CN111303638A - 一种导热硅橡胶垫片的制备方法 - Google Patents

一种导热硅橡胶垫片的制备方法 Download PDF

Info

Publication number
CN111303638A
CN111303638A CN202010310336.3A CN202010310336A CN111303638A CN 111303638 A CN111303638 A CN 111303638A CN 202010310336 A CN202010310336 A CN 202010310336A CN 111303638 A CN111303638 A CN 111303638A
Authority
CN
China
Prior art keywords
boron nitride
silicon dioxide
carrier gas
silicone rubber
rubber gasket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010310336.3A
Other languages
English (en)
Inventor
任泽明
廖骁飞
王号
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Suqun Industrial Co ltd
Original Assignee
Guangdong Suqun Industrial Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Suqun Industrial Co ltd filed Critical Guangdong Suqun Industrial Co ltd
Priority to CN202010310336.3A priority Critical patent/CN111303638A/zh
Publication of CN111303638A publication Critical patent/CN111303638A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/442Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供一种导热硅橡胶垫片的制备方法,包括步骤:(1)将氮化硼粉体置于反应装置中;(2)于反应装置中通入一定比例的二氧化硅前驱体、载气和氧气,同时,吹拂氮化硼粉体处于流化态,并使其与氧气反应于氮化硼表面沉积二氧化硅,得到二氧化硅包覆氮化硼;(3)将二氧化硅包覆氮化硼与反应性硅油、催化剂混合均匀,经混炼、脱泡、硫化、裁切后,得到导热硅橡胶垫片;反应装置是将二氧化硅前驱物通过化学气相沉积法制备二氧化硅的装置。本申请的导热硅橡胶垫片的制备方法,借助流化态气相沉积CVD法,对高导热氮化硼粉体材料表面进行均匀包覆,以此来提高二氧化硅包覆氮化硼与硅橡胶基体的亲和性,从而制备导热性优异的导热硅橡胶垫片。

Description

一种导热硅橡胶垫片的制备方法
技术领域
本发明涉及导热填料的制备技术领域,尤其是涉及一种导热硅橡胶垫片的制备方法。
背景技术
随着电子信息的不断发展,电子产品的封装程度越来越高,在有限的空间内将元器件产生的热量及时有效地导出已成为难题。导热硅橡胶垫片作为一种典型的热界面材料,具有可填充界面空隙、减小界面热阻,将热源的热量导出并传递给散热器。
传统的导热垫片是在硅橡胶基体中填充导热氧化铝、氮化硼、碳化硅等,为了能达到理想的导热系数,往往填充量很大,这会损失垫片的力学性能,例如:压缩回弹性差、抗撕裂强度低、拉伸强度差等。因此,如何提高填料与硅橡胶基体的相容性,并在较低填充量下硅橡胶垫片仍然具有较高的导热率和较好的力学性能是一大难点。中国专利CN109880372A中采用溶胶凝胶法,对氮化硼表面进行二氧化硅包覆来提高氮化硼与硅橡胶基体的相容性,实现在低氮化硼填充量下得到高导热硅橡胶垫片。但这种方法会存在着粉体表面包覆不均匀,与硅橡胶的亲和力较低,,需要进行固液分离与热处理,但在热处理后粉体容易凝聚团结。
因此,有必要提供一种改善与硅橡胶的亲和力的二氧化硅包覆氮化硼制备导热硅橡胶垫片的方法来解决上述技术问题。
发明内容
本发明的目的是提供一种导热硅橡胶垫片的制备方法,借助流化态气相沉积CVD法,对高导热氮化硼粉体材料表面进行均匀包覆,以此来提高二氧化硅包覆氮化硼与硅橡胶基体的亲和性,从而制备导热性优异的导热硅橡胶垫片。
为实现上述目的,本发明提供了一种导热硅橡胶垫片的制备方法,包括步骤:
(1)将氮化硼粉体置于反应装置中;
(2)于所述反应装置中通入一定比例的二氧化硅前驱体、载气和氧气,同时,吹拂所述氮化硼粉体处于流化态,并使其与所述氧气反应于所述氮化硼表面沉积二氧化硅,得到二氧化硅包覆氮化硼;
(3)将所述二氧化硅包覆氮化硼与反应性硅油、催化剂混合均匀,经混炼、脱泡、硫化、裁切后,得到导热硅橡胶垫片;
所述反应装置是将所述二氧化硅前驱物通过化学气相沉积法制备二氧化硅的装置。
进一步的,所述载气为氮气或氩气。
进一步的,所述反应装置包括气相沉积腔体、加热炉体和暂存箱,所述加热炉体对所述气相沉积腔体进行加热,所述气相沉积腔体具有反应腔,且所述气相沉积腔体底部开设有第一进气口和第二进气口,所述气相沉积腔体顶部设有排气口,所述暂存箱用于放置所述二氧化硅前驱体,
所述载气分两路进入所述气相沉积腔体内,分别为一路载气和二路载气,所述二路载气输送至所述暂存箱中,将所述二氧化硅前驱体带出所述暂存箱与所述一路载气混合之后经所述第一进气口输送至所述反应腔,所述氧气经所述第二进气口输送至所述反应腔。
进一步的,所述反应装置还包括第一流量计、第二流量计和第三流量计,所述第一流量计用于监测所述氧气的输送量,所述第二流量计用于监测所述一路载气的输送量,所述第三流量计用于监测所述二路载气的输送量。通过各流量计的监测,可实时掌握各路气体的用量,有利于控制反应的进行。
进一步的,所述一路载气的流速大于所述二路载气的流速。
进一步的,所述一路载气的流速为300~500ml/min;所述二路载气的流速为50~200ml/min。
进一步的,所述二氧化硅前驱体选自正硅酸四乙酯、四甲基环四硅氧烷、二乙基硅烷中的一种。由于正硅酸四乙酯在粉体流化翻滚状态下,反应沉积的二氧化硅包覆膜有更优良的共形性和台阶覆盖性,与硅橡胶亲和性好,导热性高,因此,二氧化硅前驱体优选为正硅酸四乙酯。
进一步的,所述氧气的流速为50~200ml/min。
进一步的,所述氮化硼粉末在气体的吹拂下处于流化翻滚状态,使颗粒表面均匀接触反应气体,反应更充分。
进一步的,所述反应性硅油为乙烯基硅油和含氢硅油。
进一步的,催化剂可选为但不限于铂金催化剂。
进一步的,氮化硼粉末粒径为0.5~5μm。
进一步的,反应腔的反应温度保持为350~950℃。
进一步的,反应沉积时间为0.5~3h。
进一步的,二氧化硅包覆氮化硼中二氧化硅的包覆厚度为5~20nm。
本申请的有益效果有:
(1)借助流化态气相沉积CVD法,对高导热氮化硼粉体材料表面进行均匀包覆,以此来提高二氧化硅包覆氮化硼与硅橡胶基体的亲和性,从而制备导热性优异的导热硅橡胶垫片。
(2)反应装置中,二氧化硅前驱体借助二路载气输送至反应腔,一路载气用于稀释二路载气中的二氧化硅前驱体,避免二路载气带出的二氧化硅前驱体浓度太高,影响翻滚效果。
(3)一路载气、二路载气及氧气,三路气体同时对氮化硼粉体吹拂,使其处于翻滚流化状态,使该状态下的氮化硼与氧气充分反应于氮化硼表面沉积二氧化硅,得到二氧化硅包覆氮化硼,包覆均匀,提高与硅橡胶的亲和性。
(4)通过各流量计的监测,可实时掌握各路气体的用量,有利于控制流速使得反应充分的进行,包覆均匀,提高包覆效果。
附图说明
图1为本申请导热硅橡胶垫片的制备方法用反应装置的结构示意图。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案,但不构成对本发明的任何限制。
请参考图1,本申请导热硅橡胶垫片的制备方法中涉及的反应装置100优选为图1所示结构,由图1可知,该反应装置100包括气相沉积腔体10、加热炉体20和暂存箱30,加热炉体20对气相沉积腔体10进行加热,气相沉积腔体10具有反应腔11,且气相沉积腔体10底部开设有第一进气口13和第二进气口15,气相沉积腔体10顶部设有排气口17,借由排气口17排出尾气或多余的气体,从而使得整个装置中的气体循环进行,暂存箱30用于放置二氧化硅前驱体。载气分两路进入气相沉积腔体10内,分别为一路载气81和二路载气83,二路载气83输送至暂存箱30中,将二氧化硅前驱体带出暂存箱30与一路载气81混合之后经第一进气口13输送至反应腔11,氧气经第二进气口15输送至反应腔11。气相沉积腔体10内设有网孔转的网隔板40,氮化硼粉体置于网隔板40上。一路载气81直接连通至暂存箱30的出气端,二路载气83将暂存箱30内的二氧化硅前驱体带出暂存箱30与一路载气81汇合,然后输送至反应腔11。一路载气81用于稀释二路载气83中的二氧化硅前驱体,避免二路载气83带出的二氧化硅前驱体浓度太高,影响翻滚效果。进一步,氮化硼粉末在气体的吹拂下处于流化翻滚状态,可以理解的是,一路载气81、二路载气83及氧气,三路气体同时对氮化硼粉体吹拂,使其处于翻滚流化状态,使该状态下的氮化硼与氧气充分反应于氮化硼表面沉积二氧化硅,得到二氧化硅包覆氮化硼,包覆均匀,提高与硅橡胶的亲和性。更进一步,反应装置100还包括第一流量计50、第二流量计60和第三流量计70,第一流量计50用于监测氧气的输送量,第二流量计60用于监测一路载气81的输送量,第三流量计70用于监测二路载气83的输送量。
进一步,一路载气81的流速大于二路载气83的流速。具体地,一路载气81的流速为300~500ml/min;二路载气83的流速为50~200ml/min。氧气的流速为50~200ml/min,以使得反应腔11内的反应得到充分反应,保证包覆均匀。
实施例1
(1)二氧化硅包覆氮化硼:称取50g氮化硼(BN,深圳市宏元化工新材料科技有限公司生产,粒径3μm,纯度≥99.0%),放入至气相沉积腔体的反应腔内的网格上,设定反应腔内温度为350℃。
二氧化硅前驱体采用正硅酸四乙酯液体,将正硅酸四乙酯液体放置在暂存箱中并保持温度为100℃。载气为氮气,一路氮气以流速50ml/min流经暂存箱,正硅酸四乙酯随着氮气出暂存箱经第一进气口输入,从反应腔底部被引入到反应腔内,二路载气以流速300ml/min对正硅酸四乙酯进行稀释,同时经第一进气口从气相沉积腔体底部进入。然后将反应气体氧气以50ml/min经第二进气口入,从气相沉积腔体底部进入到反应腔中,三路气体同时对氮化硼吹拂,使氮化硼处于翻滚流化状态,使之与混合反应气体并于氮化硼表面沉积二氧化硅,控制沉积时间为0.5h,得到二氧化硅包覆氮化硼,且二氧化硅包覆厚度为5nm。
(2)导热硅橡胶垫片的制备:将10g二氧化硅包覆氮化硼、5g乙烯基硅油(来源于深圳市博洋有机硅新材料有限公司)、5g含氢硅油(来源于深圳市博洋有机硅新材料有限公司)、0.05g铂金催化剂(来源于东莞市迈腾橡塑材料有限公司)进行混炼1h,真空脱泡30min后,对辊挤出后,进入隧道炉120℃,烘烤40min进行硫化,待冷却后裁切成所需尺寸,得到导热硅橡胶垫片。
利用热稳态法(湘科DRP-Ⅱ导热系数测试仪)测得该导热硅橡胶垫片的导热系数为12W/(m·K),具有高导热性,可满足实际应用要求。
实施例2
(1)二氧化硅包覆氮化硼:称取50g氮化硼(BN,深圳市宏元化工新材料科技有限公司生产,粒径3μm,纯度≥99.0%),放入至气相沉积腔体的反应腔内的网格上,设定反应腔内温度为350℃。
二氧化硅前驱体采用正硅酸四乙酯液体,将正硅酸四乙酯液体放置在暂存箱中并保持温度为100℃。载气为氮气,一路氮气以流速50ml/min流经暂存箱,正硅酸四乙酯随着氮气出暂存箱经第一进气口输入,从反应腔底部被引入到反应腔内,关闭二路载气,同时经第一进气口从气相沉积腔体底部进入。然后将反应气体氧气以50ml/min经第二进气口入,从气相沉积腔体底部进入到反应腔中,2路气体同时对氮化硼吹拂,使氮化硼处于翻滚流化状态,使之与混合反应气体并于氮化硼表面沉积二氧化硅,控制沉积时间为0.5h,得到二氧化硅包覆氮化硼,且二氧化硅包覆厚度为5nm。
(2)导热硅橡胶垫片的制备:将10g二氧化硅包覆氮化硼、5g乙烯基硅油(来源于深圳市博洋有机硅新材料有限公司)、5g含氢硅油(来源于深圳市博洋有机硅新材料有限公司)、0.05g铂金催化剂(来源于东莞市迈腾橡塑材料有限公司)进行混炼1h,真空脱泡30min后,对辊挤出后,进入隧道炉120℃,烘烤40min进行硫化,待冷却后裁切成所需尺寸,得到导热硅橡胶垫片。
利用热稳态法(湘科DRP-Ⅱ导热系数测试仪)测得该导热硅橡胶垫片的导热系数为7W/(m·K),具有高导热性,可满足实际应用要求。
与实施例1比较可知,关闭二路载气,容易产生二氧化硅包覆太厚,阻碍氮化硼与氮化硼之间的导热网络搭接,即会导致氮化硼与氮化硼之间被二氧化硅层隔开,从而影响导热硅橡胶垫片的导热系数。
实施例3-4
实施例3-4中导热硅橡胶垫片的制备方法与实施例1相同,不同点在于二氧化硅前驱体的选择不同:
实施例3中的二氧化硅前驱体采用四甲基环四硅氧烷液体;
实施例4中的二氧化硅前驱体采用二乙基硅烷液体;
而实施例1中的二氧化硅前驱体采用正硅酸四乙酯液体。
对于实施例3制备的导热硅橡胶垫片,利用热稳态法测得该导热硅橡胶垫片的导热系数为8.5W/(m·K)。
对于实施例4制备的导热硅橡胶垫片,利用热稳态法测得该导热硅橡胶垫片的导热系数为6W/(m·K)。
应当指出,以上具体实施方式仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落入本申请所附权利要求限定的范围。

Claims (10)

1.一种导热硅橡胶垫片的制备方法,其特征在于,包括步骤:
(1)将氮化硼粉体置于反应装置中;
(2)于所述反应装置中通入一定比例的二氧化硅前驱体、载气和氧气,同时,吹拂所述氮化硼粉体处于流化态,并使其与所述氧气反应于所述氮化硼表面沉积二氧化硅,得到二氧化硅包覆氮化硼;
(3)将所述二氧化硅包覆氮化硼与反应性硅油、催化剂混合均匀,经混炼、脱泡、硫化、裁切后,得到导热硅橡胶垫片;
所述反应装置是将所述二氧化硅前驱物通过化学气相沉积法制备二氧化硅的装置。
2.根据权利要求1所述的导热硅橡胶垫片的制备方法,其特征在于,所述载气为氮气或氩气。
3.根据权利要求1所述的导热硅橡胶垫片的制备方法,其特征在于,所述反应装置包括气相沉积腔体、加热炉体和暂存箱,所述加热炉体对所述气相沉积腔体进行加热,所述气相沉积腔体具有反应腔,且所述气相沉积腔体底部开设有第一进气口和第二进气口,所述气相沉积腔体顶部设有排气口,所述暂存箱用于放置所述二氧化硅前驱体,
所述载气分两路进入所述气相沉积腔体内,分别为一路载气和二路载气,所述二路载气输送至所述暂存箱中,将所述二氧化硅前驱体带出所述暂存箱与所述一路载气混合之后经所述第一进气口输送至所述反应腔,所述氧气经所述第二进气口输送至所述反应腔。
4.根据权利要求3所述的导热硅橡胶垫片的制备方法,其特征在于,所述反应装置还包括第一流量计、第二流量计和第三流量计,所述第一流量计用于监测所述氧气的输送量,所述第二流量计用于监测所述一路载气的输送量,所述第三流量计用于监测所述二路载气的输送量。
5.根据权利要求3所述的导热硅橡胶垫片的制备方法,其特征在于,所述一路载气的流速大于所述二路载气的流速。
6.根据权利要求5所述的导热硅橡胶垫片的制备方法,其特征在于,所述一路载气的流速为300~500ml/min;所述二路载气的流速为50~200ml/min。
7.根据权利要求3所述的导热硅橡胶垫片的制备方法,其特征在于,所述二氧化硅前驱体选自正硅酸四乙酯、四甲基环四硅氧烷、二乙基硅烷中的一种。
8.根据权利要求3所述的导热硅橡胶垫片的制备方法,其特征在于,所述氧气的流速为50~200ml/min。
9.根据权利要求1所述的导热硅橡胶垫片的制备方法,其特征在于,所述氮化硼粉末在气体的吹拂下处于流化翻滚状态。
10.根据权利要求1所述的导热硅橡胶垫片的制备方法,其特征在于,所述反应性硅油为乙烯基硅油和含氢硅油。
CN202010310336.3A 2020-04-17 2020-04-17 一种导热硅橡胶垫片的制备方法 Withdrawn CN111303638A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010310336.3A CN111303638A (zh) 2020-04-17 2020-04-17 一种导热硅橡胶垫片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010310336.3A CN111303638A (zh) 2020-04-17 2020-04-17 一种导热硅橡胶垫片的制备方法

Publications (1)

Publication Number Publication Date
CN111303638A true CN111303638A (zh) 2020-06-19

Family

ID=71154140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010310336.3A Withdrawn CN111303638A (zh) 2020-04-17 2020-04-17 一种导热硅橡胶垫片的制备方法

Country Status (1)

Country Link
CN (1) CN111303638A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112961469A (zh) * 2021-04-08 2021-06-15 厦门稀土材料研究所 一种环氧树脂基高导热绝缘材料及其制备方法
CN115838919A (zh) * 2023-02-17 2023-03-24 矿冶科技集团有限公司 一种无机非金属颗粒包覆材料及其调控方法
CN116082858A (zh) * 2022-12-29 2023-05-09 雅安百图高新材料股份有限公司 一种氮化硼改性方法及产品和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI225106B (en) * 2000-04-06 2004-12-11 Applied Materials Inc Deposition of TEOS oxide using pulsed RF plasma
CN101962757A (zh) * 2009-03-27 2011-02-02 罗门哈斯电子材料有限公司 在基材上形成薄膜的方法和设备
CN104882363A (zh) * 2014-02-28 2015-09-02 东京毅力科创株式会社 处理气体产生装置、处理气体产生方法、基板处理方法
CN105392918A (zh) * 2013-07-15 2016-03-09 光州科学技术院 用于制备纳米涂层粒子的流化床原子层沉积设备
CN106011786A (zh) * 2016-07-01 2016-10-12 中国科学院电工研究所 大气压弥散放电装置及金属表面沉积类SiO2薄膜方法
CN109880372A (zh) * 2019-01-17 2019-06-14 华南理工大学 一种利用二氧化硅包覆氮化硼制得的导热硅橡胶及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI225106B (en) * 2000-04-06 2004-12-11 Applied Materials Inc Deposition of TEOS oxide using pulsed RF plasma
CN101962757A (zh) * 2009-03-27 2011-02-02 罗门哈斯电子材料有限公司 在基材上形成薄膜的方法和设备
CN105392918A (zh) * 2013-07-15 2016-03-09 光州科学技术院 用于制备纳米涂层粒子的流化床原子层沉积设备
CN104882363A (zh) * 2014-02-28 2015-09-02 东京毅力科创株式会社 处理气体产生装置、处理气体产生方法、基板处理方法
CN106011786A (zh) * 2016-07-01 2016-10-12 中国科学院电工研究所 大气压弥散放电装置及金属表面沉积类SiO2薄膜方法
CN109880372A (zh) * 2019-01-17 2019-06-14 华南理工大学 一种利用二氧化硅包覆氮化硼制得的导热硅橡胶及其制备方法与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Z.Y. WU ET AL.: ""Facile synthesis of Fe-6.5wt%Si/SiO2 soft magnetic composites as an efficient soft magnetic composite material at medium and high frequencies"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
ZHANG JIANFENG ET AL.: ""Densification of hBN with the as-coated SiO2 nanolayer by rotary chemical vapor deposition"", 《JOURNAL OF THE CERAMIC SOCIETY OF JAPAN 》 *
ZHANG JIANFENG ET AL.: ""Densification of SiO2-cBN composites by using Ni nanoparticle and SiO2 nanolayer coated cBN powder"", 《CERAMICS INTERNATIONAL》 *
李志强等: ""CVD法在电致发光粉表面包覆SiO2膜"", 《表面技术》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112961469A (zh) * 2021-04-08 2021-06-15 厦门稀土材料研究所 一种环氧树脂基高导热绝缘材料及其制备方法
CN112961469B (zh) * 2021-04-08 2023-03-31 厦门稀土材料研究所 一种环氧树脂基高导热绝缘材料及其制备方法
CN116082858A (zh) * 2022-12-29 2023-05-09 雅安百图高新材料股份有限公司 一种氮化硼改性方法及产品和应用
CN115838919A (zh) * 2023-02-17 2023-03-24 矿冶科技集团有限公司 一种无机非金属颗粒包覆材料及其调控方法

Similar Documents

Publication Publication Date Title
CN111303638A (zh) 一种导热硅橡胶垫片的制备方法
TWI253467B (en) Thermal interface material and method for making same
Wank et al. Nanocoating individual cohesive boron nitride particles in a fluidized bed by ALD
CN105369221B (zh) 一种包覆纳米颗粒的原子层沉积装置及其方法
CN103193498B (zh) 一种快速制备碳/碳复合材料坩埚的窄流感应耦合cvd 致密化方法
CN103951470B (zh) 碳/碳复合材料表面碳化铪纳米线增韧陶瓷涂层及制备方法
CN105648422A (zh) 一种用于电极粉体材料包覆的气相原子层沉积装置及应用
CN108715998A (zh) 一种用于大批量微纳米颗粒包裹的原子层沉积装置
CN105130506A (zh) 在球形石墨材料表面制备SiC涂层的方法
CN109898054A (zh) 一种基于碳纳米管阵列的新型芯片热界面材料的制备方法
CN111099596B (zh) 一种在二氧化硅气凝胶颗粒表面包覆高疏水氮化硼纳米片薄层的简易方法
CN103290386A (zh) 一种含有孔隙结构C/SiC涂层及其制备方法
CN104561924B (zh) 一种热解碳涂层的制备方法
CN204474756U (zh) 一种采用固体碳源制备石墨烯的化学气相沉积装置
CN101705476B (zh) 一种cvd热板法快速制备高密度各向同性炭的方法
CN110482488A (zh) 一种复合储氢材料、制备方法及其应用
CN210237770U (zh) 一种用于制备纳米材料的气相反应炉
CN202116646U (zh) 多路独立供气式pecvd供气沉积系统
CN206751918U (zh) 一种热丝化学气相沉积金刚石薄膜的装置
CN109680263A (zh) 一种沉积装置及一种原子层沉积设备
CN106813101A (zh) 一种金属氢化物储氢装置
CN102824864B (zh) 汽化混合装置
CN213835530U (zh) 一种固态源瓶
CN204874726U (zh) 化学气相沉积法制备石墨烯的高温炉设备
CN212667712U (zh) 用于灌装固体mo源的钢瓶

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200619

WW01 Invention patent application withdrawn after publication