CN111263994A - 纳米粒子材料的制造方法及氟离子电池 - Google Patents

纳米粒子材料的制造方法及氟离子电池 Download PDF

Info

Publication number
CN111263994A
CN111263994A CN201880060416.9A CN201880060416A CN111263994A CN 111263994 A CN111263994 A CN 111263994A CN 201880060416 A CN201880060416 A CN 201880060416A CN 111263994 A CN111263994 A CN 111263994A
Authority
CN
China
Prior art keywords
fluoride
battery
metal
nanoparticles
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880060416.9A
Other languages
English (en)
Other versions
CN111263994B (zh
Inventor
莱克·维特
伊尔沙·德穆罕默德
帕拉尼维尔·莫莱扬
苏雷什·库马尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rick Witt
Original Assignee
Ambergon Technology Uk Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ambergon Technology Uk Co Ltd filed Critical Ambergon Technology Uk Co Ltd
Publication of CN111263994A publication Critical patent/CN111263994A/zh
Application granted granted Critical
Publication of CN111263994B publication Critical patent/CN111263994B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • C01F11/22Fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明提供一种制造具有离子导电性的纳米粒子材料作为氟离子电池的电池材料的方法,从而能够通过以下材料处理工艺来克服纳米粒子或纳米粒子隔室的表面、晶界的高电阻,该处理工艺选自:(i)在气溶胶和/或蒸气压气氛下的球磨工艺;(ii)过量合成法;(iii)具有表面稳定和增强导电性的固体或/和凝胶/液体添加剂的球磨;或(iv)功能化该材料以获得包含功能化纳米粒子(GSNP),该功能化纳米粒子(GSNP)石墨烯,纳米管和/或选自炭黑、石墨、Si和/或CFX的其他添加剂的分散体。其中氟化物(EmmFh)、氟化组合物(Em1m1Em2m2 ... Fh1)被合成,其中以一种获得具有增强离子电导率的电池材料的方式,第一金属、准金属或非金属Em或Em1和第二金属、准金属或非金属Em2不同地选自Cu、Pb、Fe、Sn、Zn、Bi、Cd、Co、Cr、Ni、Sb、C、Si、B、P、N、Ge、Ce、Se、Ca、Mg、Li、Na、K、Al、Sr、Ba、La、Sm、Eu、Cs、Gd或Y。

Description

纳米粒子材料的制造方法及氟离子电池
技术领域
本发明涉及电池领域,尤其涉及被认为是已知的锂基电池的替代品的电池。更具体地,本发明涉及用于制造具有离子导电性的纳米粒子材料作为用于氟离子电池的电池材料的方法以及包含该纳米粒子材料的氟离子电池。
技术背景
氟离子电池(FIB)是电化学储能的一种有前途且有趣的替代品。近来,已经报道了关于使用固体电解质,金属氟化物作为正极材料且金属作为负极的FIB的可逆充电和放电的结果。由于其较高的理论能量密度值,氟离子电池构成了锂离子电池和其他电池(例如Zn-O、Li-S、Na-S或Li-0电池)的有趣替代品。FIB可以做的更加安全,甚至具有生物相容性。
然而,FIB中特别关键的组分是电解质,优选地,其应表现出非常高的离子电导率。一方面,使用液体电解质可能会使反应性HF酸(氢氟酸)或甚至不含氟气,从而使电池不稳定。另一方面,当前的固体电解质需要升高温度,并且通过使用稀土元素,其成本相当高。另外,由于电极材料可能遭受低离子电导率的影响,因此在此必须添加电解质,至多40%体积。通常,仅一小层电极而不是相应的块状材料可以参与电化学反应,因此,主要将电流技术限制在薄层电极上。
US 2013/0224594 A1公开了一种电池正极电极组合物,其包含核-壳组合物,每个组合物可包含硫基核和多功能壳。设置硫基核以在电池工作期间与金属离子发生电化学反应,以在电池放电或充电期间以相应的金属硫化物形式存储金属离子,并在电池充电或放电期间从相应的金属硫化物释放金属离子。多功能壳至少部分地包裹硫基核,并且由以下材料形成:(i)对相应的金属硫化物的金属离子基本上可渗透的,及(ii)对电解质溶剂分子和金属多硫化物基本上不可渗透。
US 2006/0019163 A1公开了氟化铜的纳米结构的形成及利用,其包括金属氧化物组合物或纳米组合物;氟化铜结构;和导电材料。纳米结构用作用于电化学电池(例如锂电池)中的活性电极组分材料,其能够在高充电和/或放电速率下表现出高比容量。本发明提供了一种包含氟化铜化合物纳米组合物作为电化学储能电池电极材料的组合物,还描述了具有尺寸在约1nm至约100nm范围内的微晶的组合物,其中,在微晶包括复合在纳米复合物中的氟化物,纳米复合物可以包含纳米粒子(尺寸为1-100 nm),更宏观的粒子尺寸(尺寸>100 nm),或以致密的薄膜(厚度<25000 nm)或厚膜(厚度> 25000 nm)形式存在。
US 2008/0102373 A1公开了一种安全的二次固态电池,其具有高的比能量参数以及大量的充电/放电循环。使用所述电池可获得的技术结果是:高的比能量参数(高达500Wh /kg和600 Wh / dm3)以及出色的安全性,充电/放电循环高达1000甚至更多,并且储能水平高,电池的自放电率低(每年1-3%)。提出了一种固态电池,该固态电池由基于金属或合金的固态负极(AnO)组成,其氟化性导致氟化物具有较高的等压线形成电势。具有低电子传导性的固体氟化物离子导体形式的固体电解质和基于氟化物或具有低等压线形成电位的氟化物固溶体的固体正极(KtFO)。在充电状态下,电池负极为一种金属(或其合金),其选自Li、K、Na、Sr、Ba、Ca Mg、Al、Ce、La或其合金,或选自所列金属的合金。对于金属,其选自Pb、Cu、Bi、Cd、Zn、Co、NΊ、Cr、Sn、Sb、Fe的组。在放电状态下,负极相应地由上述金属的氟化物组成。 US 2014/0178750 A1公开了一种锂/氟化石墨一次电池及其制造方法。该方法包括提供氟化石墨粉末,机械研磨该氟化石墨粉末以获得活性材料,提供包含活性材料和导电碳的混合物以形成正极的一部分,提供包含锂作为负极的一部分的主体,并形成具有正极和负极的电化学电池。
发明目的
因此,本发明的目的是提供一种制造具有离子导电性的纳米粒子材料作为氟离子电池和固态氟离子电池的电池材料的方法,以克服当前现有技术水平的上述问题和缺点。尤其是能够克服纳米粒子或纳米粒子的隔室上的表面、晶界的高电阻。
发明内容
通过独立权利要求的特征,用于制造具有离子导电性的纳米粒子材料作为氟离子电池和固态氟离子电池的电池材料的方法解决了该问题。从属权利要求中列出了可以以单独的方式或以任意组合实现的优选实施例。
本发明集中于新型负极材料的开发,该负极材料在电解质中不包含锂(Li),而包含氟化物(F)作为电荷载体。第一方面,本发明涉及一种用于制造具有离子导电性的纳米粒子材料作为氟离子电池的电池材料的方法,该方法包括提供含氟化合物的步骤,其中所述含氟化合物包括氟以及至少一种金属、准金属或非金属。在此,使氟化物经受气溶胶和/或蒸气压气氛,并在球磨程序中进行处理(由于装有材料粉末和研磨球的容器的快速旋转,通过机械力引起化学反应);和/或通过应用过量合成法来合成含氟化合物,其中,过量合成法包括使用化学计量过量的氟化物前体的化学反应,和/或通过应用至少一种表面稳定和电导率增强固体或/和凝胶/液体添加剂来合成氟化物,由此获得具有增强离子电导率的电池材料。
因此,公开了一种固态电解质材料,其包括具有高离子电导率,也用术语“增强离子电导率”表示。结果,该固态电解质材料适用于在室温及以下的温度下表现出低电阻的电池材料,该电阻低得多,该电阻远小于作为电池内电阻的一个限制因素的kΩ。根据该方法,通过稳定固体纳米材料表面,晶界和/或中间相,来获得固态电解质材料,从而避免关键的内部固化,例如通过纳米结构稳定化。通过应用该方法制造的电池材料能够改善固态氟离子导电性,从而证明其在FIB的室温性能中的适用性。
根据本发明方法的第一优选实施例,可以通过应用气溶胶和/或蒸气压气氛来获得固态电解质材料,其中可以借助一种或多种材料使材料粉末粒子稀释接触,该一种或多种材料具有蒸发或分散的溶剂分子以进行溶剂的表面物理吸附的气体环境,优选极性溶剂(例如H2O)和添加剂,例如KCl,以调节湿度和/或pH),并根据分子式Em1m1Em2m2 ... Fh1,通过氟化物EmmFh{例如Ca的Em}或含氟化合物Em1,Em2等的球磨方式对表面稳定的分子进行重新排序。结果,获得具有稳定的表面层以提供改善的离子迁移率的纳米粒子。如通常使用的,术语“纳米粒子”是指尺寸相对于单晶,晶体簇或多晶簇的尺寸为1nm至100nm。优选地,可以在气溶胶和/或蒸气压气氛中处理氟化物EmmFh+ x,其中x等于或大于0,或含氟化合物Em1,Em2等,并在其中进行球磨程序,以为了获得所需电池材料的增强离子电导率,在合成后,最好对氟化物EmmFh+ x或含氟化合物Em1m1Em2m2 ... Fhi进行固体表面增强添加剂球磨处理,以便进一步提高离子迁移率,以达到所需的纳米粒子电导率。将粉末压缩成致密的材料,特别是使纳米粒子及其周围的相关纳米表面紧密接触,这最好是由于压力机、滚筒、机筒或离心机产生的机械压力形成宏观的材料实体,即纳米尺度的电导率最好将其转移到宏观尺度上。如通常使用的,术语“宏观材料”是指宏观粒度(尺寸> 100 nm),例如粒料。
优选地,首先,金属氟化物可以首先在常压和-10℃至300℃,优选30℃至80℃的温度下,经受气溶胶和/或蒸气压气氛1小时至46小时,优选12小时至24小时的第一时间段,随后在球磨程序中处理1小时至48小时,优选6小时至18小时的第二时间段。
在另一个优选的实施例中,可以通过过量合成在室温及低于室温下获得具有高离子电导率的固态电解质材料,其中术语“过量合成”是指化学反应,其中应用了MemFh+x化学计量过量的氟化物前体,其中Me是Ca、Li、Ba、Al、Pb、Fe、Co、Ce、La、Sm、Eu、Cs、Gd或Y,且其中x大于0,或是复合物,即Me1,Me2等,例如Me1m1Me2m2 ..- F(hi + xi),以及在反应过程中以及在配体之后,特别是通过聚合物、脂肪酸、离子液体或去污剂使表面稳定。特别地,过量合成可能应用过量的氟化物前体,优选为NH4F、NH4 HF2、HF、DMIF-2.3HF(1,3-二甲基咪唑鎓氟化物),EMIF 2.3HF(1-乙基-3-甲基咪唑鎓氟化物),TMAF(氟化四甲基铵)或TBAF(氟化四丁基铵)。对于金属前体(Me1),可以优选使用金属的硝酸盐、氧化物、氢氧化物或氯化物。为了合成组合物,可以另外使用氟化物或氟硼酸盐,特别是NaF、NaBF4、KF或KBF4
在进一步提及的实施例中,氟化物EmmFh或含氟化合物Em1m1Em2m2 ... Fh1的高纳米粒子隔室单晶体电导率,其中Em选自Cu、Pb、Fe、Sn、Zn、Bi、Cd、Co、 Cr、Ni、Sb、C、Si、Ge、Ce、Se、Ca、Mg、Li、Na、K、Al、Sr、Ba、La、Sm、Eu、Cs、Gd或Y,且Em1和Em2不同地选自Cu、Pb、Fe、Sn、Zn、Bi、Cd、Co、Cr、Ni、Sb、C、Si、B、P、N、Ge、Ce、Se、Ca、Mg、Li、Na、K、Al、Sr、Ba、La、Sm、Eu、Cs、Gd,或Y包含例如六氟磷酸盐、四氟硼酸盐,氟化铵、氟化四胺或锍氟化物可优选释放到宏观尺度上,从而克服纳米粒子隔室的表面,晶界处的高电阻,特别是通过应用固态合成,尤其是通过应用高能球研磨程序,其中可以使用稳定的固体和凝胶和/或液体添加剂,其具有降低的干扰单晶结构的能力。在本文中,在一个优选的实施例中,添加剂可以包含溶剂和/或表示为“导电性增强固体或/和/或凝胶和/或液体添加剂”,其优选选自碳酸盐、醚、醇、芳族化合物、硫化合物、磷酸酯化合物或离子液体中的至少一种,尤其是碳酸亚乙酯、二甲基碳酸盐、碳酸乙基甲酯、THF(四氢呋喃)、NMP(N-甲基-2-吡咯烷酮)、DMF(N,N-二甲基甲酰胺)、EG(乙二醇)或DEG(二乙烯-gl ycol);而且还有熔融盐,例如DMIF-2.3HF(1,3-dl-甲基咪唑鎓氟化物),EMIF'2.3HF(1-乙基-3-氟化二甲基咪唑鎓),TMAF(四甲基氟化铵)或TBAF(四丁基氟化铵)。
作为前述实施例的结果,特别地,由此可以形成整体的宏观3D固体框架,其可以稳定化并与纳米表面相互作用,例如与金属氟化物相互作用。
在另一个优选的实施例中,可以使纳米材料,即纳米粒子的粉末接触,并与石墨烯,纳米管和/或选自炭黑、石墨、Si和/或CFX,球状的其他添加剂的分散体混合,研磨,其中可以蒸发剩余的溶剂,并且优选地,再次球磨以获得具有高导电性和活性纳米表面的纳米粒子,其可以被添加剂和石墨烯层和/或纳米管层覆盖并交联以获得官能化的纳米粒子,该官能化的纳米粒子具有石墨烯层或/和纳米管层的表面,其可以缩写为“GSNP”。
官能化的纳米粒子可以用作另一类型的电池材料,其可以在一个单元中具有离子和导电实体,此外还可以用作负极和/或正极材料的纳米容器。如本文所用的,术语“纳米容器”是指具有纳米级尺寸,即尺寸<100nm的材料的排列,其适于提供负极和/或正极材料。因此,电池材料被合成为功能化的纳米粒子,其包括石墨烯、纳米管和/或选自炭黑、石墨、Si和/或CFx的其他添加剂的分散体。
在另一方面,本发明涉及一种电池,其具有包含负极材料的负极、包含正极材料的正极和提供负极材料与正极材料之间连接的电解质材料。在特定的实施例中,电池可以是小到包括三个独立的纳米粒子,即第一功能化纳米粒子(GSNP),用作负极材料;第二功能化纳米粒子(GSNP),用作正极材料;以及没有提及的功能化纳米粒子,用作纳米粒子。可替代地,电解质材料包括选自纳米管的电池材料和/或选自炭黑、石墨、Si和/或CFx的添加剂。但是,在一个特别优选的实施例中,电池可以包括大型电池包装,该电池包装具有多个上述纳米粒子作为各自的材料。
附图说明
下面参考附图更详细地描述本发明,其中
图1示出了通过检查CaF2上的湿度,由于蒸气压和/或球磨引起的表面稳定化过程。
图2示出了湿润CaF2球磨的表面稳定的纳米粒子的SEM图像和示意图。
图3示出了一种阻抗光谱测量法,以证明低离子电阻:在室温下10-4 S / cm的湿润CaF2纳米材料(在KCl下24h湿度和18h球磨),以及19F-NMR光谱,其表明表面影响存在,没有发现HF(氟化氢);
图4示出了过量合成的CaF2纳米粒子的TEM图像和所述CaF2纳米粒子的相应草图。
图5示出了过量合成的CaF2纳米粒子的1H-NMR谱图,显示了H3O+作为F-的反离子而不是OH-(还存在表面稳定的DEG和溶剂);
图6示出了阻抗谱测量,以证明过量合成的CaF2纳米粒子的低离子电阻(即高电导率):其在40℃,60℃和19F光谱下为10-5 S / cm,表明表面影响增强。没有可见的HF(氟化氢);
图7示出了具有电和离子导电表面(石墨烯层作为第一层),高离子导电界面(第二层)和核心存储器的示例性电极III,其中第一层和第二层形成纳米粒子的壳层。另外,图7示意性说明MeFn+x-GSNPs的合成;
图8示出了根据本发明的电化学电池的示例性实施方式。
图9示出了根据本发明的包括不同成分的电池芯的照片。
图10示出了具有已知电极材料(Mg / CoF2)但具有改进的固体电解质材料的图,该固体电解质材料在室温下具有固态FIB的性能和特性;
图11示出了根据本发明的电池装置的示例性实施例IVa,其中电池装置仅包含功能化纳米材料,该纳米材料能够主要避免诸如插层材料或可减少石墨和粘合剂的混合物的组合物,其中电极纳米粒子的表面本身是导电的;
图12示出了根据本发明的电池装置的另一实施方式IVb的示例性实施例,其中电池装置仅包含功能化纳米材料,该纳米材料能够主要避免诸如插层材料或可减少石墨和粘合剂的混合物的组合物,其中电极纳米粒子的表面本身是导电的,
图13示出了PbF2 / SnF2复合材料的IS测量结果,作为25℃下10-3 S / cm的低离子电阻(即高电导率)和19F-NMR光谱的证据,表明此处存在不同的相和表面的影响。
具体实施方式
为便于电池制备和材料处理,在放电状态下以铜、铅、铁、锡、锌、铋、镉、钴、铬、镍、锑、碳、硅或它们的复合材料或合金作为正极材料制备了电池。CeF3、CeF2、CaF2、MgF2、LiF、NaF、KF、AlF3、SrF2、BaF2、LaF3、SmF3或其复合材料和/或固溶体(例如Na3AlF6或Li3AlF6)作为负极材料,此外,以包含CuF2、PbF2、FeF2、FeF3、SnF2、ZnF2、BiF3、CdF2、CoFx、CrFx、NiF2、SbF2、CFx、SiFx或其复合材料和/或固溶体(例如K2NiF4、Na2SiF6或Na3FeF6)作为正极材料,在充电状态下制备电池,而Ce、Ca、Mg、Li、Na、K、Al、Sr、Ba、La、Sm或其复合材料或合金作为负极材料。
通过详细的异位X射线衍射(XRD),X射线光电子能谱(XPS)实验,阻抗谱(IS),电池测试设备(例如电池循环仪和高精度功率计)和核磁共振波谱(NMR),检查可能的充电和放电机理。尤其是NMR有助于分析晶体,但也有助于分析非晶态。稳定的高流动性纳米材料表面,晶界和/或中间相可以通过例如19F-NMR进行鉴定,相关的光谱峰大多小于整体峰,且各向同性化学位移共振频率约为-115至-140ppm。如果强大的附加效果,例如相当大的材料磁化率或顺磁位移,这些影响必须额外考虑在内。
MgF2、PbF2、SnF2、BiF2、CoF2获得了出色的循环性能,这些也以半放电状态制备(例如,MgF2与Mg混合),再加上高性能碳材料和微栅电极连接器,从而形成可以在不同反应物之间提供更好界面接触的复合材料电极内的相和表面。结果表明,除了仔细选择电极活性材料之外,优化电极的结构也是有利的。
电解质的优选实施方式
示例I:湿润的及球磨过的CaF2纳米粒子。见图1、图2和图3。
将纯CaF2粉末置于密闭腔室中,,优选地,在49至51℃的蒸气压条件下(例如,纯水在25ºC时为3.2kPa)置于封闭的干燥器内放置24小时,该干燥器包括溶剂池和样品架,以获取湿润的CaF2材料。之后,将所述混合物球磨18小时。这两个阶段的过程可以重复几次。结果,获得了湿润的CaF2球磨材料,其离子电导率提高了几个数量级。CaF2球磨表面稳定的纳米粒子如图2所示,其中纳米粒子包括被高离子导电率表面围绕的核。图3显示了在室温下证明CaF2纳米材料的低离子电阻的阻抗谱(IS)测量结果。根据相应获得的NMR光谱,未发现氟化氢。
示例II: MeF(h + x)纳米粒子的合成
表面介导的合成,使用过量的假定尺寸为10nm的纳米粒子的氟化物前体(NH4F),并且表面包括稳定的配体:
Figure 591152DEST_PATH_IMAGE001
示例IIa是指由于DEG(二甘醇),而使用多元醇配体稳定化来合成CaF(2 + x)纳米粒子。即Me为Ca,则
Figure 242714DEST_PATH_IMAGE002
在图4a中显示了CaF2纳米粒子的示意性结构,该CaF2纳米粒子包括被氟化钙与可移动的F-剩余物相间包围的固态核,该可移动的F- 剩余物由DEG / H3O +表面层稳定。图5和图6分别进一步显示了NMR和阻抗谱测量的结果。
示例III:MeF(h+x)-GSNPs的合成
包括特殊石墨烯表面的金属纳米粒子的表面介导的过量合成,以便获得也可以称为“石墨烯表面纳米粒子”(缩写为GSNPs)的纳米粒子:
Figure 193090DEST_PATH_IMAGE003
MeF(h+x)-纳米粒子+石墨烯分散体和/或纳米管——→MeF(h+x)-GSNPs。
GSNP的示意结构如图7所示。
电池装置
在图8中,根据本发明的电池实施例由如上所述的材料制成。
图9提供了粒状固体氟化物离子电池(FIB)的该实施例的照片。
在图10中,示出了包含已知电极但在室温下具有改进的固体电解质材料的固体氟化物离子电池的性能,特别是在循环、电池容量和库仑效率方面。
图11示出了电池装置的实施例IVa,其中电池装置仅包括如上所述的功能化的纳米材料,因此,能够主要避免诸如插层材料或包含石墨和粘合剂的混合物的组合物。电极纳米粒子的表面本身是导电的。
在该实施例中,负极材料和正极材料均包含具有石墨烯分散体的官能化纳米粒子(GSNP),其中电解质材料是具有增强离子电导率的材料,特别是包括如上所述的未氟化的金属氟化物纳米粒子。
图12示出了根据本发明的电池装置的另一示例性实施方式IVb。在此,电池装置仅包括如上所述的功能化的纳米材料。在该特定实施方式中,电池装置的负极材料和正极材料包括具有石墨烯分散体的官能化纳米粒子(GSNP),其中电解质材料包括纳米管和/或选自炭黑、石墨、Si和/或CFx的添加剂。
因此,应用根据本发明的这些电极和电解质材料,可以提供具有更高适用性和安全性的FIB。相应的电池装置被认为是本质上具有2D高迁移率纳米表面的3D固态装置。在图13中,给出了PbF2 / SnF2复合材料的阻抗结果和NMR光谱,证明了在25℃时电导率为10-3S/ cm,这是由于纳米粒子(例如纳米微晶)的不同相之间的相互作用以及相应的高迁移率F-表面影响。

Claims (12)

1.一种制造纳米粒子材料的方法,该纳米粒子材料具有离子导电性,以作为氟离子电池的电池材料,所述方法包括以下步骤:提供含氟化合物,所述含氟化合物包括氟和至少一种金属,准金属或非金属,
其中所述含氟化合物经受气溶胶和/或蒸气压气氛,并以球磨法进行处理;和/或
其中所述氟化物通过过量合成来合成,其中所述过量合成包括使用化学计量过量的氟化物前体的化学反应,和/或其中所述氟化物通过应用至少一种表面稳定和电导率增强的固体或/和凝胶/液体添加剂来合成,
从而获得具有增加离子电导率的电池材料。
2.根据权利要求1所述的方法,其中所述含氟化合物的分子式为EmmFh + x,通过气溶胶和/或蒸气压气氛以及通过球磨程序处理;其中指数m,h和x与所述含氟化合物的化学式中的原子数有关,m乘以元素Em以及(h + x)乘以氟F;其中Em是选自Cu、Pb、Fe、Sn、Zn、Bi、Cd、Co、Cr、Ni、Sb、C、Si、Ge、Ce、Se、Ca、Mg、Li、Na、K、Al、Sr、Ba、La或Sm的金属、准金属或非金属,其中x等于或大于0。
3.根据权利要求2所述的方法,其中,所述金属氟化物为CaF2,且蒸气压源为具有KCl添加剂的H2O,KCl适于调节湿度和/或pH。
4.根据权利要求1所述的方法,其中金属含氟组合物的分子式为Em1m1Em2m2 ...Fhi + xi,通过气溶胶和/或蒸气压气氛以及通过球磨程序处理;其中指数m1、m2、hi和xi与所述含氟化合物的化学式中的原子数有关,m1乘以元素Em1,m2乘以元素Em2,...和(h + x)乘以氟F,其包括至少两个氟化物,其中至少两个元素Em1和Em2不同地选自Cu、Pb、Fe、Sn、 Zn、Bi、Cd、Co、Cr、Ni、Sb、C、Si、Ge、Ce、Se、Ca、Mg、Li、Na、K、Al、Sr、Ba、La或Sm,其中x1等于或大于0。
5.根据权利要求2至4所述的方法,其中,首先使所述金属氟化物在-10℃至300℃的温度下经受气溶胶和/或蒸气压气氛达1小时到48小时的第一时间段,然后在球磨程序中进行1小时至48小时第二时间段处理。
6.根据权利要求1、2、3或5所述的方法,其中金属氟化物的分子式为EmmFh + x,其中Em是选自Ca、Li、Ba、Al、Pb、Fe、Sn、Co、Ce、La、Sm、Eu、Cs、Gd或V的金属,其中x等于或大于0,是通过过量合成与化学计量过量的氟化物前体合成,氟化物前体选自NH4F、NH4HF2、HF、DMIF-2.3HF(1,3 -氟化二甲基咪唑鎓)、EMIF-2.3HF(1-乙基-3-氟化甲基咪唑鎓)、TMAF(氟化四甲基铵)或TBAF(氟化四丁基铵)。
7.权利要求1、4或5的方法,其中金属含氟化合物的分子式为Em1m1Em2m2 ... Fhi + xi,通过化学计量过量的氟化物前体的过量合成来合成,其包含至少两种金属氟化物,其中至少两种金属Em1和Em2不同地选自Ca、Na、K、Li、Ba、Al、Pb、Fe、Sn、Co、Ce、La、Sm、Eu、Cs、Gd或Y,其中x1等于或大于0,其中氟化物前体选自NH4F、NH4HF2、HF、DMIF-2.3HF(1,3-氟化二甲基-咪唑鎓)、EMIF-2.3HF(1-乙基-3-氟化甲基咪唑鎓)、TMAF(氟化四甲基铵)或TBAF(氟化四丁基铵)。
8.根据权利要求1、2、3、5或6所述的方法,其中氟化物(EmmFh)的固体合成是通过使用球磨程序,在应用至少一种表面稳定和导电性增强的固体或/和凝胶和/或液体添加剂的情况下进行的,这些添加剂适用于将纳米粒子和/或包含纳米粒子的复合材料的离子导电性转移到宏观材料上;其中Em是选自Cu、Pb、Fe、Sn、Zn、Bi、Cd、Co、Cr、Ni、Sb、C、Si、Ge、Ce、Se、Ca、Mg、Li、Na、K、Al、Sr、Ba、La、Sm、Eu、Cs、Gd或Y。
9.根据权利要求1、4、5或7所述的方法,其中含氟化合物(Em1m1Em2m2 ..,Fh1)的固体合成是通过使用球磨程序,在应用至少一种表面稳定和导电性增强的固体或/和凝胶和/或液体添加剂的情况下进行的,这些添加剂适用于将纳米粒子和/或包含纳米粒子的复合材料的离子导电性转移到宏观材料上;其中至少一种金属,准金属或非金属Em1及Em2是不同选自Cu、Pb、Fe、Sn、Zn、Bi、Cd、Co、Cr、Ni、Sb、C、Si、Ge、Ce、Se、Ca、Mg、Li、Na、K、Al、Sr、Ba、La、Sm、Eu、Cs、Gd或Y。
10.根据权利要求4、7或9中任一项所述的方法,其中,所述Em1选自Ca、Ba或Pb,以及其中Em2选自Sn或Sm。
11.根据前述权利要求中任一项所述的方法,其中,通过石墨烯,纳米管和/或选自炭黑、石墨,Si和/或CFx的其他添加剂的分散体进一步处理具有增强离子电导率的电池材料,由此获得包括具有官能化的石墨烯或/和纳米管表面的纳米粒子的电池材料。
12.一种固态氟离子电池(FIB),其包括负极材料、正极材料和电解质材料,其中所述负极材料包括根据权利要求11所述的电池材料,其中所述正极材料包括根据权利要求11所述的电池材料,其中所述电解质材料包括根据权利要求1至10中任一项所述的电池材料,或者其中所述电解质材料包括选自纳米管和/或添加剂的电池材料,该添加剂选自炭黑、石墨、Si和/或CFx
CN201880060416.9A 2017-09-01 2018-08-31 纳米粒子材料的制造方法及氟离子电池 Active CN111263994B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EEP201700032 2017-09-01
EEP201700032 2017-09-01
PCT/EE2018/000002 WO2019042518A1 (en) 2017-09-01 2018-08-31 METHOD FOR MANUFACTURING NANOPARTICULAR MATERIAL AND FLUORIDE ION BATTERY

Publications (2)

Publication Number Publication Date
CN111263994A true CN111263994A (zh) 2020-06-09
CN111263994B CN111263994B (zh) 2024-03-01

Family

ID=65524956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880060416.9A Active CN111263994B (zh) 2017-09-01 2018-08-31 纳米粒子材料的制造方法及氟离子电池

Country Status (12)

Country Link
US (1) US11479473B2 (zh)
EP (1) EP3676897A1 (zh)
JP (1) JP7399858B2 (zh)
KR (1) KR102628721B1 (zh)
CN (1) CN111263994B (zh)
BR (1) BR112020004137A2 (zh)
CA (1) CA3076004A1 (zh)
MX (1) MX2020002211A (zh)
PH (1) PH12020550194A1 (zh)
RU (1) RU2764283C2 (zh)
WO (1) WO2019042518A1 (zh)
ZA (1) ZA202002113B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112374525A (zh) * 2020-11-12 2021-02-19 西南大学 一种固态电解质材料、固态电解质层及其制备方法
CN115020786A (zh) * 2021-03-03 2022-09-06 本田技研工业株式会社 氟化物离子二次电池
US11996516B2 (en) 2021-02-26 2024-05-28 Honda Motor Co., Ltd Anode layer and fluoride ion secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018381B (zh) * 2019-05-28 2023-12-15 丰田自动车株式会社 活性物质和氟离子电池
CN113410466B (zh) * 2021-06-17 2022-07-12 贵州梅岭电源有限公司 一种氟化碳修饰的三氟化铁正极材料的制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477374A (en) * 1981-10-03 1984-10-16 Central Glass Co., Ltd. Ternary intercalation compound of a graphite with a metal fluoride and fluorine, a process for producing the same, and an electrically conductive material comprising the ternary intercalation compound
US5320917A (en) * 1991-01-14 1994-06-14 Matsushita Electric Industrial Co., Ltd. Fluoride ionic conductor
JPH10270053A (ja) * 1997-03-27 1998-10-09 Toyota Central Res & Dev Lab Inc ガス反応系あるいはガス生成系電池用電極の製造方法
US5871864A (en) * 1995-10-30 1999-02-16 Mitsubishi Chemical Corporation Lithium secondary cells and methods for preparing active materials for negative electrodes
JP2005113361A (ja) * 2003-08-26 2005-04-28 Nikon Corp フッ素化アモルファスナノ炭素繊維およびその製造方法、フッ素化アモルファスナノ炭素繊維からなる水素吸蔵材料、水素貯蔵装置および燃料電池システム
US20060019163A1 (en) * 2002-10-01 2006-01-26 Rutgers, The State University Of New Jersey Copper fluoride based nanocomposites as electrode materials
US20070054170A1 (en) * 2005-09-02 2007-03-08 Isenberg Arnold O Oxygen ion conductors for electrochemical cells
CN101337999A (zh) * 2007-07-02 2009-01-07 日本高度纸工业株式会社 高离子传导性固体电解质及其制法和使用其的电化学系统
US20100006449A1 (en) * 2008-07-10 2010-01-14 Permelec Electrode Ltd. Method of electrolytically synthesizing nitrogen trifluoride
US20110111298A1 (en) * 2009-11-11 2011-05-12 Lopez Herman A Coated positive electrode materials for lithium ion batteries
WO2012118446A1 (en) * 2011-03-02 2012-09-07 Nanyang Technological University An electrode material and a method of generating the electrode material
CN103563154A (zh) * 2010-12-22 2014-02-05 康图尔能量系统有限公司 氟离子电池复合物
EP3069401A1 (en) * 2013-11-15 2016-09-21 The Regents of the University of California Electrochemical devices comprising compressed gas solvent electrolytes
CN106063004A (zh) * 2013-11-29 2016-10-26 新罗纳米技术有限公司 金属和金属离子电池的纳米多孔导电骨架基体中的氟化物
KR20160144832A (ko) * 2015-06-09 2016-12-19 삼성전자주식회사 음극 활물질 복합체, 상기 음극 활물질 복합체를 포함하는 음극, 상기 음극을 포함하는 리튬 이차전지, 및 상기 음극 활물질 복합체의 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2559040B2 (ja) * 1987-07-24 1996-11-27 日本電信電話株式会社 金属フッ化物の製造方法
EP0434222A1 (en) * 1989-11-22 1991-06-26 Teledyne Industries Inc Ultra high purity metal fluorides and their preparation
RU2187178C2 (ru) * 1999-10-05 2002-08-10 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Твердотельный химический источник тока
RU2259616C1 (ru) * 2004-08-17 2005-08-27 Общество с ограниченной ответственностью "Омега-Холдинг" Отрицательный электрод литий-ионного аккумулятора
RU2295178C2 (ru) * 2005-04-21 2007-03-10 Общество с ограниченной ответственностью "Высокоэнергетические батарейные системы" (ООО "ВЭБС") Твердотельный вторичный источник тока
US8932764B2 (en) 2012-02-28 2015-01-13 Sila Nanotechnologies, Inc. Core-shell composites for sulfur-based cathodes in metal-ion batteries
JP2014043385A (ja) 2012-08-28 2014-03-13 Honda Motor Co Ltd FeF3の製造方法
EP2747177B1 (en) 2012-12-21 2017-07-12 Karlsruher Institut für Technologie Lithium/graphite fluoride primary battery and method for its manufacturing
JP6355488B2 (ja) 2014-09-01 2018-07-11 積水化学工業株式会社 ハロゲン二次電池
JP6423328B2 (ja) * 2015-08-31 2018-11-14 トヨタ自動車株式会社 フッ化物イオン電池

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477374A (en) * 1981-10-03 1984-10-16 Central Glass Co., Ltd. Ternary intercalation compound of a graphite with a metal fluoride and fluorine, a process for producing the same, and an electrically conductive material comprising the ternary intercalation compound
US5320917A (en) * 1991-01-14 1994-06-14 Matsushita Electric Industrial Co., Ltd. Fluoride ionic conductor
US5871864A (en) * 1995-10-30 1999-02-16 Mitsubishi Chemical Corporation Lithium secondary cells and methods for preparing active materials for negative electrodes
JPH10270053A (ja) * 1997-03-27 1998-10-09 Toyota Central Res & Dev Lab Inc ガス反応系あるいはガス生成系電池用電極の製造方法
US20060019163A1 (en) * 2002-10-01 2006-01-26 Rutgers, The State University Of New Jersey Copper fluoride based nanocomposites as electrode materials
JP2005113361A (ja) * 2003-08-26 2005-04-28 Nikon Corp フッ素化アモルファスナノ炭素繊維およびその製造方法、フッ素化アモルファスナノ炭素繊維からなる水素吸蔵材料、水素貯蔵装置および燃料電池システム
US20070054170A1 (en) * 2005-09-02 2007-03-08 Isenberg Arnold O Oxygen ion conductors for electrochemical cells
CN101337999A (zh) * 2007-07-02 2009-01-07 日本高度纸工业株式会社 高离子传导性固体电解质及其制法和使用其的电化学系统
US20100006449A1 (en) * 2008-07-10 2010-01-14 Permelec Electrode Ltd. Method of electrolytically synthesizing nitrogen trifluoride
US20110111298A1 (en) * 2009-11-11 2011-05-12 Lopez Herman A Coated positive electrode materials for lithium ion batteries
CN103563154A (zh) * 2010-12-22 2014-02-05 康图尔能量系统有限公司 氟离子电池复合物
WO2012118446A1 (en) * 2011-03-02 2012-09-07 Nanyang Technological University An electrode material and a method of generating the electrode material
EP3069401A1 (en) * 2013-11-15 2016-09-21 The Regents of the University of California Electrochemical devices comprising compressed gas solvent electrolytes
CN106063004A (zh) * 2013-11-29 2016-10-26 新罗纳米技术有限公司 金属和金属离子电池的纳米多孔导电骨架基体中的氟化物
KR20160144832A (ko) * 2015-06-09 2016-12-19 삼성전자주식회사 음극 활물질 복합체, 상기 음극 활물질 복합체를 포함하는 음극, 상기 음극을 포함하는 리튬 이차전지, 및 상기 음극 활물질 복합체의 제조방법

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DUC THO THIEU,ET AL.: ""CuF2 as Reversible Cathode for Fluoride Ion Batteries"", 《ADVANCE FUNCTION MATERIALS》 *
DUC THO THIEU,ET AL.: ""CuF2 as Reversible Cathode for Fluoride Ion Batteries"", 《ADVANCE FUNCTION MATERIALS》, vol. 27, no. 31, 4 May 2017 (2017-05-04), pages 1 - 11, XP072413900, DOI: 10.1002/adfm.201701051 *
YURIA SAITO,ET AL.: ""Ionic Conductivity Enhancement of the Fluoride Conductor CaF2 by Grain Boundary Activation Using Lewis Acids"", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 *
YURIA SAITO,ET AL.: ""Ionic Conductivity Enhancement of the Fluoride Conductor CaF2 by Grain Boundary Activation Using Lewis Acids"", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》, vol. 142, no. 9, 30 September 1995 (1995-09-30), pages 3078 - 3083 *
马世昌主编: "《化学物质辞典》", 30 April 1999, 西安:陕西科学技术出版社, pages: 126 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112374525A (zh) * 2020-11-12 2021-02-19 西南大学 一种固态电解质材料、固态电解质层及其制备方法
US11996516B2 (en) 2021-02-26 2024-05-28 Honda Motor Co., Ltd Anode layer and fluoride ion secondary battery
CN115020786A (zh) * 2021-03-03 2022-09-06 本田技研工业株式会社 氟化物离子二次电池

Also Published As

Publication number Publication date
RU2020112749A (ru) 2021-10-04
BR112020004137A2 (pt) 2020-10-06
JP2020534666A (ja) 2020-11-26
RU2020112749A3 (zh) 2021-12-07
US11479473B2 (en) 2022-10-25
JP7399858B2 (ja) 2023-12-18
KR20200066303A (ko) 2020-06-09
ZA202002113B (en) 2023-05-31
KR102628721B1 (ko) 2024-01-23
RU2764283C2 (ru) 2022-01-17
EP3676897A1 (en) 2020-07-08
WO2019042518A1 (en) 2019-03-07
MX2020002211A (es) 2020-11-24
CN111263994B (zh) 2024-03-01
PH12020550194A1 (en) 2021-03-01
US20210070626A1 (en) 2021-03-11
CA3076004A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
CN111263994B (zh) 纳米粒子材料的制造方法及氟离子电池
Naguib et al. Electrochemical performance of MXenes as K-ion battery anodes
Liu et al. Excellent cycle performance of Co-doped FeF 3/C nanocomposite cathode material for lithium-ion batteries
CN103125044B (zh) 硫化物固体电解质材料、阴极体和锂固态电池
Chen et al. A study of the superior electrochemical performance of 3 nm SnO 2 nanoparticles supported by graphene
US20170271647A1 (en) High energy density li-ion battery electrode materials and cells
CN102326283B (zh) 锂离子二次电池用碳材料
Guo et al. Electrochemical characterization of polyaniline–LiV3O8 nanocomposite cathode material for lithium ion batteries
Asif et al. Uncovering electrochemistries of rechargeable magnesium-ion batteries at low and high temperatures
Subramanian et al. Synthesis, air stability and electrochemical investigation of lithium superionic bromine substituted argyrodite (Li6-xPS5-xCl1. 0Brx) for all-solid-state lithium batteries
JP2019510716A (ja) 固定化セレン、その製造方法、及び、二次電池における固定化セレンの使用
Gao et al. Improving Li reversibility in Li metal batteries through uniform dispersion of Ag nanoparticles on graphene
Hawkins et al. Vertically oriented TiS 2− x nanobelt arrays as binder-and carbon-free intercalation electrodes for Li-and Na-based energy storage devices
JP2002251992A (ja) 非水溶媒二次電池用電極材料、電極および二次電池
Loghavi et al. Preparation and characteristics of graphene/Y2O3/LiNi0. 8Co0. 15Al0. 05O2 composite for the cathode of lithium-ion battery
Wang et al. Enhancing the rate performance of high-capacity LiNi0. 8Co0. 15Al0. 05O2 cathode materials by using Ti4O7 as a conductive additive
Sun et al. Synthesis and thermodynamic investigation of MnO nanoparticle anchored N-doped porous carbon as the anode for Li-ion and Na-ion batteries
CN113544878A (zh) 卤素嵌入石墨电极的可充电锂离子电池
Zeng et al. Micro-sized FeS2@ FeSO4 core-shell composite for advanced lithium storage
Lin et al. Synchronous synthesis of a Si/Cu/C ternary nano-composite as an anode for Li ion batteries
Ji et al. Mechanochemical synthesis, microstructure and electrochemical properties of solid electrolytes with stabilized fluorite-type structure in the PbF2-SrF2-KF system for solid-state fluoride-ion batteries
Cai et al. A scalable in situ surfactant-free synthesis of a uniform MnO/graphene composite for highly reversible lithium storage
WO2012105799A2 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
Fayed et al. Exploring the electrochemical properties of Cu-substituted Li2CoTi3O8 as anode material for lithium-ion batteries
Chen et al. Synthesis and electrochemical properties of calcium cobaltate as novel anode material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20231214

Address after: 10 Hockenheim Street, Wechhausen, Nessertal, Germany, 99869

Applicant after: Rick Witt

Address before: Unit A, Woodland House, Three Mile Monument, Trurow Commercial Park, Cornwall, UK, TR4 9NH

Applicant before: Ambergon Technology (UK) Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant