CN111253538B - 一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法 - Google Patents

一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法 Download PDF

Info

Publication number
CN111253538B
CN111253538B CN202010118535.4A CN202010118535A CN111253538B CN 111253538 B CN111253538 B CN 111253538B CN 202010118535 A CN202010118535 A CN 202010118535A CN 111253538 B CN111253538 B CN 111253538B
Authority
CN
China
Prior art keywords
fatty alcohol
preparation
cyclic amine
acid
polycarboxylate superplasticizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010118535.4A
Other languages
English (en)
Other versions
CN111253538A (zh
Inventor
徐仕睿
刘勇
李鹏
刘威
左小青
李小梅
李天书
柳新江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fushun Dongke Fine Chemical Co ltd
Original Assignee
Fushun Dongke Fine Chemical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fushun Dongke Fine Chemical Co ltd filed Critical Fushun Dongke Fine Chemical Co ltd
Priority to CN202010118535.4A priority Critical patent/CN111253538B/zh
Publication of CN111253538A publication Critical patent/CN111253538A/zh
Application granted granted Critical
Publication of CN111253538B publication Critical patent/CN111253538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/161Macromolecular compounds comprising sulfonate or sulfate groups
    • C04B24/163Macromolecular compounds comprising sulfonate or sulfate groups obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/165Macromolecular compounds comprising sulfonate or sulfate groups obtained by reactions only involving carbon-to-carbon unsaturated bonds containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2605Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/026Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33303Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
    • C08G65/33317Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • C08G65/3344Polymers modified by chemical after-treatment with organic compounds containing sulfur containing oxygen in addition to sulfur
    • C08G65/3346Polymers modified by chemical after-treatment with organic compounds containing sulfur containing oxygen in addition to sulfur having sulfur bound to carbon and oxygen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明的公开了一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法,包括如下步骤:①功能性环胺基聚合物单体的制备;②环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备。本方法制备的聚羧酸高性能减水剂在保持减水和保坍功能的同时兼具早强功能,由于脂肪醇侧链的存在,更提高了产品4%‑5%的减水率,使聚羧酸减水剂在混凝土领域的应用得到了更进一步的扩展。本发明方法控制简单、产品结构稳定、产品性能优异。

Description

一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法
一、技术领域
本发明属于混凝土助剂技术领域,具体涉及一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法。
二、背景技术
聚羧酸减水剂是一种高性能减水剂,具有掺量低、减水率高、功能可调、绿色环保等优点,作为混凝土助剂广泛的应用于公路、桥梁、大坝、隧道、高层建筑等工程。近年来,随着我国城市化进程快速推进,拉动了混凝土的广泛需求,在传统的混凝土设计中,通常采用降低单方用水量、提高水泥的强度等级、增加单方混凝土中胶凝材料的使用量以及改善砂石料的质量等手段提高混凝土强度。但随着资源的日益枯竭以及环境要求的不断提高,国内建筑用砂石资源逐渐出现劣化,砂石含泥量也大大增加。与此同时,随着大量重大、重点项目的推进与建设周期的要求,对于大方量混凝土浇筑工程,尤其以模板工程做成型支护,考虑到模板周转效率提高,需要将混凝土的脱模时间大大缩短;对于类似于水泥混凝土地面、道路或者堆场,要求混凝土在最短的时间内达到一定强度,方便车辆的行驶;对于分层浇筑的混凝土,要求第一次浇筑的混凝土迅速达到一定强度后,才允许在混凝土上部进行第二次的施工浇筑活动。针对上述种种情况,混凝土早期强度的提高有着十分重要的意义。
随着混凝土早强问题的不断凸显,需要不断地发展新技术来解决混凝土的早强问题。国内对早强型聚羧酸减水剂的研究起步比较晚,起初只是靠复配无机盐(如NaCl、CaCl2、Na2SO4、Na2S2O3、NaNO2以及NaNO3等其中的一种或者几种)提高混凝土的早期强度,如今又有以含胺类化合物为起始剂合成单体或是合成聚羧酸单体后再进行胺醚封端,以提高聚羧酸减水剂的早强性能。但上述这类单体对合成聚羧酸减水剂后,在早强功能的基础上对于提高减水性能没有发生明显的变化。
三、发明内容
本发明的目的是提供一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法,采用该方法所制备的早强型聚羧酸减水剂的减水率得到有效提高。
本发明采用的技术方案包括如下步骤:
①功能性环胺基聚合物单体的制备:将脂肪醇聚氧乙烯醚加到入容器中,加热到50-60℃使其全部熔化,向容器中加入定量催化剂,搅拌均匀,升温T=75-85℃,向容器中缓慢滴加环胺化合物,2-3h滴加完毕,滴加后升温T=90-95℃,继续保温1h,保温结束后升温T=110-130℃进行减压蒸馏0.5-1.0h,降温至T=75-85℃,向瓶中加入少量浓硫酸和不饱和羧酸类小单体,同时减压蒸馏并保温0.5h,得到功能性环胺基聚合物单体;
②环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备:将步骤①所得功能性环胺基聚合物单体与不饱和大单体加到入容器中,加入一定量的蒸馏水,加热到50-60℃使其全部熔化,同时向容器中加入引发剂、还原剂及链转移剂进行自由基聚合反应,继续保温2h-3h,即得环胺基脂肪醇醚功能性聚羧酸减水剂。
所述步骤①中脂肪醇聚氧乙烯醚的平均分子量为1400-1600。
所述步骤①中环胺化合物与脂肪醇聚氧乙烯醚的摩尔比为1:1.02-1.15。
所述步骤①中环胺化合物为环己胺或环戊胺。
所述步骤①中催化剂为尿素,其用量为脂肪醇聚氧乙烯醚和环胺化合物总量的3.0‰-4.5‰。
所述步骤①中不饱和羧酸类小单体与环胺化合物的摩尔比为1:1.00-2.00。
所述步骤①中不饱和羧酸类小单体为丙烯酸、亚甲基丁二酸、甲基丙烯酸、甲基烯丙基磺酸钠的一种或两种以上组合。
所述步骤①中浓硫酸用量为脂肪醇聚氧乙烯醚和环胺化合物总量的7.0‰-9.0‰。
所述步骤②中不饱和大单体为烯丙基聚氧乙烯醚、甲基烯丙基聚氧乙烯醚、异戊烯基聚氧乙烯醚的一种,其分子量为1800g/mol-4000g/mol。
所述步骤②中蒸馏水用量为步骤①中功能性环胺基聚合物单体和不饱和大单体总质量的1.5-1.7倍。
所述步骤②中引发剂为双氧水、过硫酸铵、过硫酸钠、过硫酸钾的一种或两种以上组合;还原剂为抗坏血酸;链转移剂为巯基乙酸、2-巯基丙酸、3-巯基丙酸、巯基乙醇的一种或两种以上组合;功能性环胺基聚合物单体、不饱和大单体、引发剂、还原剂和链转移剂的摩尔比为1:1.00-2.00:0.05-0.20:0.01-0.05:0.10-0.50。
本发明方法采用有别于以往有机胺类化合物为起始剂来合成单体或合成封端胺醚的方式获得减水剂早强性能,而采取了将脂肪醇与环胺化合物制备得到功能性聚合物,再利用氨基与羧基缩合脱水得到功能性环胺基聚合物单体,这样在不破坏聚羧酸单体本身结构的前提下合成出了早强型聚羧酸减水剂。本方法制备的聚羧酸高性能减水剂在保持减水和保坍功能的同时兼具早强功能,由于脂肪醇侧链的存在,更提高了产品4%-5%的减水率,使聚羧酸减水剂在混凝土领域的应用得到了更进一步的扩展。本发明方法控制简单、产品结构稳定、产品性能优异。
四、具体实施方式
实施例1:
将1400分子量脂肪醇聚氧乙烯醚600g加到入四口烧瓶中,加热到50℃使其全部熔化。向烧瓶中加入2g尿素,搅拌均匀。升温T=80℃,向瓶中缓慢滴加环己胺40.4g,环己胺与所述脂肪醇聚氧乙烯醚的摩尔比为1:1.05,2h滴加完毕。滴加后升温T=92℃,继续保温1h。保温结束后升温T=125℃进行减压蒸馏1h,降温至T=80℃,向瓶中加入浓硫酸4.5g和丙烯酸21g,丙烯酸与环己胺的摩尔比为1:1.4,同时减压蒸馏并保温0.5h,得到分子量为1535的功能性环胺基聚合物单体667.9g。
将功能性环胺基聚合物单体200g与分子量2400的甲基烯丙基聚氧乙烯醚375g加到入四口烧瓶中,加入920g蒸馏水,加热到55℃使其全部熔化,同时向烧瓶中加入过硫酸钠2.48g、抗坏血酸0.69g和巯基乙酸2.4g进行自由基聚合反应,继续保温2h即可得到环胺基脂肪醇醚功能性聚羧酸减水剂880.57g。功能性环胺基聚合物单体、分子量2400的甲基烯丙基聚氧乙烯醚、过硫酸钠、抗坏血酸和巯基乙酸的摩尔比为1:1.2:0.08:0.03:0.2。
实施例2:
将1500分子量脂肪醇聚氧乙烯醚500g加到入四口烧瓶中,加热到55℃使其全部熔化。向烧瓶中加入2.2g尿素,搅拌均匀。升温T=80℃,向瓶中缓慢滴加环戊胺26.2g,环戊胺与所述脂肪醇聚氧乙烯醚的摩尔比为1:1.08,2.5h滴加完毕。滴加后升温T=92℃,继续保温1h。保温结束后升温T=125℃进行减压蒸馏1h,降温至T=80℃,向瓶中加入浓硫酸3.9g和甲基烯丙基磺酸钠32.5g,甲基烯丙基磺酸钠与环戊胺的摩尔比为1:1.5,同时减压蒸馏并保温0.5h,得到分子量为1723的功能性环胺基聚合物单体564.8g。
将功能性环胺基聚合物单体150g与分子量3000的异戊烯基聚氧乙烯醚522.3g加到入四口烧瓶中,加入1042g蒸馏水,加热到55℃使其全部熔化,同时向烧瓶中加入过硫酸铵1.99g、抗坏血酸0.77g和3-巯基丙酸2.77g进行自由基聚合反应,继续保温2h即可得到环胺基脂肪醇醚功能性聚羧酸减水剂977.83g。功能性环胺基聚合物单体、分子量3000的异戊烯基聚氧乙烯醚、过硫酸铵、抗坏血酸和3-巯基丙酸的摩尔比为1:2:0.1:0.05:0.3。
实施例3:
将1600分子量脂肪醇聚氧乙烯醚600g加到入四口烧瓶中,加热到55℃使其全部熔化。向烧瓶中加入2.5g尿素,搅拌均匀。升温T=85℃,向瓶中缓慢滴加环戊胺36.7g,环戊胺与所述脂肪醇聚氧乙烯醚的摩尔比为1:1.15,3h滴加完毕。滴加后升温T=90℃,继续保温1h。保温结束后升温T=125℃进行减压蒸馏0.5h,降温至T=80℃,向瓶中加入浓硫酸5.7g和甲基丙烯酸18.5g,甲基丙烯酸与环戊胺的摩尔比为1:2.0,同时减压蒸馏并保温0.5h,得到分子量为1735的功能性环胺基聚合物单体663.4g。
将功能性环胺基聚合物单体160g与分子量4000的烯丙基聚氧乙烯醚405.8g加到入四口烧瓶中,加入850g蒸馏水,加热到55℃使其全部熔化,同时向烧瓶中加入过硫酸钾4.49、抗坏血酸0.32g和巯基乙醇3.60g进行自由基聚合反应,继续保温2h即可得到环胺基脂肪醇醚功能性聚羧酸减水剂874.21g。功能性环胺基聚合物单体、分子量4000的烯丙基聚氧乙烯醚、过硫酸钾、抗坏血酸和巯基乙醇的摩尔比为1:1.1:0.18:0.02:0.5。
实施例4:
将1450分子量脂肪醇聚氧乙烯醚600g加到入四口烧瓶中,加热到55℃使其全部熔化。向烧瓶中加入2.3g尿素,搅拌均匀。升温T=85℃,向瓶中缓慢滴加环己胺40.2g,环己胺与所述脂肪醇聚氧乙烯醚的摩尔比为1:1.02,2h滴加完毕。滴加后升温T=90℃,继续保温1h。保温结束后升温T=130℃进行减压蒸馏1h,降温至T=85℃,向瓶中加入浓硫酸5.4g和丙烯酸29.2g,丙烯酸与环己胺的摩尔比为1:1.0,同时减压蒸馏并保温0.5h,得到分子量为1585的功能性环胺基聚合物单体677.1g。
将功能性环胺基聚合物单体200g与分子量1800的甲基烯丙基聚氧乙烯醚340.7g加到入四口烧瓶中,加入910g蒸馏水,加热到55℃使其全部熔化,同时向烧瓶中加入过硫酸铵5.76、抗坏血酸0.22g和巯基乙酸1.16g进行自由基聚合反应,继续保温2h即可得到环胺基脂肪醇醚功能性聚羧酸减水剂847.84g。功能性环胺基聚合物单体、分子量1800的甲基烯丙基聚氧乙烯醚、过硫酸铵、抗坏血酸和巯基乙酸的摩尔比为1:1.5:0.20:0.01:0.1。
实施例5:
将1550分子量脂肪醇聚氧乙烯醚580g加到入四口烧瓶中,加热到55℃使其全部熔化。向烧瓶中加入2.2g尿素,搅拌均匀。升温T=85℃,向瓶中缓慢滴加环戊胺36.7g,环戊胺与所述脂肪醇聚氧乙烯醚的摩尔比为1:1.15,3h滴加完毕。滴加后升温T=90℃,继续保温1h。保温结束后升温T=125℃进行减压蒸馏0.5h,降温至T=80℃,向瓶中加入浓硫酸5.4g和甲基丙烯酸37g,甲基丙烯酸与环戊胺的摩尔比为1:1.0,保温0.5h得到功能性环胺基聚合物单体分子量1685单体661.3g。
将功能性环胺基聚合物单体155g与分子量2000的异戊烯基聚氧乙烯醚276.7g加到入四口烧瓶中,加入648g蒸馏水,加热到55℃使其全部熔化,同时向烧瓶中加入过硫酸钾1.50g、抗坏血酸0.64g和巯基乙醇3.60g进行自由基聚合反应,继续保温2h即可得到环胺基脂肪醇醚功能性聚羧酸减水剂737.44g。功能性环胺基聚合物单体、分子量2000的异戊烯基聚氧乙烯醚、过硫酸钾、抗坏血酸和巯基乙醇的摩尔比为1:1.5:0.06:0.04:0.5。
实施例6:
将1600分子量脂肪醇聚氧乙烯醚637g加到入四口烧瓶中,加热到55℃使其全部熔化。向烧瓶中加入2.4g尿素,搅拌均匀。升温T=85℃,向瓶中缓慢滴加环己胺40.2g,环己胺与所述脂肪醇聚氧乙烯醚的摩尔比为1:1.06,2h滴加完毕。滴加后升温T=90℃,继续保温1h。保温结束后升温T=130℃进行减压蒸馏1h,降温至T=85℃,向瓶中加入浓硫酸4.8和丙烯酸19.5g,丙烯酸与环己胺的摩尔比为1:1.5,保温0.5h得到功能性环胺基聚合物单体分子量1735单体703.9g。
将功能性环胺基聚合物单体200g与分子量2000的烯丙基聚氧乙烯醚415g加到入四口烧瓶中,加入978g蒸馏水,加热到55℃使其全部熔化,同时向烧瓶中加入过硫酸铵3.42、抗坏血酸0.41g和巯基乙醇2.70g进行自由基聚合反应,继续保温2h即可得到环胺基脂肪醇醚功能性聚羧酸减水剂921.53g。功能性环胺基聚合物单体、分子量2000的烯丙基聚氧乙烯醚、过硫酸铵、抗坏血酸和巯基乙酸的摩尔比为1:1.8:0.13:0.02:0.3。

Claims (8)

1.一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法,该方法包括下步骤:
①功能性环胺基聚合物单体的制备:将脂肪醇聚氧乙烯醚加到入容器中,加热到50-60℃使其全部熔化,向容器中加入定量催化剂,搅拌均匀,升温T=75-85℃,向容器中缓慢滴加环胺化合物,2-3h滴加完毕,滴加后升温T=90-95℃,继续保温1h,保温结束后升温T=110-130℃进行减压蒸馏0.5-1.0h,降温至T=75-85℃,向瓶中加入少量浓硫酸和不饱和羧酸类小单体,同时减压蒸馏并保温0.5h,得到功能性环胺基聚合物单体;
②环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备:将步骤①所得功能性环胺基聚合物单体与不饱和大单体加到入容器中,加入一定量的蒸馏水,加热到50-60℃使其全部熔化,同时向容器中加入引发剂、还原剂及链转移剂进行自由基聚合反应,继续保温2h-3h,即得环胺基脂肪醇醚功能性聚羧酸减水剂;
所述步骤①中环胺化合物为环己胺或环戊胺;
所述步骤①中脂肪醇聚氧乙烯醚的平均分子量为1400-1600;
所述步骤②中不饱和大单体为烯丙基聚氧乙烯醚、甲基烯丙基聚氧乙烯醚、异戊烯基聚氧乙烯醚的一种,其分子量为1800g/mol-4000g/mol。
2.根据权利要求1所述的一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法,其特征是:所述步骤①中环胺化合物与脂肪醇聚氧乙烯醚的摩尔比为1:1.02-1.15。
3.根据权利要求1所述的一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法,其特征是:所述步骤①中催化剂为尿素,其用量为脂肪醇聚氧乙烯醚和环胺化合物总量的3.0‰-4.5‰。
4.根据权利要求1所述的一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法,其特征是:所述步骤①中不饱和羧酸类小单体与环胺化合物的摩尔比为1:1.00-2.00。
5.根据权利要求1所述的一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法,其特征是:所述步骤①中不饱和羧酸类小单体为丙烯酸、亚甲基丁二酸、甲基丙烯酸、甲基烯丙基磺酸钠的一种或两种以上组合。
6.根据权利要求1所述的一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法,其特征是:所述步骤①中浓硫酸用量为脂肪醇聚氧乙烯醚和环胺化合物总量的7.0‰-9.0‰。
7.根据权利要求1所述的一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法,其特征是:所述步骤②中蒸馏水用量为步骤①中功能性环胺基聚合物单体和不饱和大单体总质量的1.5-1.7倍。
8.根据权利要求1所述的一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法,其特征是:所述步骤②中引发剂为双氧水、过硫酸铵、过硫酸钠、过硫酸钾的一种或两种以上组合;还原剂为抗坏血酸;链转移剂为巯基乙酸、2-巯基丙酸、3-巯基丙酸、巯基乙醇的一种或两种以上组合;功能性环胺基聚合物单体、不饱和大单体、引发剂、还原剂和链转移剂的摩尔比为1:1.00-2.00:0.05-0.20:0.01-0.05:0.10-0.50。
CN202010118535.4A 2020-02-26 2020-02-26 一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法 Active CN111253538B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010118535.4A CN111253538B (zh) 2020-02-26 2020-02-26 一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010118535.4A CN111253538B (zh) 2020-02-26 2020-02-26 一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法

Publications (2)

Publication Number Publication Date
CN111253538A CN111253538A (zh) 2020-06-09
CN111253538B true CN111253538B (zh) 2022-05-20

Family

ID=70941764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010118535.4A Active CN111253538B (zh) 2020-02-26 2020-02-26 一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法

Country Status (1)

Country Link
CN (1) CN111253538B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708052B (zh) * 2020-10-30 2022-10-25 科之杰新材料集团(贵州)有限公司 一种醚类降粘型水化调节剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104628969A (zh) * 2015-01-30 2015-05-20 江苏奥莱特新材料有限公司 一种缓释型固体聚羧酸系减水剂的制备方法
CN107903362A (zh) * 2017-12-09 2018-04-13 江苏斯尔邦石化有限公司 一种早强型聚羧酸减水剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102887979B (zh) * 2012-10-22 2014-02-05 北京工业大学 一种星形聚羧酸高性能减水剂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104628969A (zh) * 2015-01-30 2015-05-20 江苏奥莱特新材料有限公司 一种缓释型固体聚羧酸系减水剂的制备方法
CN107903362A (zh) * 2017-12-09 2018-04-13 江苏斯尔邦石化有限公司 一种早强型聚羧酸减水剂的制备方法

Also Published As

Publication number Publication date
CN111253538A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN109354654B (zh) 一种早强型聚羧酸减水剂及其制备方法
CN105884239B (zh) 一种硫铝酸盐‑硅酸盐水泥复合体系外加剂、快硬早强混凝土及其制备方法
CN110423315A (zh) 一种纳米c-s-h凝胶超早强剂及其制备方法
CN105130269B (zh) 一种高减水高早强型聚羧酸系减水剂及其无热源制法
CN103193925B (zh) 一种具有抗泥或耐泥性能的聚合物水溶液及其制备方法
CN106854067B (zh) 自流平干混砂浆及其制备方法
CN102659373B (zh) 一种高性能耐腐蚀混凝土桩及其制备方法
CN105645810A (zh) 一种早强型聚羧酸系高性能减水剂及制备方法
CN108467215A (zh) 一种用于建筑混凝土的纳米c-s-h晶种早强剂及制备方法
US11117832B2 (en) Fluorescent polycarboxylate superplasticizer and preparation method thereof
CN108178549A (zh) 一种复合型超早强外加剂的制备方法及应用
CN114656191B (zh) 一种制备具有长期分散性的晶核早强聚羧酸减水剂的方法
CN111253538B (zh) 一种环胺基脂肪醇醚结构的早强型聚羧酸减水剂的制备方法
CN109020435A (zh) 一种耐高低温套筒灌浆料及其制备方法
CN111548459A (zh) 一种高保坍型聚羧酸减水剂的制备方法
CN102503221B (zh) 环己醇接枝聚羧酸减水剂及其制备方法
CN110204265A (zh) 一种聚乙烯醇增韧地聚合物及其制备方法
CN104926184B (zh) 一种聚羧酸系减水剂及其制备方法
CN112250807A (zh) 一种装配式建筑部件用共聚物减水剂及其制备方法
CN109336453A (zh) 一种晶核型混凝土超早强剂的制备方法
CN105293976B (zh) 一种管桩及其制备方法
CN108892756B (zh) 一种基于3000分子量聚醚的高适应型聚羧酸减水剂的制备方法
CN102910856A (zh) 一种混凝土预制构件用超塑化剂
CN107827389B (zh) 一种持续稳定膨胀型膨胀剂的制备方法
CN105565719A (zh) 超早强聚羧酸减水剂在管片中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant