CN111298800A - 一种加氢脱硫催化剂及其制备方法和应用 - Google Patents

一种加氢脱硫催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN111298800A
CN111298800A CN202010223211.7A CN202010223211A CN111298800A CN 111298800 A CN111298800 A CN 111298800A CN 202010223211 A CN202010223211 A CN 202010223211A CN 111298800 A CN111298800 A CN 111298800A
Authority
CN
China
Prior art keywords
heteroatom
catalyst
precursor
gamma
alumina carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010223211.7A
Other languages
English (en)
Other versions
CN111298800B (zh
Inventor
魏强
刘晓东
黄文斌
范夏韵
张鹏飞
徐朱松
闫祎统
王林
张荣勋
周亚松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum Beijing
Original Assignee
China University of Petroleum Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing filed Critical China University of Petroleum Beijing
Priority to CN202010223211.7A priority Critical patent/CN111298800B/zh
Publication of CN111298800A publication Critical patent/CN111298800A/zh
Application granted granted Critical
Publication of CN111298800B publication Critical patent/CN111298800B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8874Gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8898Manganese, technetium or rhenium containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种加氢脱硫催化剂及其制备方法和应用。该加氢脱硫催化剂包括杂原子改性的γ‑氧化铝载体和活性组分,杂原子改性的γ‑氧化铝载体由1‑10wt%的杂原子氧化物和90‑99wt%的γ‑氧化铝组成,杂原子改性的γ‑氧化铝载体占催化剂的65wt%‑95wt%,催化剂的活性组分占催化剂的5wt%‑35wt%。本发明还提供了上述催化剂的制备方法。本发明的加氢脱硫催化剂具有较高的加氢脱硫活性和直接脱硫选择性。

Description

一种加氢脱硫催化剂及其制备方法和应用
技术领域
本发明的涉及一种催化剂及其制备方法,尤其涉及一种加氢脱硫的催化剂及其制备方法,属于催化剂技术领域。
背景技术
环境保护要求的日益提高和能源可持续发展战略的不断深入迫使柴油等车用燃料的质量要求进一步提高。目前工业上柴油加氢技术多是以提高反应苛刻度并通过加氢脱硫路径实现复杂硫化物的深度脱除,而通过提高复杂硫化物加氢脱硫过程中直接脱硫路径占比可降低反应苛刻度。
目前工业上柴油加氢精制催化剂基本以氧化铝为载体,以Co、Mo、Ni、W为活性金属组分。但是氧化铝载体存在表面L酸比例较高、与活性金属组分间相互作用力过强等缺陷,从而限制了加氢催化剂的脱硫、脱氮及脱芳烃性能。为此,国内外众多学者在氧化铝载体改性或加氢新材料研究等方面开展了一些工作。
US6992041公开了一种以ZnO-SiO2-Al2O3复合氧化物为载体制备柴油加氢精制催化剂的方法。该方法首先将氧化铝、去离子水和冰醋酸同时加入硅藻土和氧化锌的混合物中,然后干燥、焙烧得到复合氧化物载体,最后浸渍活性组分并干燥、焙烧得到加氢精制催化剂。该方法所制得的加氢精制催化剂在柴油加氢脱硫中表现出较高活性,但是存在反应条件苛刻等不足。
US4392985公开了一种了以氧化铝为载体的Co、Mo加氢脱硫催化剂及其制备方法,并通过在浸渍液中加入磷酸对催化剂进行磷改性来提高催化剂的加氢脱硫活性。该方法所制备的催化剂对柴油具有较高的初始脱硫活性,但由于柴油中的多环芳烃易在催化剂表面缩合生焦从而使催化剂难以保持较高的活性稳定性,此外,该催化剂的直接脱硫选择性较低。
CN105772109A提供了一种高加氢脱硫活性催化剂的载体及制备方法与由其制备的催化剂。首先对高硅铝比的小颗粒Y分子筛进行铵交换,然后再对其进行锆改性,最后与拟薄水铝石、助挤剂、粘结剂混合挤条、干燥、焙烧得到加氢脱硫催化剂载体。该方法所制得的加氢催化剂的性能得到了一定的改进,但孔体积下降、失活速率快的矛盾难以解决,因此导致催化剂性能难以大幅度提高。
CN110038585A提供了一种原位浸渍活性金属制备加氢精制催化剂的方法。该方法首先将活性金属前驱体与偏铝酸铵溶液反应生成成胶,并在成胶过程中加入有机胺,然后进行老化,之后再将活性金属前驱体、铝源溶液与氨水混合加入上述浆液中,并在该成胶反应过程中加入有机胺,最后老化、干燥、焙烧得到加氢精制催化剂。该方法所制得的加氢催化剂在柴油馏分加氢脱硫中表现良好,但是存在催化剂载体孔结构难以控制并且操作较为复杂等问题。
综上所述,现有的以氧化铝或者改性的氧化铝为载体的加氢催化剂在柴油加氢脱硫时存在反应条件苛刻、活性稳定性差、直接脱硫选择性低等不足,设计和开发一种表面酸性分布适宜、直接脱硫选择性高且组成简单的加氢精制催化剂成为了柴油加氢精制领域亟待地解决的关键问题。
发明内容
本发明的一个目的是提供一种具有较高的加氢脱硫活性和直接脱硫选择性的脱硫催化剂。
本发明的又一目的是提供上述催化剂的制备方法。
为了实现上述技术目的,本发明首先提供了加氢脱硫催化剂,该加氢脱硫催化剂包括杂原子改性的γ-氧化铝载体和活性组分,其中,杂原子改性的γ-氧化铝载体由1-10wt%的杂原子氧化物和90-99wt%的γ-氧化铝组成,杂原子改性的γ-氧化铝载体占催化剂的65wt%-95wt%,活性组分占催化剂的5wt%-35wt%。
在本发明的一具体实施方式中,采用的杂原子可以为锰、铁、钴、镓、铌、铼和镧系元素(镧、铈、钕)中的一种或几种的组合。
具体地,作为杂原子的锰的前驱体可以采用高锰酸钾、硝酸锰和硫酸锰中的一种或几种的组合。
具体地,作为杂原子的铁的前驱体可以采用硝酸铁、硫酸铁、硫酸亚铁、氯化亚铁、三氧化二铁、氧化亚铁、氢氧化亚铁和三氯化铁中的一种或几种的组合。
具体地,作为杂原子的钴的前驱体可以采用硝酸钴和/或碱式碳酸钴。
具体地,作为杂原子的镓的前驱体可以采用三氧化二镓、硝酸镓和磷酸镓中的一种或几种的组合;
具体地,作为杂原子的铌的前驱体可以采用铌酸、草酸铌铵、五氯化铌、磷酸铌、草酸铌和五氟化铌中的一种或几种的组合。
具体地,作为杂原子的铼的前驱体可以采用高铼酸、三氯化铼、五氯化铼、六氯化铼、四氟化铼、五氟化铼、六氟化铼和七氟化铼中的一种或几种的组合。
具体地,镧的前驱体为碳酸镧。
具体地,铈的前驱体为硫酸铈、硝酸铈、醋酸铈中的一种或几种的组合。
具体地,钕的前驱体为磷酸钕、异辛酸钕、新癸酸钕中的一种或几种的组合。
在本发明的一具体实施方式中,催化剂的活性组分可以为VIB族金属和/或VIII族金属;比如,VIB族金属为Mo和/或W,VIII族金属为Co和/或Ni;活性组分为Ni和Mo,以氧化物质量计,活性组分包括2wt%-8wt%的NiO、10wt%-25wt%的MoO3
本发明的加氢脱硫催化剂的比表面积为150m2/g-300m2/g,孔体积为0.4cm3/g-0.7cm3/g,催化剂的颗粒粒径为20目-40目。
本发明还提供了上述加氢脱硫催化剂的制备方法,该制备方法包括以下步骤:
将拟薄水铝石与水按1:0.7-1.3(优选1:1)的质量比混合,加入1wt%-8wt%的助挤剂和2wt%-10wt%的胶溶剂,充分混合后挤条成型,将成型后的拟薄水铝石在避光、通风条件下自然晾干,然后进行干燥和焙烧处理,得到γ-氧化铝载体;
将杂原子的前驱体负载到γ-氧化铝载体上,进行干燥和焙烧处理,得到杂原子改性的γ-氧化铝载体;
采用浸渍法将活性金属组分负载到杂原子改性的γ-氧化铝载体中,进行干燥和焙烧处理,得到加氢脱硫催化剂。
本发明的制备方法中,包括制备γ-氧化铝载体的步骤。
在本发明的一具体实施方式中,采用的助挤剂为田菁粉、聚乙烯醇和淀粉中的一种或几种的组合。
在本发明的一具体实施方式中,胶溶剂可以为硝酸,优选为质量浓度为65%的硝酸。
在本发明的一具体实施方式中,具体地,作为杂原子的锰的前驱体可以采用高锰酸钾、硝酸锰和硫酸锰中的一种或几种的组合。铁的前驱体可以采用硝酸铁、硫酸铁、硫酸亚铁、氯化亚铁、三氧化二铁、氧化亚铁、氢氧化亚铁和三氯化铁中的一种或几种的组合。钴的前驱体可以采用硝酸钴和/或碱式碳酸钴。镓的前驱体可以采用三氧化二镓、硝酸镓和磷酸镓中的一种或几种的组合;铌的前驱体可以采用铌酸、草酸铌铵、五氯化铌、磷酸铌、草酸铌和五氟化铌中的一种或几种的组合。铼的前驱体可以采用高铼酸、三氯化铼、五氯化铼、六氯化铼、四氟化铼、五氟化铼、六氟化铼和七氟化铼中的一种或几种的组合。镧的前驱体为碳酸镧。铈的前驱体为硫酸铈、硝酸铈、醋酸铈中的一种或几种的组合。钕的前驱体为磷酸钕磷酸钕、异辛酸钕、新癸酸钕中的一种或几种的组合。
在本发明的一具体实施方式中,制备γ-氧化铝载体时,干燥的温度为80℃-160℃,时间为2h-24h;焙烧处理的温度为400℃-800℃,时间为2h-6h;
本发明的制备方法中,包括制备杂原子改性的γ-氧化铝载体的步骤。
在本发明的一具体实施方式中,将杂原子的前驱体负载到γ-氧化铝载体上时:
对于能够溶于水的杂原子前驱体,负载杂原子的步骤为:
先将杂原子前驱体配制成一定浓度的水溶液,再通过等体积浸渍法将杂原子负载到γ-氧化铝载体中;或者,
对于不能够溶于水的杂原子前驱体,负载杂原子的步骤为:
通过混捏的方法将杂原子前驱体负载到γ-氧化铝载体中。
在本发明的一具体实施方式中,杂原子的前驱体负载到γ-氧化铝载体上后,干燥的温度为100℃-150℃,时间为2h-10h;焙烧处理的温度为400℃-800℃,时间为2h-6h。
本发明的制备方法中,包括制备加氢脱硫催化剂的步骤。
在本发明的一具体实施方式中,活性金属组分负载到杂原子改性的γ-氧化铝载体后,干燥的温度为100℃-150℃,时间为2h-10h;焙烧处理的温度为400℃-800℃,时间为2h-6h。
在本发明的一具体实施方式中,浸渍可以采用等体积共浸渍的方式;比如,浸渍液可以为钼酸铵、氨水和硝酸镍的混合溶液;浸渍温度为室温,浸渍时间可以为4h-6h。
本发明的加氢脱硫催化剂可以用于催化石油馏分加氢精制过程,尤其适用于催化高硫含量石油馏分的加氢脱硫反应。
其中,用于石油馏分的加氢催化、石油馏分的加氢脱硫催化的具体催化的反应条件为:反应温度200℃-350℃,氢分压2MPa-8MPa,液时空速1h-1-10h-1,氢油体积比60-200:1。
本发明的加氢脱硫催化剂在加氢催化中的应用中,在加氢催化之前,还可以包括对催化剂进行预硫化的步骤,硫化液为含1-5wt%的CS2的环己烷溶液,预硫化条件为:反应温度260℃-380℃,氢分压2MPa-8MPa,液时空速1h-1-10h-1,氢油体积比20-120:1。
本发明的加氢脱硫催化剂以杂原子改性的γ-氧化铝为载体,降低了常规氧化铝载体表面的酸强度并改善了活性金属组分与载体间的相互作用,通过调整杂原子的负载量,调控催化剂活性金属组分的电子结构和形状,使其对石油馏分中复杂的硫化物具有较高的端点吸附能力,从而提高催化剂在加氢催化过程中对硫化物的直接脱硫选择性,并降低加氢脱硫反应路径的复杂性,降低氢耗并提高反应效率。所制得的加氢脱硫催化剂在加氢催化中表现出较高的加氢脱硫活性和直接脱硫选择性,适用于石油馏分的加氢催化过程。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供了一种以拟薄水铝石制备γ-氧化铝的制备方法。
将1000g拟薄水铝石和1000g去离子水充分混合,然后加入20g田菁粉和50g硝酸并充分混合。用挤条机将上述混合物在30MPa压力下挤压成型,挤条形状为直径1.5mm的三叶草型。将成型后的拟薄水铝石在避光、通风的条件下自然晾干24h,然后在120℃烘箱内干燥12h,最后在马弗炉内以2℃/min升温至500℃,保持500℃恒温焙烧4h,自然冷却至室温,得到所需γ-氧化铝载体。将该γ-氧化铝载体压片并筛分制成20-40目的颗粒备用,并测定其吸水率为1.3。
实施例2
本实施例提供了一种Mn改性γ-氧化铝载体的方法。
称取7g实施例1中的γ-氧化铝载体颗粒,再称取0.6g硝酸锰溶于9.1g去离子水中配制成硝酸锰溶液,采用等体积浸渍法将硝酸锰溶液浸渍到γ-氧化铝载体颗粒中,浸渍温度为室温,浸渍时间为4h,然后在120℃烘箱内干燥4h,最后在马弗炉内以2℃/min升温至500℃,保持500℃恒温焙烧4h,自然冷却至室温,得到Mn原子改性的γ-氧化铝载体,所得载体孔体积为0.7cm3/g,比表面积为480m2/g,记为SMnA。
实施例3
本实施例提供了一种Fe改性γ-氧化铝载体的方法。
将实施例2中0.6g硝酸锰替换1.47g硝酸铁,其余步骤和反应条件保持不变,制得Fe原子改性的γ-氧化铝载体,所得载体孔体积为0.68cm3/g,比表面积为460m2/g,记为SFeA。
实施例4
本实施例提供了一种Co改性γ-氧化铝载体的方法
将实施例2中0.6g硝酸锰替换1.13g硝酸钴,其余步骤和反应条件保持不变,制得Co原子改性的γ-氧化铝载体,所得载体孔体积为0.65cm3/g,比表面积为470m2/g,记为SCoA。
实施例5
本实施例提供了一种Ga改性γ-氧化铝载体的方法。
将实施例2中0.6g硝酸锰替换0.79g硝酸镓,其余步骤和反应条件保持不变,制得Ga原子改性的γ-氧化铝载体,所得载体孔体积为0.62cm3/g,比表面积为490m2/g,记为SGaA。
实施例6
本实施例提供了一种Nb改性γ-氧化铝载体的方法。
称取1.18g草酸铌铵,并将其采用混捏的方法浸渍到实施例1中所述的γ-氧化铝载体中,然后在120℃烘箱内干燥4h,最后在马弗炉内以2℃/min升温至500℃,保持500℃恒温焙烧4h,自然冷却至室温,得到Nb原子改性的γ-氧化铝载体,所得载体孔体积为0.65cm3/g,比表面积为465m2/g,记为SNbA。
实施例7
本实施例提供了一种Re改性γ-氧化铝载体的方法。
将实施例2中0.6g硝酸锰替换0.24g高铼酸铵,其余步骤和反应条件保持不变,制得Re原子改性的γ-氧化铝载体,所得载体孔体积为0.63cm3/g,比表面积为440m2/g,记为SReA。
实施例8
本实施例提供了一种以杂原子改性的γ-氧化铝为载体制备加氢催化剂的方法
称取7g实施例2-7中所制备的杂原子改性γ-氧化铝,测定其吸水率为1.3,然后称取1.91g钼酸铵溶于适量配比的去离子水中,并加入一定量氨水使钼酸铵完全溶解得到溶液A,称取0.86g硝酸镍溶于适量去离子水中得到溶液B,保证溶液A、B中所加入液体总质量为9.1g;将溶液A、B混合得到NiMo共浸渍液;以等体积浸渍法将NiMo共浸渍液于室温下与实施例2-实施例7中所制备的杂原子改性γ-氧化铝载体共浸渍4h,然后在120℃烘箱内干燥4h,最后在马弗炉内以2℃/min升温至500℃,保持500℃恒温焙烧4h,自然冷却至室温,得到以杂原子改性的γ-氧化铝为载体的加氢催化剂,分别记为NiMo-SMnA、NiMo-SFeA、NiMo-SCoA、NiMo-SGaA、NiMo-SNbA、NiMo-SReA。
采用BET的方法测定所制得的加氢催化剂的比表面积和孔体积,测定结果如表1所示。
表1
序号 催化剂 比表面积/m<sup>2</sup>·g<sup>-1</sup> 孔体积/cm<sup>3</sup>·g<sup>-1</sup>
1 NiMo-SMnA 218 0.46
2 NiMo-SFeA 233 0.44
3 NiMo-SCoA 225 0.43
4 NiMo-SGaA 227 0.45
5 NiMo-SNbA 228 0.44
6 NiMo-SReA 231 0.45
实施例9
本实施例提供了一种加氢催化剂活性和选择性评价方法。
将上述实施例8中所制得的各加氢催化剂进行加氢性能评价,以4,6-DMDBT含量为1wt%的环己烷/正庚烷溶液为反应原料,反应条件为:反应温度280℃,氢分压4MPa,液时空速5h-1,氢油体积比120:1。
以杂原子改性的γ-氧化铝为载体的加氢催化剂的加氢催化评价结果如表2所示。
表2
Figure BDA0002426799500000071
Figure BDA0002426799500000081
本发明的以杂原子改性的γ-氧化铝为载体的加氢催化剂及其制备方法适用于缓和条件下的加氢催化过程,具有较高的加氢脱硫活性和直接脱硫选择性。

Claims (10)

1.一种加氢脱硫催化剂,该加氢脱硫催化剂包括杂原子改性的γ-氧化铝载体和活性组分,其中,杂原子改性的γ-氧化铝载体由1-10wt%的杂原子氧化物和90-99wt%的γ-氧化铝组成,杂原子改性的γ-氧化铝载体占催化剂的65wt%-95wt%,活性组分占催化剂的5wt%-35wt%。
2.根据权利要求1所述的加氢脱硫催化剂,其中,杂原子为锰、铁、钴、镓、铌、铼和镧系元素中的一种或几种;
优选地,镧系元素为镧、铈、钕中的一种或几种。
3.根据权利要求1所述的加氢脱硫催化剂,其中,所述活性组分为VIB族金属和/或VIII族金属;
优选地,所述VIB族金属为Mo和/或W,VIII族金属为Co和/或Ni;
更优选地,活性组分为Ni和Mo,以氧化物质量计,活性组分包括2wt%-8wt%的NiO、10wt%-25wt%的MoO3
4.根据权利要求1-3任一项所述的加氢脱硫催化剂,其中,该催化剂的比表面积为150m2/g-300m2/g,孔体积为0.4cm3/g-0.7cm3/g,催化剂的颗粒粒径为20目-40目。
5.权利要求1-4任一项所述的加氢脱硫催化剂的制备方法,该制备方法包括以下步骤:
将拟薄水铝石与水按1:0.7-1.3的质量比混合,以拟薄水铝石的质量计,加入1wt%-8wt%的助挤剂和2wt%-10wt%的胶溶剂,充分混合后挤条成型,将成型后的拟薄水铝石在避光、通风条件下自然晾干,然后进行干燥和焙烧处理,得到γ-氧化铝载体;
将杂原子的前驱体负载到γ-氧化铝载体上,进行干燥和焙烧处理,得到杂原子改性的γ-氧化铝载体;
采用浸渍法将活性金属组分负载到杂原子改性的γ-氧化铝载体中,进行干燥和焙烧处理,得到该加氢脱硫催化剂。
6.根据权利要求5所述的制备方法,其中,所述助挤剂为田菁粉、聚乙烯醇和淀粉中的一种或几种的组合;
优选地,胶溶剂为硝酸,更优选为质量浓度为65%的硝酸;
优选地,锰的前驱体为高锰酸钾、硝酸锰和硫酸锰中的一种或几种的组合;
优选地,铁的前驱体为硝酸铁、硫酸铁、硫酸亚铁、氯化亚铁、三氧化二铁、氧化亚铁、氢氧化亚铁和三氯化铁中的一种或几种的组合;
优选地,钴的前驱体为硝酸钴和/或碱式碳酸钴;
优选地,镓的前驱体为三氧化二镓、硝酸镓和磷酸镓中的一种或几种的组合;
优选地,铌的前驱体为铌酸、草酸铌铵、五氯化铌、磷酸铌、草酸铌和五氟化铌中的一种或几种的组合;
优选地,铼的前驱体为高铼酸、三氯化铼、五氯化铼、六氯化铼、四氟化铼、五氟化铼、六氟化铼和七氟化铼中的一种或几种的组合;
优选地,镧的前驱体为碳酸镧;
优选地,铈的前驱体为硫酸铈、硝酸铈、醋酸铈中的一种或几种的组合;
优选地,钕的前驱体为磷酸钕、异辛酸钕、新癸酸钕中的一种或几种的组合。
7.根据权利要求5所述的制备方法,其中,制备γ-氧化铝载体时,干燥的温度为80℃-160℃,时间为2h-24h;焙烧处理的温度为400℃-800℃,时间为2h-6h;
优选地,杂原子的前驱体负载到γ-氧化铝载体上后,干燥的温度为100℃-150℃,时间为2h-10h;焙烧处理的温度为400℃-800℃,时间为2h-6h;
优选地,活性金属组分负载到杂原子改性的γ-氧化铝载体后,干燥的温度为100℃-150℃,时间为2h-10h;焙烧处理的温度为400℃-800℃,时间为2h-6h。
8.根据权利要求5所述的制备方法,其中,浸渍采用等体积共浸渍的方式;
优选地,浸渍液为钼酸铵、氨水和硝酸镍的混合溶液;
优选地,浸渍温度为室温,浸渍时间为4h-6h。
9.权利要求1-4任一项所述的加氢脱硫催化剂的应用,该催化剂用于催化石油馏分加氢精制过程,尤其适用于催化高硫含量石油馏分的加氢脱硫反应。
10.根据权利要求9所述的应用,该催化的反应条件为:反应温度200℃-350℃,氢分压2MPa-8MPa,液时空速1h-1-10h-1,氢油体积比60-200:1。
CN202010223211.7A 2020-03-26 2020-03-26 一种加氢脱硫催化剂及其制备方法和应用 Active CN111298800B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010223211.7A CN111298800B (zh) 2020-03-26 2020-03-26 一种加氢脱硫催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010223211.7A CN111298800B (zh) 2020-03-26 2020-03-26 一种加氢脱硫催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111298800A true CN111298800A (zh) 2020-06-19
CN111298800B CN111298800B (zh) 2022-05-06

Family

ID=71162523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010223211.7A Active CN111298800B (zh) 2020-03-26 2020-03-26 一种加氢脱硫催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111298800B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471632A (zh) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 加氢脱硫催化剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861606A (zh) * 2014-03-20 2014-06-18 中国石油天然气集团公司 一种重油加氢脱金属催化剂及其制备方法和应用
CN104437571A (zh) * 2013-09-16 2015-03-25 中国石油化工股份有限公司 一种加氢脱硫催化剂、制备方法及其应用
CN105772109A (zh) * 2016-05-03 2016-07-20 中国石油天然气股份有限公司 加氢脱硫催化剂的载体及制备方法与由其制备的催化剂
CN106552640A (zh) * 2015-09-30 2017-04-05 中国石油化工股份有限公司 重整原料预加氢催化剂及其制备方法
CN107876072A (zh) * 2017-11-10 2018-04-06 中国石油大学(北京) 一种加氢催化剂及其制备方法和应用
CN110404527A (zh) * 2019-02-01 2019-11-05 中国石油大学(北京) 一种加氢脱硫催化剂及其制备方法和应用
CN110773189A (zh) * 2018-07-31 2020-02-11 中国石油化工股份有限公司 一种加氢活性保护催化剂及其制备与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104437571A (zh) * 2013-09-16 2015-03-25 中国石油化工股份有限公司 一种加氢脱硫催化剂、制备方法及其应用
CN103861606A (zh) * 2014-03-20 2014-06-18 中国石油天然气集团公司 一种重油加氢脱金属催化剂及其制备方法和应用
CN106552640A (zh) * 2015-09-30 2017-04-05 中国石油化工股份有限公司 重整原料预加氢催化剂及其制备方法
CN105772109A (zh) * 2016-05-03 2016-07-20 中国石油天然气股份有限公司 加氢脱硫催化剂的载体及制备方法与由其制备的催化剂
CN107876072A (zh) * 2017-11-10 2018-04-06 中国石油大学(北京) 一种加氢催化剂及其制备方法和应用
CN110773189A (zh) * 2018-07-31 2020-02-11 中国石油化工股份有限公司 一种加氢活性保护催化剂及其制备与应用
CN110404527A (zh) * 2019-02-01 2019-11-05 中国石油大学(北京) 一种加氢脱硫催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ACELA LÓPEZ-BENÍTEZ ET.AL: ""Novel NiW hydrodesulfurization catalysts supported on Sol-Gel Mn-Al2O3"", 《JOURNAL OF CATALYSIS》 *
于沛等: ""La对CoMo/γ-Al2O3催化剂选择性加氢脱硫性能的影响"", 《石油炼制与化工》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471632A (zh) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 加氢脱硫催化剂及其制备方法和应用
CN114471632B (zh) * 2020-10-23 2023-07-14 中国石油化工股份有限公司 加氢脱硫催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN111298800B (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
EP2540805A1 (en) Method for preparing hydrorefining catalyst
CN108187709B (zh) 一种深度加氢脱硫催化剂的制备方法及该催化剂的应用
CN105521791B (zh) 硫化型汽油选择性加氢脱硫催化剂的制备方法
CN108067243B (zh) 一种加氢处理催化剂及其制备方法和应用
CN101590433A (zh) 改性氧化铝载体和由该载体制成的加氢催化剂及制备方法
CN108568305A (zh) 一种加氢精制催化剂及其制备方法和应用
CN111298800B (zh) 一种加氢脱硫催化剂及其制备方法和应用
CN109772387B (zh) 一种加氢处理催化剂及其制备方法
CN105582963B (zh) 一种硫化型汽油选择性加氢脱硫催化剂的制备方法
CN109718857B (zh) 加氢精制催化剂及其制备方法和应用以及馏分油的加氢精制方法
JPH11319567A (ja) 水素化脱硫触媒
CN111195525A (zh) 一种渣油加氢脱硫催化剂及其制备方法
CN112717965B (zh) 一种加氢预处理催化剂及其制备方法和应用
CN112657522B (zh) 加氢催化剂及其制备方法和应用
CN109772400B (zh) 一种加氢处理催化剂及其制备方法和应用
CN109718766B (zh) 加氢精制催化剂及其制备方法和应用以及馏分油的加氢精制方法
CN115845866A (zh) 一种加氢精制催化剂制备方法
CN111715232B (zh) 一种负载型加氢催化剂及其制备方法与应用
CN111558377A (zh) 一种加氢精制催化剂及其制备方法与应用
CN106179522B (zh) 一种加氢催化剂的器外预硫化方法
CN115337939B (zh) 硫化态芳烃饱和催化剂及其制备方法、馏分油加氢精制方法
CN111569938A (zh) 一种加氢精制催化剂及其制备方法与应用
CN113019445B (zh) 改性加氢处理催化剂载体、催化剂及其制备方法和应用
CN113262795B (zh) 一种石脑油加氢脱砷和脱硫的催化剂及其制备方法
JP3813201B2 (ja) 炭化水素油の水素化処理触媒およびその活性化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant