CN111258333B - 大长径比掠海飞行器复杂海况下的定高路径跟踪方法 - Google Patents

大长径比掠海飞行器复杂海况下的定高路径跟踪方法 Download PDF

Info

Publication number
CN111258333B
CN111258333B CN202010089348.8A CN202010089348A CN111258333B CN 111258333 B CN111258333 B CN 111258333B CN 202010089348 A CN202010089348 A CN 202010089348A CN 111258333 B CN111258333 B CN 111258333B
Authority
CN
China
Prior art keywords
aircraft
diameter ratio
tracking
large length
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010089348.8A
Other languages
English (en)
Other versions
CN111258333A (zh
Inventor
张丹
刘宇
李孝伟
陈希
彭艳
毛科锋
蒲华燕
罗均
谢少荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202010089348.8A priority Critical patent/CN111258333B/zh
Publication of CN111258333A publication Critical patent/CN111258333A/zh
Application granted granted Critical
Publication of CN111258333B publication Critical patent/CN111258333B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/12Target-seeking control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开一种大长径比掠海飞行器复杂海况下的定高路径跟踪方法,其是一种结合固定时间控制器、任意阶滑模微分观测器与超螺旋干扰观测器的控制方法,具体包括以下步骤:根据大长径比飞行器的物理特性建立其动力学方程,同时做适当的系统重构以简化模型;应用固定时间控制器调整参数;通过超螺旋滑模观测器估计干扰;假定跟踪误差可直接获取,且导数未知,利用任意阶滑模微分观测器来获取跟踪误差的导数信息;线性化大长径比飞行器动力系统并设定飞行器低空飞行的指定高度路径;导出跟踪误差数据及图像并与PID控制系统跟踪结果对比,得出结论。本发明可有效实现大长径比飞行器定高型路径跟踪问题的快速收敛同时保持较高的跟踪精度。

Description

大长径比掠海飞行器复杂海况下的定高路径跟踪方法
技术领域
本发明提出一种大长径比掠海飞行器复杂海况下的定高路径跟踪方法。
背景技术
大长径比飞行器作为一种高精度远程运载工具,凭借重量轻、对发射平台要求低及其超强的低空飞行能力被高频使用。10m-30m海面低空区域是大长径比飞行器主要活动空间,在这个空间尺度内,海浪的运动和风场存在强耦合的非线性影响关系,使得飞行效能受海浪及低空风切变等多重环境因素严重制约。根据海况的分级原理,即由风兴浪,风力对大长径比飞行器水平面的运动产生干扰,且同时在水面上兴起海浪,由于大长径比飞行器测高传感器(如雷达)坐标系的局限性,其高度测量基准变动,使得掠海高度控制产生波动,高海况扰动下控制系统甚至多有失效情况,致使大长径比飞行器的掠海飞行任务执行效果大打折扣,同时其气动特性伴有剧烈变化,从而导致大长径比飞行器掠海飞行控制问题变得极为复杂。
大长径比飞行器的飞行速度多处于亚音速或跨音速区段,如何在动力系统气动力参数摄动且飞行器高速飞行的条件下完成稳定高度的掠海低空安全飞行,是大长径比飞行器定高路径跟踪控制设计的难点之一,该难点对控制方法的收敛时间提出了较高的要求,故有限时间及更佳的收敛条件成为亚音速或跨音速飞行器跟踪控制的关键内容。此外,由于海面上空环境复杂,目前尚无充足细致的研究建模内容验证大长径比飞行器在各级海况下的控制器执行效果。
发明内容
为解决以上现有技术存在的问题,本发明提出一种大长径比掠海飞行器复杂海况下的定高路径跟踪方法。
本发明可通过以下技术方案予以解决:
一种大长径比掠海飞行器复杂海况下的定高路径跟踪方法,其是一种结合固定时间控制器、任意阶滑模微分观测器与超螺旋干扰观测器的控制方法,具体包括以下步骤:
1)根据大长径比飞行器的物理特性建立其动力学方程,同时进行系统重构以简化模型;
2)应用固定时间控制器并调整参数;
3)通过超螺旋滑模观测器估计干扰;
4)假定跟踪误差可直接获取,且导数未知,利用任意阶滑模微分观测器来获取跟踪误差的导数信息;
5)线性化大长径比飞行器动力系统并设定飞行器低空飞行的指定高度路径;
6)导出步骤5)中的跟踪误差数据及图像并与PID控制系统跟踪结果对比,得出结论。
所述步骤1)为:
首先,假设弹体的质量为常数,针对大长径比飞行器垂直面上的运动特性建立其纵向动力学方程
Figure GDA0002838364730000021
Figure GDA0002838364730000022
Figure GDA0002838364730000023
Figure GDA0002838364730000024
Figure GDA0002838364730000025
Figure GDA0002838364730000026
Figure GDA0002838364730000027
其中,x飞行器飞行的前向距离,h为飞行器飞行的高度,υ为飞行器飞行的前向速度,θ为飞行器的俯仰角,
Figure GDA0002838364730000028
为速度矢量υ与水平面间的夹角,q为飞行器俯仰角速度,α为飞行器飞行的攻角,P为驱动器所提供的推力,X为飞行器飞行时所受的气动阻力,Y为飞行器飞行时所受的气动升力,m为飞行器质量,g为重力加速度,M为飞行器关于z轴的俯仰力矩,Jz为飞行器关于z轴转动惯量,相关的控制量,包括驱动器的驱动力燃料比冲φ及控制飞行器俯仰活动的翼面舵角δ,均囊括在阻力X(α,δ)、升力Y(α,δ)、俯仰力矩M(P,α,δ)及推力P(φ,α)的表达式中;
然后通过对大长径比飞行器动力系统多次求导并整合非线性未知项来完成系统重构,以避免复杂气动力及推力项的构建与求解,将飞行高度h、俯仰角θ作为系统输出,对系统求导直至控制输入项燃料比冲φ及翼面舵角δ独立出现,此时对系统输出进行了三次求导,控制输入的导数独立出现在式中
Figure GDA0002838364730000031
Figure GDA0002838364730000032
此时将控制输入燃料比冲φ及翼面舵角δ的导数作为大长径比飞行器控制器的控制输入,控制输入的线性项均已知,故将线性项和控制输入项合并后作为新的系统输入
Figure GDA0002838364730000033
Figure GDA0002838364730000034
非线性项则与系统干扰等项目一同合并为干扰
Figure GDA00028383647300000310
定义系统输出误差(eh与eθ)为期望路径xd(hd与θd)与实际值间的差值,结合上述实际值导数即可得到输出误差的三阶导数,以下公式中均以下标h和θ区分高度及俯仰角的相关参数,以下标d代表相关参数的期望值,以跟踪误差上方点数
Figure GDA0002838364730000035
或上标数值(en)表示其多阶导数,
eh=hd-h
eθ=θd
Figure GDA0002838364730000036
Figure GDA0002838364730000037
进一步地,所述步骤2)为
Figure GDA0002838364730000038
Figure GDA0002838364730000039
其中控制输入参数需分别满足赫尔维茨多项式s3+i3s2+i2s+i1、s3+I3s2+I2s+I1、s3+j3s2+j2s+j1、s3+J3s2+J2s+J1以使上述线性系统稳定。
误差微分指数需分别满足以下条件:
in∈(0,1),
Figure GDA0002838364730000041
In∈(0,1),
Figure GDA0002838364730000042
jn∈(1,1+ε),
Figure GDA0002838364730000043
Figure GDA0002838364730000044
Jn∈(1,1+ε),
Figure GDA0002838364730000045
,其中ε为大于0的极小邻域,上述参数及M、N、m、n系列参数需根据大长径比飞行器模型适应状况调节。
进一步地,所述步骤3)为:干扰估计项
Figure GDA0002838364730000046
Figure GDA0002838364730000047
可通过二阶超螺旋滑模观测器获得,定义滑模面满足
Figure GDA0002838364730000048
Figure GDA0002838364730000049
Figure GDA00028383647300000410
其中n=h,θ.
Figure GDA00028383647300000411
η1n与η2n需根据大长径比飞行器模型适应状况来选定。
进一步地,所述步骤4)为
其形式如下,n=h,θ,Ln为李普希兹常数,k0、k1、k2、k3需根据大长径比飞行器模型适应状况来选定,ln系列参数代表观测的跟踪误差的各级导数,其下标代表导数的阶数,
Figure GDA00028383647300000412
Figure GDA00028383647300000413
Figure GDA00028383647300000414
Figure GDA00028383647300000415
进一步地,所述步骤5为:线性化大长径比飞行器动力系统并设定飞行器低空飞行的指定高度路径。
进一步地,导出上述跟踪误差数据及图像并与PID控制系统跟踪结果对比,得出结论。
有益效果
本发明对大长径比飞行器的动力方程进行求导同时进行组合重构,调整了系统的输入输出,避免了复杂浮动的大长径比飞行器气动力参数计算并使实际的控制输入更为连续顺滑;提出固定时间控制器+任意阶滑模微分器的控制形式以提高其收敛速度,保证大长径比飞行器在高速飞行时仍能快速收敛跟踪至期望高度;在固定时间控制器中引入干扰估计项,并通过超螺旋滑模观测器观测该干扰项,使大长径比飞行器能够抵御复杂海况下的风浪干扰。
附图说明
图1为1级海况飞行器低空飞行PID系统及固定时间系统高度跟踪误差;
图2为2级海况飞行器低空飞行PID系统及固定时间系统高度跟踪误差;
图3为3级海况飞行器低空飞行PID系统及固定时间系统高度跟踪误差;
图4为4级海况飞行器低空飞行PID系统及固定时间系统高度跟踪误差;
图5为5级海况飞行器低空飞行PID系统及固定时间系统高度跟踪误差;
图6为飞行器低空飞行定高路径跟踪控制系统图。
具体实施方式
以下通过特定的具体实施例说明本发明的实施方式,本领域的技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。
本发明针对飞行器低空飞行的情景提出一种定高型路径跟踪控制方法,该方法首先对大长径比飞行器的动力方程进行系统重构,重构后的系统避免了复杂多变的气动力参数计算;随后采用固定时间控制器+二阶滑模超螺旋干扰观测器+任意阶滑模微分器的控制策略来解决大长径比飞行器受风浪干扰下的定高路径跟踪控制问题(图6为飞行器低空飞行定高路径跟踪控制系统图),并以“战斧”式大长径比飞行器作为对象应用至1-5级复杂海况环境中以检验本发明方法的正确性及可行性。
1)固定时间控制器:针对次系统提出的一种固定时间控制器,区别于其他控制器,该控制器的优点在于通过该方法控制的系统可实现有限时间甚至固定时间内收敛至原点,这对于大长径比飞行器等高速飞行器的控制问题提供了极大的便利,通过向该控制器中引入干扰估计项来补偿大长径比飞行器飞行时所受到的风浪干扰;
2)二阶滑模超螺旋干扰观测器:一种发展成熟的滑模型观测器,可实现有限时间内的干扰估计;
3)任意阶滑模微分器:假定仅有系统状态变量可测,该微分器可用于观测状态变量的任意阶微分。
本发明具体包括以下步骤:
S1:根据大长径比飞行器的物理特性建立其动力学方程,同时做适当的系统重构以简化模型:
首先,假设弹体的质量为常数,针对大长径比飞行器垂直面上的运动特性建立其纵向动力学方程
Figure GDA0002838364730000061
Figure GDA0002838364730000062
Figure GDA0002838364730000063
Figure GDA0002838364730000064
Figure GDA0002838364730000065
Figure GDA0002838364730000066
Figure GDA0002838364730000067
其中,x飞行器飞行的前向距离,h为飞行器飞行的高度,v为飞行器飞行的前向速度,θ为飞行器的俯仰角,
Figure GDA0002838364730000068
为速度矢量v与水平面间的夹角,q为飞行器俯仰角速度,α为飞行器飞行的攻角,P为驱动器所提供的推力,X为飞行器飞行时所受的气动阻力,Y为飞行器飞行时所受的气动升力,m为飞行器质量,g为重力加速度,M为飞行器关于z轴的俯仰力矩,Jz为飞行器关于z轴转动惯量。相关的控制量,包括驱动器的驱动力燃料比冲Φ及控制弹体俯仰活动的翼面舵角δ,均囊括在阻力X(α,δ)、升力Y(α,δ)、俯仰力矩M(P,α,δ)及推力P(φ,α)的表达式中。然后通过对大长径比飞行器动力系统多次求导并整合非线性未知项来完成系统重构,以避免复杂气动力及推力项的构建与求解。将飞行高度h、俯仰角θ作为系统输出,对系统求导直至控制输入项燃料比冲φ及翼面舵角δ独立出现,此时对系统输出进行了三次求导,控制输入的导数独立出现在式中。
Figure GDA0002838364730000069
Figure GDA0002838364730000071
此时将控制输入燃料比冲Φ及翼面舵角δ的导数作为大长径比飞行器控制器的控制输入,控制输入的线性项均已知,故将线性项和控制输入项合并后作为新的系统输入
Figure GDA0002838364730000072
Figure GDA0002838364730000073
非线性项则与系统干扰等项目一同合并为干扰
Figure GDA00028383647300000714
定义系统输出误差(eh与eθ)为期望路径xd(hd与θd)与实际值间的差值,结合上述实际值导数即可得到输出误差的三阶导数。以下公式中均以下标h和θ区分高度及俯仰角的相关参数,以下标d代表相关参数的期望值,以跟踪误差上方点数
Figure GDA0002838364730000074
或上标数值(en)表示其多阶导数。
eh=hd-h
eθ=θd
Figure GDA0002838364730000075
Figure GDA0002838364730000076
S2:应用固定时间控制器并调整参数:
Figure GDA0002838364730000077
Figure GDA0002838364730000078
其中控制输入参数需分别满足赫尔维茨多项式s3+i3s2+i2s+i1、s3+I3s2+I2s+I1、s3+j3s2+j2s+j1、s3+J3s2+J2s+J1以使上述线性系统稳定。
误差微分指数需分别满足以下条件:
in∈(0,1),
Figure GDA0002838364730000079
In∈(0,1),
Figure GDA00028383647300000710
jn∈(1,1+ε),
Figure GDA00028383647300000711
Figure GDA00028383647300000712
Jn∈(1,1+ε),
Figure GDA00028383647300000713
其中ε为大于0的极小邻域。上述参数及M、N、m、n系列参数需根据大长径比飞行器模型适应状况调节。
S3:通过超螺旋滑模观测器估计干扰:
干扰估计项
Figure GDA0002838364730000081
Figure GDA0002838364730000082
可通过二阶超螺旋滑模观测器获得,定义滑模面满足
Figure GDA0002838364730000083
Figure GDA0002838364730000084
Figure GDA0002838364730000085
其中n=h,θ.
Figure GDA0002838364730000086
η1n与η2n需根据大长径比飞行器模型适应状况来选定。
S4:假定跟踪误差可直接获取,且导数未知,利用任意阶滑模微分观测器来获取跟踪误差的导数信息:
其形式如下,其中n=h,θ,Ln为李普希兹常数,k0、k1、k2、k3需根据大长径比飞行器模型适应状况来选定,ln系列参数代表观测的跟踪误差的各级导数,其下标代表导数的阶数。
Figure GDA0002838364730000087
Figure GDA0002838364730000088
Figure GDA0002838364730000089
Figure GDA00028383647300000810
S5:线性化大长径比飞行器动力系统并设定飞行器低空飞行的指定高度路径:
仿真验证中以“战斧”型大长径比飞行器为控制对象,令其以定高10m的期望轨迹进行巡航活动,动力系统在速度v=225m/s,高度5m处线性化。
S6:导出上述跟踪误差数据及图像并与PID控制系统跟踪结果对比,显而易见固定系统的收敛时间与跟踪误差均优于PID系统:
各级海况下风浪对“战斧”型大长径比飞行器飞行轨迹的影响主要体现在飞行高度的波动上,下述对比以大长径比飞行器相对于期望高度的跟踪误差为主要评价基准。
1级海况下风速为0.3~0.5m/s,风压约0.0056Kg/m2,海面有软风微波,浪高约0.1m,大长径比飞行器定高平衡态未见明显变化,攻角为平衡态1.66°±0.23°,等同于施加1g平均值下变化幅值±0.04g的载荷因子,此时PID出现幅值约0.1m的周期波动,固定时间系统跟踪精度及总体控制误差极小;
2级海况下风速为1.6~3.3m/s,风压约0.68Kg/m2,海面有轻风小波,浪高为0.2~0.3m,大长径比飞行器稳定后攻角为平衡态1.66°±0.37°,等同于施加1g平均值下变化幅值±0.22g的载荷因子,此时PID出现幅值约0.5m的周期波动,固定时间系统总体控制误差略有极小波动;
3级海况下风速为3.4~5.4m/s,风压约1.82Kg/m2,海面有微风小浪,浪高为0.6~1.0m,大长径比飞行器稳定后攻角为平衡态1.66°±0.65°,等同于施加1g平均值下变化幅值±0.39g的载荷因子,此时PID出现不可忽略的约为0.5m的稳定误差,同时伴有周期波动,整体轨迹出现少量偏移,固定时间系统稳定后出现幅值约0.1m的误差波动;
4级海况下风速为5.5~7.9m/s,风压约3.9Kg/m2,海面有和风轻浪,浪高为1.0~1.5m,大长径比飞行器稳定后攻角为平衡态1.66°±0.86°,等同于施加1g平均值下变化幅值±0.52g的载荷因子,此时PID出现更为明显的稳定误差,其值约为1.5m,并伴有幅值约1m的周期波动,整体运动方向有变,固定时间系统也呈现幅值约0.2m的误差波动;
5级海况下风速为8.0~10.7m/s,风压约7.16Kg/m2,海面有清风中浪,浪高为2.0~2.5m,大长径比飞行器稳定后攻角为平衡态1.66°±1.13°,等同于施加1g平均值下变化幅值±0.68g的载荷因子,此时PID的稳定误差约3.5m,并伴有幅值超过1m的周期波动,整体运动受严重影响,固定时间系统同时出现不可忽略的误差波动,但整体跟踪情况可满足要求。
为躲避对方侦察,同时提高定点打击效率,大长径比飞行器常在掠海飞行时尽量与海面保持30m以下的距离,以便借由海面的复杂环境干扰敌方,但在隐身的同时大长径比飞行器的定高航行也会受海风海浪等干扰而发生剧烈扰动。为阐明各级海况下风浪干扰对大长径比飞行器定高航行效果的干扰情况,采用PID控制器与上述组合系统对比,图1-5为1-5级海况下大长径比飞行器定高航行的飞行情况。本发明针对飞行器低空定高飞行提出的一种固定时间控制器、任意阶滑模微分器与超螺旋干扰观测器三者相结合的控制方式,该方式对定高航行及抵御风浪干扰有显著效果。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围内。

Claims (5)

1.一种大长径比掠海飞行器复杂海况下的定高路径跟踪方法,其特征在于,其是一种结合固定时间控制器、任意阶滑模微分观测器与超螺旋干扰观测器的控制方法,具体包括以下步骤:
1)根据大长径比飞行器的物理特性建立其动力学方程,同时进行系统重构以简化模型;
2)应用固定时间控制器并调整参数;
3)通过超螺旋滑模观测器估计干扰;
4)假定跟踪误差可直接获取,且导数未知,利用任意阶滑模微分观测器来获取跟踪误差的导数信息;
5)线性化大长径比飞行器动力系统并设定飞行器低空飞行的指定高度路径;
6)导出步骤5)中的跟踪误差数据及图像并与PID控制系统跟踪结果对比,得出结论;
所述步骤1)包括:
首先,假设飞行器的质量为常数,针对大长径比飞行器垂直面上的运动特性建立其纵向动力学方程
Figure FDA0002838364720000011
Figure FDA0002838364720000012
Figure FDA0002838364720000013
Figure FDA0002838364720000014
Figure FDA0002838364720000015
Figure FDA0002838364720000016
Figure FDA0002838364720000017
其中,x为飞行器飞行的前向距离,h为飞行器飞行的高度,v为飞行器飞行的前向速度,θ为飞行器的俯仰角,
Figure FDA0002838364720000018
为速度矢量v与水平面间的夹角,q为飞行器俯仰角速度,α为飞行器飞行的攻角,P为驱动器所提供的推力,X为飞行器飞行时所受的气动阻力,Y为飞行器飞行时所受的气动升力,m为飞行器质量,g为重力加速度,M为飞行器关于z轴的俯仰力矩,Jz为飞行器关于z轴转动惯量,相关的控制量,包括驱动器的驱动力燃料比冲φ及控制飞行器俯仰活动的翼面舵角δ,均囊括在阻力X(α,δ)、升力Y(α,δ)、俯仰力矩M(P,α,δ)及推力P(φ,α)的表达式中;
然后通过对大长径比飞行器动力系统多次求导并整合非线性未知项来完成系统重构,以避免复杂气动力及推力项的构建与求解,将飞行高度h、俯仰角θ作为系统输出,对系统求导直至控制输入项燃料比冲φ及翼面舵角δ独立出现,此时对系统输出进行了三次求导,控制输入的导数独立出现在式中,其中ψunknown为未知的外界干扰
Figure FDA0002838364720000021
Figure FDA0002838364720000022
此时将控制输入燃料比冲φ及翼面舵角δ的导数作为大长径比飞行器控制器的控制输入,控制输入的线性项均已知,故将线性项和控制输入项合并后作为新的系统输入
Figure FDA0002838364720000023
Figure FDA0002838364720000024
非线性项则与系统干扰等项目一同合并为干扰
Figure FDA0002838364720000025
定义系统输出误差(eh与eθ)为期望路径xd(hd与θd)与实际值间的差值,结合上述实际值导数即可得到输出误差的三阶导数,以下公式中均以下标h和θ区分高度及俯仰角的相关参数,以下标d代表相关参数的期望值,以跟踪误差上方点数
Figure FDA0002838364720000029
或上标数值(en)表示其多阶导数,
eh=hd-h
eθ=θd
Figure FDA0002838364720000026
Figure FDA0002838364720000027
2.根据权利要求1所述的大长径比掠海飞行器复杂海况下的定高路径跟踪方法,其特征在于,所述步骤2)为:
Figure FDA0002838364720000028
Figure FDA0002838364720000031
其中控制输入参数需分别满足赫尔维茨多项式s3+i3s2+i2s+i1、s3+I3s2+I2s+I1、s3+j3s2+j2s+j1、s3+J3s2+J2s+J1以使上述线性系统稳定,误差微分指数需分别满足以下条件:
in∈(0,1),
Figure FDA0002838364720000032
In∈(0,1),
Figure FDA0002838364720000033
jn∈(1,1+ε),
Figure FDA0002838364720000034
Figure FDA0002838364720000035
Jn∈(1,1+ε),
Figure FDA0002838364720000036
其中ε为大于0的极小邻域,上述参数及M、N、m、n系列参数需根据大长径比飞行器模型适应状况调节。
3.根据权利要求1所述的大长径比掠海飞行器复杂海况下的定高路径跟踪方法,其特征在于,所述步骤3)为:
干扰估计项
Figure FDA0002838364720000037
Figure FDA0002838364720000038
可通过二阶超螺旋滑模观测器获得,定义滑模面满足
Figure FDA0002838364720000039
Figure FDA00028383647200000310
Figure FDA00028383647200000311
其中n=h,θ.
Figure FDA00028383647200000312
与η2n需根据大长径比飞行器模型适应状况来选定。
4.根据权利要求1所述的大长径比掠海飞行器复杂海况下的定高路径跟踪方法,其特征在于,所述步骤4)为:
其形式如下,其中n=h,θ,Ln为李普希兹常数,k0、k1、k2、k3需根据大长径比飞行器模型适应状况来选定,ln系列参数代表观测的跟踪误差的各级导数,其下标代表导数的阶数,
Figure FDA0002838364720000041
Figure FDA0002838364720000042
Figure FDA0002838364720000043
Figure FDA0002838364720000044
5.根据权利要求1所述的大长径比掠海飞行器复杂海况下的定高路径跟踪方法,其特征在于,所述步骤5)为:线性化大长径比飞行器动力系统并设定飞行器低空飞行的指定高度路径。
CN202010089348.8A 2020-02-12 2020-02-12 大长径比掠海飞行器复杂海况下的定高路径跟踪方法 Active CN111258333B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010089348.8A CN111258333B (zh) 2020-02-12 2020-02-12 大长径比掠海飞行器复杂海况下的定高路径跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010089348.8A CN111258333B (zh) 2020-02-12 2020-02-12 大长径比掠海飞行器复杂海况下的定高路径跟踪方法

Publications (2)

Publication Number Publication Date
CN111258333A CN111258333A (zh) 2020-06-09
CN111258333B true CN111258333B (zh) 2021-03-23

Family

ID=70949470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010089348.8A Active CN111258333B (zh) 2020-02-12 2020-02-12 大长径比掠海飞行器复杂海况下的定高路径跟踪方法

Country Status (1)

Country Link
CN (1) CN111258333B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965371B (zh) * 2021-01-29 2021-09-28 哈尔滨工程大学 基于固定时间观测器的水面无人艇轨迹快速跟踪控制方法
CN113064349B (zh) * 2021-03-22 2022-06-07 中国人民解放军国防科技大学 固定时间收敛的非线性平台滑模控制方法、装置及系统
CN114389490B (zh) * 2021-12-10 2023-12-15 江苏大学 基于固定时间二阶滑模技术的永磁同步电机转速控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898431A (zh) * 2015-06-10 2015-09-09 北京理工大学 一种基于扰动观测器的再入飞行器有限时间控制方法
WO2019013151A1 (ja) * 2017-07-10 2019-01-17 株式会社プロドローン 無人航空機の飛行高度設定方法および無人航空機システム
CN110231829A (zh) * 2019-06-20 2019-09-13 上海大学 基于数据增融的强化学习小型无人旋翼机自主着陆方法
CN110377044A (zh) * 2019-07-24 2019-10-25 东南大学 一种无人直升机的有限时间高度和姿态跟踪控制方法
CN110377045A (zh) * 2019-08-22 2019-10-25 北京航空航天大学 一种基于抗干扰技术的飞行器全剖面控制方法
CN110413000A (zh) * 2019-05-28 2019-11-05 北京航空航天大学 一种基于深度学习的高超声速飞行器再入预测校正容错制导方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180056068A (ko) * 2016-11-18 2018-05-28 삼성전자주식회사 무인 비행체를 제어하기 위한 전자 장치 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898431A (zh) * 2015-06-10 2015-09-09 北京理工大学 一种基于扰动观测器的再入飞行器有限时间控制方法
WO2019013151A1 (ja) * 2017-07-10 2019-01-17 株式会社プロドローン 無人航空機の飛行高度設定方法および無人航空機システム
CN110413000A (zh) * 2019-05-28 2019-11-05 北京航空航天大学 一种基于深度学习的高超声速飞行器再入预测校正容错制导方法
CN110231829A (zh) * 2019-06-20 2019-09-13 上海大学 基于数据增融的强化学习小型无人旋翼机自主着陆方法
CN110377044A (zh) * 2019-07-24 2019-10-25 东南大学 一种无人直升机的有限时间高度和姿态跟踪控制方法
CN110377045A (zh) * 2019-08-22 2019-10-25 北京航空航天大学 一种基于抗干扰技术的飞行器全剖面控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Near-Optimal UAV-Aided Radio Coverage;李孝伟等;《IEEE Transactions on Vehicular Technology》;IEEE;20190709;第68卷(第9期);第9098-9109页 *
高超声速飞行器有限时间滑模控制器和观测器算法研究;任小欢;《中国优秀硕士学位论文全文数据库》;中国学术期刊(光盘版)电子杂志社;20161115(第11期);第Ⅰ、8-9、22、32、34、53、63页 *

Also Published As

Publication number Publication date
CN111258333A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN111258333B (zh) 大长径比掠海飞行器复杂海况下的定高路径跟踪方法
CN110377045B (zh) 一种基于抗干扰技术的飞行器全剖面控制方法
CN105159305B (zh) 一种基于滑模变结构的四旋翼飞行控制方法
CN108873929B (zh) 一种固定翼飞机自主着舰方法及系统
CN114281092B (zh) 一种基于滑模干扰观测器的高超声速飞行器协调姿态控制方法
CN111290278B (zh) 一种基于预测滑模的高超声速飞行器鲁棒姿态控制方法
CN111007720A (zh) 高超声速飞行器多传感器故障的非线性自愈合控制方法
Liu et al. Observer-based linear parameter varying control design with unmeasurable varying parameters under sensor faults for quad-tilt rotor unmanned aerial vehicle
CN111240204B (zh) 一种基于模型参考滑模变结构控制的巡飞弹控制方法
CN116300992A (zh) 一种基于l1自适应动态逆的变体飞行器控制方法
CN107957686B (zh) 基于预见控制的无人直升机自动着舰控制系统
CN106527128A (zh) 兼顾瞬态响应与鲁棒稳定性的飞行控制律设计新方法
CN115220467A (zh) 一种基于神经网络增量动态逆的飞翼飞行器姿态控制方法
CN115556111A (zh) 基于变惯性参数建模的飞行机械臂耦合扰动控制方法
CN108958278B (zh) 一种空天飞行器巡航段快速抗干扰制导方法
CN111708378B (zh) 一种基于强化学习的导弹纵向姿态控制算法
Yang et al. Non-linear position control for hover and automatic landing of unmanned aerial vehicles
Luo et al. Longitudinal control of hypersonic vehicles based on direct heuristic dynamic programming using ANFIS
CN116736723A (zh) 一种气动热影响下的弹性高超声速飞行器建模和模糊自适应滑模控制方法
CN111159812A (zh) 一种吸气式高超声速无人机损伤特性分析方法
CN110231774A (zh) 干扰观测变进气道高超声速飞行器模糊协调控制方法
CN115729264A (zh) 一种基于柔性自适应翼梢小翼的变稳隐身飞机控制方法
CN115686036A (zh) 一种基于预设性能的变外形飞行器多维复合控制方法
CN115964795A (zh) 一种基于干扰观测器的变体飞行器变形控制方法
CN114564047A (zh) 一种考虑气象条件的无人机等速飞行控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant