A1 (en) Polymer solution, fiber mat, and nanofiber membrane-electrode-assembly therewith, and method of fabricating same
KR20120139549A (ko) 연료전지용 고분자 전해질 막, 이를 포함하는 막 전극 접합체 및 연료전지
CN109913970A (zh) 一种多孔纳米纤维及其制备及电极
WO2016048309A1 (en) Polymer solution, fiber mat, and nanofiber membrane-electrode-assembly therewith, and method of fabricating same
US9252445B2 (en) Nanofiber membrane-electrode-assembly and method of fabricating same
Hodnik et al. Assembly of Pt nanoparticles on graphitized carbon nanofibers as hierarchically structured electrodes
CN111321484B (zh) 一种强离子电导率多孔复合纳米纤维及其制备方法和应用
CN111321483B (zh) 一种多孔复合纳米纤维及其制备和电极与应用
CN106972178A (zh) 燃料电池催化剂层及其形成方法和包括其的燃料电池
Xu et al. Highly durable platinum group metal-free catalyst fiber cathode MEAs for proton exchange membrane fuel cells
CN115852409A (zh) 一种pem水电解阳极扩散层及其制备方法
Subianto et al. Electrospun nanofibers for low-temperature proton exchange membrane fuel cells
WO2021114317A1 (zh) 一种具有纤维结构的电极材料及制备和应用
JP4451591B2 (ja) ガス拡散電極及びこれを用いた燃料電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant