CN111244189B - 一种含NiO/SiC异质结的SiC MPS二极管 - Google Patents

一种含NiO/SiC异质结的SiC MPS二极管 Download PDF

Info

Publication number
CN111244189B
CN111244189B CN202010065699.5A CN202010065699A CN111244189B CN 111244189 B CN111244189 B CN 111244189B CN 202010065699 A CN202010065699 A CN 202010065699A CN 111244189 B CN111244189 B CN 111244189B
Authority
CN
China
Prior art keywords
sic
nio
anode
cathode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010065699.5A
Other languages
English (en)
Other versions
CN111244189A (zh
Inventor
王曦
钟艺文
蒲红斌
胡继超
王敏
张萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202010065699.5A priority Critical patent/CN111244189B/zh
Publication of CN111244189A publication Critical patent/CN111244189A/zh
Application granted granted Critical
Publication of CN111244189B publication Critical patent/CN111244189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种含NiO/SiC异质结的SiC MPS二极管,包括衬底,衬底上依次为n‑SiC缓冲层、n‑SiC漂移区,n‑SiC漂移区上端面覆盖有阳极,衬底下端面覆盖有阴极,n‑SiC漂移区上表面靠近阳极位置处间隔镶嵌有若干p‑NiO结区。本发明解决了现有技术中存在的SiC MPS二极管正向开启电压过高、通态电阻过大的问题。

Description

一种含NiO/SiC异质结的SiC MPS二极管
技术领域
本发明属于半导体器件技术领域,具体涉及一种含NiO/SiC异质结的SiC MPS二极管。
背景技术
碳化硅(SiC)材料具有禁带宽度大、热导率高、临界击穿电场强度高、饱和载流子漂移速度大及热稳定性好等特点,是制造功率半导体器件的理想材料。使用SiC制作的大功率器件同Si器件相比,通态压降更低、工作频率更高、功耗更低、体积更小以及更好的耐高温特性,更适用于电力电子电路。其中SiC MPS二极管既具有PIN的高阻断电压、低漏电流特点,又具有SBD的快开关速度、小开启电压等优点。应用在电力电子、开关电源电路中能同时兼顾高频率与低损耗,达到了改善电路性能的目的。
然而,由于SiC pn结正向开启电压较大,SiC MPS二极管中的pn结往往需要在较高的正向电压时才能向漂移区注入空穴。因此,SiC MPS二极管相较于普通SiC JBS二极管的优势仅在于具有较好的抗浪涌性能,其正向导通特性并无优势。
Josef Lutz等人2016年在文章《Various structures of 1200V SiC MPS diodemodels and their simulated surge current behavior in comparison tomeasurement》中通过研究发现,增加SiC MPS二极管中pin区的面积比例可以降低pin导通所需的正向电压,使二极管获得更高的电流密度。但增加pin区的面积比例会造成肖特基区面积比例下降,使得二极管在pin区域导通前的电流密度较低,造成SiC MPS二极管通态性能变差。
Na Ren等2019年在文章《1.2-kV 4H-SiC Merged PiN Schottky Diode WithImproved Surge Current Capability》中对SiC MPS二极管的进行了研究,通过优化p+区的面积比例与分布,将p+区的阳极制作为良好欧姆接触等方法,有效降低了SiC MPS二极管pin区导通所需的正向电压,明显提升了SiC MPS二极管的抗浪涌能力。但在SiC MPS二极管正向导通状态下,所集成的pin不能导通,SiC MPS二极管抗浪涌性能的提升总需以牺牲通态性能作为代价。
因此,针对上述技术问题,有必要提供一种高性能、高可行性的技术方案,用于改善SiC MPS二极管优良抗浪涌性能与优良通态性能之间难以同时兼顾的问题。
发明内容
本发明的目的是提供一种含NiO/SiC异质结的SiC MPS二极管,解决了现有技术中存在的SiC同质PIN结构开启电压过大的问题。
本发明所采用的技术方案是,一种含NiO/SiC异质结的SiC MPS二极管,包括衬底,衬底上依次为n-SiC缓冲层、n-SiC漂移区,n-SiC漂移区上端面覆盖有阳极,衬底下端面覆盖有阴极,n-SiC漂移区上表面靠近阳极位置处间隔镶嵌有若干p-NiO结区。
本发明的特点还在于,
p-NiO结区的下端面有p-SiC结区,p-SiC结区材料为p型SiC,p-SiC结区的结深为0.5μm,p-SiC结区的宽度为0.2μm-0.9μm。
p-NiO结区材料为p型NiO,p-NiO结区的厚度为0.5μm-5μm,p-NiO结区的宽度为0.5μm-10μm。
衬底材料为n型SiC,衬底的厚度为50μm-1mm,衬底的上下端表面积为1.0mm2-2.25cm2
n-SiC缓冲层的材料为n型SiC,n-SiC缓冲层的厚度为0.1μm-3.0μm,n-SiC缓冲层的上下端表面积为1.0mm2-2.25cm2
n-SiC漂移区的材料为n型SiC,n-SiC漂移区的厚度为1μm-100μm,n-SiC漂移区的上下端表面积为1.0mm2-2.25cm2
阳极包括阳极压焊块,阳极压焊块覆盖在阳极金属的上表面,阳极金属与所述n-SiC漂移区及p-NiO结区连接,阳极厚度为0.1μm-100μm。
阳极压焊块、阳极金属为Ti、Ni、W、Ta、Al、Ag、Cu或Au之一,或Ti、Ni、W、Ta、Al、Ag、Au、Cu中任意两种或多种的组合。
阴极包括阴极压焊块,阴极压焊块覆盖在阴极金属的下端面,阴极金属与所述衬底连接,阴极厚度为0.1μm-100μm。
阴极压焊块、阴极金属为Ti、Ni、W、Ta、Al、Ag、Cu或Au之一,或Ti、Ni、W、Ta、Al、Ag、Au、Cu中任意两种或多种的组合。
本发明的有益效果是,一种含NiO/SiC异质结的SiC MPS二极管,相比于传统SiCpn同质结结构,在功能上本发明NiO/SiC pn异质结结构具有更高的空穴注入能力以及更低的正向开启电压;应用在SiC混合PIN肖特基二极管中时,本发明能在开启过程降低MPS二极管器件中pin区的正向开启电压,又能在导通过程中增强PIN的空穴注入,改善因SiC同质pn结构正向开启电压较大导致的通态压降高与抗浪涌能力弱的问题,为SiC MPS二极管性能的提升提供可行的技术方案,具有良好的应用前景。
附图说明
图1是本发明含NiO/SiC异质结的SiC MPS二极管结构示意图;
图2是本发明另一种含有NiO/SiC异质结的SiC MPS二极管结构示意图。
图3是本发明NiO/SiC异质结IV特性曲线;
图中,1.n-SiC衬底,2.n-SiC缓冲层,3.n-SiC漂移区,4.p-NiO结区,5.阳极,6.阴极,7.p-SiC结区。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种含NiO/SiC异质结的SiC MPS二极管,结构如图1所示,包括衬底1,衬底1上依次为n-SiC缓冲层2、n-SiC漂移区3,n-SiC漂移区3上端面覆盖有阳极5,衬底1下端面覆盖有阴极6,n-SiC漂移区3上表面靠近阳极5位置处间隔镶嵌有若干p-NiO结区4。
如图2所示,p-NiO结区4下端面有p-SiC结区7,p-SiC结区7材料为p型SiC,p-SiC结区7的结深为0.5μm,p-SiC结区7的宽度为0.2μm-0.9μm。
其中,p-NiO结区4材料为p型NiO,p-NiO结区4的厚度为0.5μm-5μm,p-NiO结区4的宽度为0.5μm-10μm。
衬底1材料为n型SiC,衬底1的厚度为10.0μm-1mm,衬底1的上下端表面积为1.0mm2-2.25cm2
n-SiC缓冲层2的材料为n型SiC,n-SiC缓冲层2的厚度为0.1μm-3.0μm,n-SiC缓冲层2的上下端表面积为1.0mm2-2.25cm2
n-SiC漂移区3的材料为n型SiC,n-SiC漂移区3的厚度为1μm-100μm,n-SiC漂移区3的上下端表面积为1.0mm2-2.25cm2
阳极5包括阳极压焊块,阳极压焊块覆盖在阳极金属的上表面,阳极金属与所述n-SiC漂移区3及p-NiO结区4连接,阳极5厚度为0.1μm-100μm。阳极压焊块、阳极金属为Ti、Ni、W、Ta、Al、Ag、Cu或Au之一,或Ti、Ni、W、Ta、Al、Ag、Au、Cu中任意两种或多种的组合。
阴极6包括阴极压焊块,阴极压焊块覆盖在阴极金属的下端面,阴极金属与所述衬底1连接,阴极6厚度为0.1μm-100μm。阴极压焊块、阴极金属为Ti、Ni、W、Ta、Al、Ag、Cu或Au之一,或Ti、Ni、W、Ta、Al、Ag、Au、Cu中任意两种或多种的组合。
实施例1
下面以含NiO/SiC异质结的650V 4H-SiC MPS二极管为例,对本发明进行进一步的详细说明。
本发明一种含NiO/SiC异质结的SiC MPS二极管,结构如图1所示,包括衬底1,衬底1上依次为n-SiC缓冲层2、n-SiC漂移区3,n-SiC漂移区3上端面覆盖有阳极5,衬底1下端面覆盖有阴极6,n-SiC漂移区3上表面靠近阳极5位置处间隔镶嵌有若干p-NiO结区4。
其中,p-NiO结区4材料为p型NiO,p-NiO结区4的厚度为0.5μm,p-NiO结区4的宽度为0.5μm。
衬底1材料为n型SiC,衬底1的厚度为300μm,衬底1的上下端表面积为1.0mm2
n-SiC缓冲层2的材料为n型SiC,n-SiC缓冲层2的厚度为0.5μm,n-SiC缓冲层2的上下端表面积为1.0mm2
n-SiC漂移区3的材料为n型SiC,n-SiC漂移区3的厚度为6.5μm,n-SiC漂移区3的上下端表面积为1.0mm2
阳极5包括阳极压焊块,阳极压焊块覆盖在阳极金属的上表面,阳极金属与所述n-SiC漂移区3及p-NiO结区4连接,阳极5厚度为0.5μm。阳极压焊块、阳极金属为Ti、Ni。
阴极6包括阴极压焊块,阴极压焊块覆盖在阴极金属的下端面,阴极金属与所述衬底1连接,阴极6厚度为0.5μm。阴极压焊块、阴极金属为Al、Ag。
实施例2
下面以含NiO/SiC异质结的1200V 4H-SiC MPS二极管为例,对本发明进行进一步的详细说明。
本发明一种含NiO/SiC异质结的SiC MPS二极管,结构如图1所示,包括衬底1,衬底1上依次为n-SiC缓冲层2、n-SiC漂移区3,n-SiC漂移区3上端面覆盖有阳极5,衬底1下端面覆盖有阴极6,n-SiC漂移区3上表面靠近阳极5位置处间隔镶嵌有若干p-NiO结区4。
其中,p-NiO结区4材料为p型NiO,p-NiO结区4的厚度为0.5μm,p-NiO结区4的宽度为1.0μm。
衬底1材料为n型SiC,衬底1的厚度为300μm,衬底1的上下端表面积为12.25mm2
n-SiC缓冲层2的材料为n型SiC,n-SiC缓冲层2的厚度为0.5μm,n-SiC缓冲层2的上下端表面积为12.25mm2
n-SiC漂移区3的材料为n型SiC,n-SiC漂移区3的厚度为12μm,n-SiC漂移区3的上下端表面积为12.25mm2
阳极5包括阳极压焊块,阳极压焊块覆盖在阳极金属的上表面,阳极金属与所述n-SiC漂移区3及p-NiO结区4连接,阳极5厚度为0.8μm。阳极压焊块、阳极金属为Ti、Ni。
阴极6包括阴极压焊块,阴极压焊块覆盖在阴极金属的下端面,阴极金属与所述衬底1连接,阴极6厚度为0.8μm。阴极压焊块、阴极金属为Al、Ag。
实施例3
下面以含NiO/SiC异质结的2700V 4H-SiC MPS二极管为例,对本发明进行进一步的详细说明。
本发明一种含NiO/SiC异质结的SiC MPS二极管,结构如图1所示,包括衬底1,衬底1上依次为n-SiC缓冲层2、n-SiC漂移区3,n-SiC漂移区3上端面覆盖有阳极5,衬底1下端面覆盖有阴极6,n-SiC漂移区3上表面靠近阳极5位置处间隔镶嵌有若干p-NiO结区4。
其中,p-NiO结区4材料为p型NiO,p-NiO结区4的厚度为0.5μm,p-NiO结区4的宽度为2.0μm。
衬底1材料为n型SiC,衬底1的厚度为300μm,衬底1的上下端表面积为24mm2
n-SiC缓冲层2的材料为n型SiC,n-SiC缓冲层2的厚度为0.5μm,n-SiC缓冲层2的上下端表面积为24mm2
n-SiC漂移区3的材料为n型SiC,n-SiC漂移区3的厚度为31.3μm,n-SiC漂移区3的上下端表面积为24mm2
阳极5包括阳极压焊块,阳极压焊块覆盖在阳极金属的上表面,阳极金属与所述n-SiC漂移区3及p-NiO结区4连接,阳极5厚度为1.2μm。阳极压焊块、阳极金属为Ti、Ni。
阴极6包括阴极压焊块,阴极压焊块覆盖在阴极金属的下端面,阴极金属与所述衬底1连接,阴极6厚度为1.2μm。阴极压焊块、阴极金属为Al、Ag。
实施例4
下面以含NiO/SiC异质结的3300V 4H-SiC MPS二极管为例,对本发明进行进一步的详细说明。
本发明一种含NiO/SiC异质结的SiC MPS二极管,结构如图1所示,包括衬底1,衬底1上依次为n-SiC缓冲层2、n-SiC漂移区3,n-SiC漂移区3上端面覆盖有阳极5,衬底1下端面覆盖有阴极6,n-SiC漂移区3上表面靠近阳极5位置处间隔镶嵌有若干p-NiO结区4。
其中,p-NiO结区4材料为p型NiO,p-NiO结区4的厚度为1.0μm,p-NiO结区4的宽度为3.0μm。
衬底1材料为n型SiC,衬底1的厚度为300μm,衬底1的上下端表面积为36mm2
n-SiC缓冲层2的材料为n型SiC,n-SiC缓冲层2的厚度为0.5μm,n-SiC缓冲层2的上下端表面积为36mm2
n-SiC漂移区3的材料为n型SiC,n-SiC漂移区3的厚度为35μm,n-SiC漂移区3的上下端表面积为36mm2
阳极5包括阳极压焊块,阳极压焊块覆盖在阳极金属的上表面,阳极金属与所述n-SiC漂移区3及p-NiO结区4连接,阳极5厚度为1.6μm。阳极压焊块、阳极金属为Ti、Ni。
阴极6包括阴极压焊块,阴极压焊块覆盖在阴极金属的下端面,阴极金属与所述衬底1连接,阴极6厚度为1.6μm。阴极压焊块、阴极金属为Al、Ag。
实施例5
下面以含NiO/SiC异质结的6500V 4H-SiC MPS二极管为例,对本发明进行进一步的详细说明。
本发明一种含NiO/SiC异质结的SiC MPS二极管,结构如图1所示,包括衬底1,衬底1上依次为n-SiC缓冲层2、n-SiC漂移区3,n-SiC漂移区3上端面覆盖有阳极5,衬底1下端面覆盖有阴极6,n-SiC漂移区3上表面靠近阳极5位置处间隔镶嵌有若干p-NiO结区4。
其中,p-NiO结区4材料为p型NiO,p-NiO结区4的厚度为2.0μm,p-NiO结区4的宽度为10.0μm。
衬底1材料为n型SiC,衬底1的厚度为300μm,衬底1的上下端表面积为2.25cm2
n-SiC缓冲层2的材料为n型SiC,n-SiC缓冲层2的厚度为0.5μm,n-SiC缓冲层2的上下端表面积为2.25cm2
n-SiC漂移区3的材料为n型SiC,n-SiC漂移区3的厚度为60μm,n-SiC漂移区3的上下端表面积为2.25cm2
阳极5包括阳极压焊块,阳极压焊块覆盖在阳极金属的上表面,阳极金属与所述n-SiC漂移区3及p-NiO结区4连接,阳极5厚度为2.0μm。阳极压焊块、阳极金属为Ti、Ni。
阴极6包括阴极压焊块,阴极压焊块覆盖在阴极金属的下端面,阴极金属与所述衬底1连接,阴极6厚度为2.0μm。阴极压焊块、阴极金属为Al、Ag。
实施例6
下面以另一种含NiO/SiC异质结的1200V 4H-SiC MPS二极管为例,对本发明进行进一步的详细说明。
本发明另一种含NiO/SiC异质结的SiC MPS二极管,结构如图2所示,包括衬底1,衬底1上依次为n-SiC缓冲层2、n-SiC漂移区3,p-SiC结区7,n-SiC漂移区3上端面覆盖有阳极5,衬底1下端面覆盖有阴极6,n-SiC漂移区3上表面靠近阳极5位置处间隔镶嵌有若干p-NiO结区4。
其中,p-NiO结区4的材料为p型NiO,p-NiO结区4的厚度为0.5μm,p-NiO结区4的宽度为1.0μm。
衬底1材料为n型SiC,衬底1的厚度为300μm,衬底1的上下端表面积为12.25mm2
n-SiC缓冲层2的材料为n型SiC,n-SiC缓冲层2的厚度为0.5μm,n-SiC缓冲层2的上下端表面积为12.25mm2
n-SiC漂移区3的材料为n型SiC,n-SiC漂移区3的厚度为12μm,n-SiC漂移区3的上下端表面积为12.25mm2
p-SiC结区7的材料为p型SiC,p-SiC结区4的结深为0.5μm,p-SiC结区7的宽度为0.5μm。
阳极5包括阳极压焊块,阳极压焊块覆盖在阳极金属的上表面,阳极金属与所述n-SiC漂移区3及p-NiO结区4连接,阳极5厚度为0.8μm。阳极压焊块、阳极金属为Ti、Ni。
阴极6包括阴极压焊块,阴极压焊块覆盖在阴极金属的下端面,阴极金属与所述衬底1连接,阴极6厚度为0.8μm。阴极压焊块、阴极金属为Al、Ag。
由以上六个实施例可以看出含NiO/SiC异质结的SiC MPS二极管可以应用于不同的耐压等级。
如图3所示,是本发明一种含NiO/SiC异质结的SiC MPS二极管的IV特性曲线,可以看出NiO/SiC pn异质结的正向开启电压在1.3V-1.4V之间,明显低于SiC pn同质结。通过分析明显看出,本发明NiO/SiC异质结拥有更低的正向开启电压和更高的空穴注入能力,所以具有NiO/SiC异质结的SiC MPS二极管开通性能得到显著改善。

Claims (9)

1.一种含NiO/SiC异质结的SiC MPS二极管,其特征在于,包括衬底(1),衬底(1)上依次为n-SiC缓冲层(2)、n-SiC漂移区(3),n-SiC漂移区(3)上端面覆盖有阳极(5),衬底(1)下端面覆盖有阴极(6),n-SiC漂移区(3)上表面靠近阳极(5)位置处间隔镶嵌有若干p-NiO结区(4),所述p-NiO结区(4)的下端面有p-SiC结区(7),p-SiC结区(7)材料为p型SiC,p-SiC结区(7)的结深为0.5μm,p-SiC结区(7)的宽度为0.2μm-0.9μm。
2.根据权利要求1所述的一种含NiO/SiC异质结的SiC MPS二极管,其特征在于,所述p-NiO结区(4)材料为p型NiO,p-NiO结区(4)的厚度为0.5μm-5μm,p-NiO结区(4)的宽度为0.5μm-10μm。
3.根据权利要求1所述的一种含NiO/SiC异质结的SiC MPS二极管,其特征在于,所述衬底(1)材料为n型SiC,衬底(1)的厚度为100μm-1mm,衬底(1)的上下端表面积为1.0mm2-2.25cm2
4.根据权利要求1所述的一种含NiO/SiC异质结的SiC MPS二极管,其特征在于,所述n-SiC缓冲层(2)的材料为n型SiC,n-SiC缓冲层(2)的厚度为0.1μm-3.0μm,n-SiC缓冲层(2)的上下端表面积为1.0mm2-2.25cm2
5.根据权利要求1所述的一种含NiO/SiC异质结的SiC MPS二极管,其特征在于,所述n-SiC漂移区(3)的材料为n型SiC,n-SiC漂移区(3)的厚度为1μm-100μm,n-SiC漂移区(3)的上下端表面积为1.0mm2-2.25cm2
6.根据权利要求1所述的一种含NiO/SiC异质结的SiC MPS二极管,其特征在于,所述阳极(5)包括阳极压焊块,阳极压焊块覆盖在阳极金属的上表面,阳极金属与所述n-SiC漂移区(3)及p-NiO结区(4)连接,阳极(5)厚度为0.1μm-100μm。
7.根据权利要求6所述的一种含NiO/SiC异质结的SiC MPS二极管,其特征在于,所述阳极压焊块、阳极金属为Ti、Ni、W、Ta、Al、Ag、Cu或Au之一,或Ti、Ni、W、Ta、Al、Ag、Au、Cu中任意多种的组合。
8.根据权利要求1~5任一项所述的一种含NiO/SiC异质结的SiC MPS二极管,其特征在于,所述阴极(6)包括阴极压焊块,阴极压焊块覆盖在阴极金属的下端面,阴极金属与所述衬底(1)连接,阴极(6)厚度为0.1μm-100μm。
9.根据权利要求8所述的一种含NiO/SiC异质结的SiC MPS二极管,其特征在于,所述阴极压焊块、阴极金属为Ti、Ni、W、Ta、Al、Ag、Cu或Au之一,或Ti、Ni、W、Ta、Al、Ag、Au、Cu中任意多种的组合。
CN202010065699.5A 2020-01-20 2020-01-20 一种含NiO/SiC异质结的SiC MPS二极管 Active CN111244189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010065699.5A CN111244189B (zh) 2020-01-20 2020-01-20 一种含NiO/SiC异质结的SiC MPS二极管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010065699.5A CN111244189B (zh) 2020-01-20 2020-01-20 一种含NiO/SiC异质结的SiC MPS二极管

Publications (2)

Publication Number Publication Date
CN111244189A CN111244189A (zh) 2020-06-05
CN111244189B true CN111244189B (zh) 2022-08-26

Family

ID=70876444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010065699.5A Active CN111244189B (zh) 2020-01-20 2020-01-20 一种含NiO/SiC异质结的SiC MPS二极管

Country Status (1)

Country Link
CN (1) CN111244189B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108717945A (zh) * 2018-05-24 2018-10-30 西安理工大学 一种具有NiO/SiC异质发射结的SiC光触发晶闸管
CN109920857A (zh) * 2019-03-19 2019-06-21 南方科技大学 一种肖特基二极管及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117739B2 (en) * 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
JP6168806B2 (ja) * 2013-03-22 2017-07-26 株式会社東芝 半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108717945A (zh) * 2018-05-24 2018-10-30 西安理工大学 一种具有NiO/SiC异质发射结的SiC光触发晶闸管
CN109920857A (zh) * 2019-03-19 2019-06-21 南方科技大学 一种肖特基二极管及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1.2-kV 4H-SiC Merged PiN Schottky Diode With Improved Surge Current Capability;Jiupeng Wu et al;《IEEE JOURNAL OF EMERGING ANDSELECTED TOPICS IN POWER ELECTRONICS》;20190930;第7卷(第3期);全文 *

Also Published As

Publication number Publication date
CN111244189A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
KR101309674B1 (ko) 절연 게이트형 바이폴라 트랜지스터와 그 제조방법
US7473965B2 (en) Structure of a high breakdown voltage element for use in high power applications
CN104701361A (zh) 半导体装置
CN101976687B (zh) 一种低功耗快恢复金属氧化物半导体二极管
CN104916670A (zh) 半导体装置
CN107591455B (zh) 一种SiC沟槽型台阶状结势垒肖特基二极管
CN107195678B (zh) 一种载流子存储增强的超结igbt
CN101110450A (zh) 外延型软恢复二极管
CN112420694A (zh) 集成反向肖特基续流二极管的可逆导碳化硅jfet功率器件
CN114551601B (zh) 高抗浪涌电流能力的集成栅控二极管的碳化硅mosfet
CN102709317B (zh) 一种低开启电压二极管
CN104916663A (zh) 半导体装置
CN102593154A (zh) 一种具有p型埋层结构的槽栅二极管
US7391057B2 (en) High voltage silicon carbide devices having bi-directional blocking capabilities
CN107393970B (zh) 一种碳化硅结势垒二极管
CN111244189B (zh) 一种含NiO/SiC异质结的SiC MPS二极管
CN107134488B (zh) 一种载流子存储增强的绝缘栅双极型晶体管
TW202103330A (zh) 碳化矽半導體元件
CN111180528A (zh) 一种SiC肖特基二极管三阶斜台面结终端结构
CN107331704B (zh) 一种栅压控制晶闸管器件
CN103311315B (zh) 具有肖特基接触终端的快恢复二极管
CN112599587B (zh) 一种具有缓冲层结构的半导体器件
CN112242449B (zh) 一种基于SiC衬底沟槽型MPS二极管元胞结构
CN108735737A (zh) 半导体装置及半导体装置的制造方法
CN112216746B (zh) 碳化硅半导体器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant