CN111239118A - 基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法 - Google Patents

基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法 Download PDF

Info

Publication number
CN111239118A
CN111239118A CN202010074478.4A CN202010074478A CN111239118A CN 111239118 A CN111239118 A CN 111239118A CN 202010074478 A CN202010074478 A CN 202010074478A CN 111239118 A CN111239118 A CN 111239118A
Authority
CN
China
Prior art keywords
solution
alkaline phosphatase
organophosphorus pesticide
fluorescence
ascorbic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010074478.4A
Other languages
English (en)
Inventor
封亚辉
戴东情
侯建军
卢志刚
张秀
李海敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Customs Industrial Product Testing Center
Original Assignee
Nanjing Customs Industrial Product Testing Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Customs Industrial Product Testing Center filed Critical Nanjing Customs Industrial Product Testing Center
Priority to CN202010074478.4A priority Critical patent/CN111239118A/zh
Publication of CN111239118A publication Critical patent/CN111239118A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法。所述分析方法包括以下步骤:将有机磷农药与碱性磷酸酶混合反应得到混合溶液,然后在混合溶液中加入L‑抗坏血酸2‑磷酸倍半镁盐水合物溶液、邻苯二胺溶液和Tris‑HCl缓冲溶液进行反应,记录溶液荧光光谱,通过荧光强度得出有机磷农药的浓度。本发明不需要借助昂贵精密仪器检测,没有严格复杂的实验操作过程,简化了检测方法,极大地降低了有机磷农药检测成本,本发明具有运行成本低、检测快速简便、选择性好等优点。

Description

基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷 农药的分析方法
技术领域
本发明涉及分析检测领域,具体涉及基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法。
背景技术
药残留一直是当代农业生产和食品安全中最热门的问题之一。作为农药的一类,有机磷农药(OPPs)由于易于制备,成本低和杀虫效率高而在世界范围内广泛应用。然而,一些不合理使用会导致环境中水、土壤和大气的严重污染,引发一系列不可控制的食品安全和人类健康问题。农药的高毒性在于其可以抑制乙酰胆碱酯酶(AChE)、碱性磷酸酶(ALP)的活性。
传统检测有机磷农药的方法主要有液相色谱(LC),气相色谱(GC),气相色谱与质谱相结合测定法(GC/MS),酶联免疫吸附测定(ELISA)测试等。这些方法中的大多数具有耗时且操作复杂的缺点。基于酶抑制型的生物传感用于对OPPs检测,具有灵敏度高、分析速度快、成本低等优点。因此,开发一些易于操作、价格低廉的新型酶生物传感技术,用于实现对OPPs的高灵敏检测对环境保护、食品安全及人类健康都具有着重要而深远的意义。由于OPPs可以更快速和简单地检测,其已被广泛用于荧光中,比色,电化学,表面增强拉曼等。在这些方法中,荧光方法更灵敏和方便。然而,大多数荧光测定基于纳米材料或荧光分子之间的荧光共振能量转移效应(FRET),材料制备复杂耗时且表征繁琐,因此需要构建一种成本低、操作简单、无标记、无繁琐修饰过程的检测方法。
发明内容
本发明是针对上次存在的技术问题提供了一种基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法。
一种基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法,所述分析方法包括以下步骤:
第一步:将不同浓度的有机磷农药分别与碱性磷酸酶进行混合反应,得到对应的混合溶液;在所述混合溶液中加入L-抗坏血酸2-磷酸倍半镁盐水合物溶液,苯二胺溶液和Tris-HCl缓冲溶液,30~40℃下反应得到对应的混合物溶液,记录各混合物溶液的荧光光谱强度,建立荧光光谱强度与有机磷农药浓度的线性回归方程;
第二步,将待测样品经预处理后得到溶液,将该溶液与碱性磷酸酶进行混合反应,得到混合溶液;在所述混合溶液中加入L-抗坏血酸2-磷酸倍半镁盐水合物溶液,邻苯二胺溶液和Tris-HCl缓冲溶液,30~40℃下反应得到对应的混合物溶液,记录混合物溶液的荧光光谱强度,将荧光强度代入线性回归方程,即可得到待测样品中有机磷农药的浓度。
本发明技术方案中:第一步中不同浓度的有机磷农药分别为20pg/mL、50pg/mL、500pg/mL、5ng/mL、50ng/mL、500ng/mL和1000ng/mL。
本发明技术方案中:碱性磷酸酶的浓度为1.8mU/mL~20mU/mL。
本发明技术方案中:所述磷农药与碱性磷酸酶的体积比0.45~1.5:1。
本发明技术方案中:所述机L-抗坏血酸2-磷酸倍半镁盐水合物溶液的浓度为0.5mM~6.25mM,邻苯二胺溶液的浓度为2.5-15mM。
本发明技术方案中:所述Tris-HCl缓冲溶液组成为:15~25mM Tris和15~25mMMgCl2,且该缓缓液的pH值为7.0~9.5。
本发明技术方案中:所述的有机磷农药为毒死蜱、硫磷或甲基对硫磷。
本发明技术方案中:碱性磷酸酶:L-抗坏血酸2-磷酸倍半镁盐水合物溶液:邻苯二胺溶液:Tris-HCl缓冲溶液的体积比为1:0.5~3:0.5~3:5~8。
本发明技术方案中:碱性磷酸酶在碱性条件下催化底物L-抗坏血酸2-磷酸倍半镁盐水合物,产生L-抗坏血酸(AA),L-抗坏血酸与邻苯二胺(OPD)发生反应,生成具有喹喔啉结构的荧光物质,在425nm处出现强的荧光发射峰;当有机磷农药存在时,有机磷农药会抑制碱性磷酸酶的活性,导致L-抗坏血酸产量降低,生成的荧光产物浓度降低,荧光强度急剧下降,因而是否存在有机磷农药以及含有不同浓度的有机磷农药会导致反应溶液有不同的颜色变化,当含有有机磷农药时,随着有机磷农药浓度的上升,在紫外灯照射下,反应溶液颜色由亮蓝色渐变为浅蓝色,即可达到可视化检测。
有益效果:与现有技术相比,本发明具有如下的特色及优点:本发明原理简单、实验周期短、所用原料成本较低,无需任何大型仪器,在相同条件下可以检测出更低含量的待测物。如图1,在没有农药存在的情况下,碱性磷酸酶将底物L-抗坏血酸2-磷酸倍半镁盐水合物去磷酸化,生成L-抗坏血酸。L-抗坏血酸进一步与邻苯二胺反应,生成喹喔啉衍生物,在425nm处有强烈荧光发射峰。在有机磷农药存在的条件下,ALP的活性受到抑制,AA的形成受到阻碍,生成的荧光产物浓度降低,导致荧光信号下降。本发明不需要借助昂贵精密仪器检测,简化了检测方法,极大地降低了有机磷农药检测成本,本发明具有运行成本低、检测快速简便、选择性好等优点。
附图说明
图1显示了基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法的流程图;
图2显示了基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法的原理图。
其中:图2A为OPD-AA混合溶液的荧光激发和发射光谱;图2B为OPD-AA,AA, OPD的荧光光谱,图2C为OPD-AA,AA,OPD的紫外吸收光谱。
图3为不同浓度存在下体系的荧光光谱,紫外灯照射的照片以及荧光强度与浓度的线性关系。
其中:图3A显示了不同浓度ALP存在下体系的荧光光谱;图3B显示了不同浓度ALP存在下,对应溶液在紫外灯下的照片;图3C显示了不同浓度ALP存在下溶液的荧光强度变化图;图3D显示了体系荧光强度与ALP浓度的线性关系图。
图4为不同浓度的有机磷农药的检测结果图。
其中:图4A显示了不同浓度毒死蜱存在下体系的荧光光谱;图4B显示了不同浓度毒死蜱存在下,对应溶液在紫外灯下的照片;图4C显示了不同浓度毒死蜱存在下体系的荧光强度变化图;图4D显示了荧光强度与毒死蜱浓度对数之间的线性关系图。
具体实施方式
下面通过具体的实施例和附图对本发明进一步说明,应当指出,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干变型和改进,这些也应视为属于本发明的保护范围。
本实验中用到的试剂和仪器:
L-抗坏血酸(AA),邻苯二甲胺(OPD),L-抗坏血酸2-磷酸倍半镁盐水合物(AAP),碱性磷酸酶(ALP),三(羟甲基)氨基甲烷(Tris)购自Aladdin Industrial Corporation (中国上海)。有机磷农药和有机氯农药标准品购自国家标准中心(中国北京)。反应缓冲液由20mM Tris溶液(pH 9.0,20mM MgCl2)组成。
在荧光分光光度计(Fluoromax-4,Horiba Jobin Yvon,Japan)上记录荧光吸收光谱。紫外-可见光检测在UV-vis分光光度计(Cary 100,Agilent,Singapore)上进行。可视化检测在紫外线灯(ZF-7A,16W)上进行。
本发明实施例中有机磷农药统一选用的是毒死蜱,但本申请的方案在具体应用时不限于毒死蜱,还可用于对硫磷、甲基对硫磷等绝大多数有机磷农药。
本发明实施例中的Tris-HCl缓冲溶液为:20mM Tris、20mM MgCl2、pH 9.0。
实施例1碱性磷酸酶触发的AA与OPD之间的荧光反应
向20μL ALP溶液中(2mU/mL)溶液中加入20μL AAP溶液(1mM),20μL OPD 溶液(5mM),将140μL Tris-HCl缓冲液加入到上述混合液中,并确保最终体积为200 μL。将混合物置于37℃下温育120分钟,在室温下记录荧光光谱。图2A显示了AA和 OPD混合液的荧光激发和发射光谱(插图分别是在日光和紫外灯下拍摄的照片)。图2B 显示单独的AA和OPD都没有荧光,两者共存时(OPD-AA)显示高强度荧光。图2C 显示了AA,OPD和OPD-AA的紫外-可见吸收光谱。
实施例2不同浓度的ALP酶的检测
将20μL的AAP溶液(1mM)、20μL的OPD溶液(5mM)分别和20μL 0,0.1,0.3, 0.5,1,1.5,2,3,4,6,8,10,15,20和40mU/mL的ALP溶液混合,向混合液中加入140μL Tris-HCl缓冲液至最终体积为200μL,置于37℃中孵育120分钟,在室温下记录该混合溶液的荧光光谱。实验结果如图3所示。图3A和3C显示了加入不同浓度的ALP后体系的荧光光谱和荧光强度变化图。图3B显示了在不同浓度的ALP存在下,体系对应的紫外灯下的照片。图3D显示了体系的荧光强度与ALP浓度的拟合曲线,在1.5~10 mU/mL范围内,荧光强度与有机磷农药的浓度对数呈现良好的线性关系。
实施例3不同浓度的有机磷农药检测
将含有20μL ALP(2mU/mL)分别和10uL 20pg/mL、10uL 50pg/mL、10uL 500 pg/mL、10uL 5ng/mL、10uL 50ng/mL、10uL 500ng/mL、10uL 1000ng/mL毒死蜱标准液混合并置于37℃中孵育45分钟后,将20μL的AAP溶液(1mM)、20μL的OPD 溶液(5mM)和130μL Tris-HCl缓冲液分别加入上述混合物中至最终体积为200μL, 37℃下温育120分钟。在室温下记录该混合溶液的荧光光谱。实验结果图4A和4C显示了在各种浓度的毒死蜱存在下体系的荧光光谱和荧光强度变化图(a)0,(b)20pg/ mL,(c)50pg/mL(d)500pg/mL,(e)5ng/mL,(f)50ng/mL,(g)500ng/mL, (h)1000ng/mL。图4B显示了在不同浓度的毒死蜱存在下,体系对应的紫外灯下的照片。图4D显示了体系的荧光强度与毒死蜱浓度对数值的拟合曲线;在20pg/mL~1000ng/mL范围内,荧光强度与毒死蜱浓度对数呈现良好的线性关系,线性方程为F= -152963logCchlorpyrifos+796209,R2=0.997:检测限是15.03pg/mL。
实施例4
为了进一步探究该检测方法的实际应用性,从农贸市场得到韭菜和芹菜实际样品(不含毒死蜱),加入乙腈和少量氯化钠,然后以13000rpm离心30分钟,以除去不溶物。随后,使用0.22微米硝酸纤维素膜过滤器过滤,得到待检测溶液。然后,向3个水样中分别加入已知浓度的毒死蜱,配置成毒死蜱为0.5ng/mL、5ng/mL和50ng/mL 溶液,用于进一步的测定实验。将20μL ALP(2mU/mL)与10uL含有不同浓度的 OPPs水样混合并置于37℃中孵育45分钟后,将20μL的AAP溶液(1mM)、20μL的 OPD溶液(5mM)和130μL Tris-HCl缓冲液分别加入上述混合物中至最终体积为200μL,温育120分钟。在室温下记录该混合溶液的荧光光谱。利用荧光光谱最大荧光强度处的荧光强度值,并将检测结果与标准曲线对比,得到蔬菜中毒死蜱的残留量。实验结果如表1所示。准确率为94.36%~107.09%,相对标准偏差为4.79%~10.06%。这些结果表明可接受的回收率和相对标准偏差,表明本发明的方法具有良好的性能,可用于检测实际蔬菜中的有机磷农药。
表1
Figure BDA0002378136940000051
上述仅为本发明优选的实施例,并不限制于本发明。对于所属领域的技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或变动。这里无需也无法对所有的实施例来举例说明。而由此方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之。

Claims (9)

1.基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法,其特征在于:所述分析方法包括以下步骤:
第一步:将不同浓度的有机磷农药分别与碱性磷酸酶进行混合反应,得到对应的混合溶液;在所述混合溶液中加入L-抗坏血酸2-磷酸倍半镁盐水合物溶液,苯二胺溶液和Tris-HCl缓冲溶液,30~40℃下反应得到对应的混合物溶液,记录各混合物溶液的荧光光谱强度,建立荧光光谱强度与有机磷农药浓度的线性回归方程;
第二步,将待测样品经预处理后得到溶液,将该溶液与碱性磷酸酶进行混合反应,得到混合溶液;在所述混合溶液中加入L-抗坏血酸2-磷酸倍半镁盐水合物溶液,邻苯二胺溶液和Tris-HCl缓冲溶液,30~40℃下反应得到对应的混合物溶液,记录混合物溶液的荧光光谱强度,将荧光强度代入线性回归方程,即可得到待测样品中有机磷农药的浓度。
2.根据权利要求1所述的分析方法,其特征在于:第一步中不同浓度的有机磷农药分别为20pg/mL、50pg/mL、500pg/mL、5ng/mL、50ng/mL、500ng/mL和1000ng/mL。
3.根据权利要求1所述的分析方法,其特征在于:碱性磷酸酶的浓度为1.8mU/mL~20mU/mL。
4.根据权利要求1所述的分析方法,其特征在于:所述磷农药与碱性磷酸酶的体积比0.45~1.5:1。
5.根据权利要求1所述的分析方法,其特征在于:所述机L-抗坏血酸2-磷酸倍半镁盐水合物溶液的浓度为0.5mM~6.25mM,邻苯二胺溶液的浓度为2.5-15mM。
6.根据权利要求1所述的分析方法,其特征在于:所述Tris-HCl缓冲溶液组成为:15~25mM Tris和15~25mM MgCl2,且该缓冲液的pH 7.0~9.5。
7.根据权利要求1所述的分析方法,其特征在于:所述的有机磷农药为毒死蜱、硫磷或甲基对硫磷。
8.根据权利要求1所述的分析方法,其特征在于:碱性磷酸酶:L-抗坏血酸2-磷酸倍半镁盐水合物溶液:邻苯二胺溶液:Tris-HCl缓冲溶液的体积比为1:0.5~3:0.5~3:5~8。
9.根据权利要求1所述的分析方法,其特征在于:碱性磷酸酶在碱性条件下催化底物L-抗坏血酸2-磷酸倍半镁盐水合物,产生L-抗坏血酸,L-抗坏血酸与邻苯二胺发生反应,生成具有喹喔啉结构的荧光物质,在425nm处出现强的荧光发射峰;当有机磷农药存在时,有机磷农药会抑制碱性磷酸酶的活性,导致L-抗坏血酸产量降低,生成的荧光产物浓度降低,荧光强度急剧下降,因而是否存在有机磷农药以及含有不同浓度的有机磷农药会导致反应溶液有不同的颜色变化,当含有有机磷农药时,随着有机磷农药浓度的上升,在紫外灯照射下,反应溶液颜色由亮蓝色渐变为浅蓝色,即可达到可视化检测。
CN202010074478.4A 2020-01-22 2020-01-22 基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法 Pending CN111239118A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010074478.4A CN111239118A (zh) 2020-01-22 2020-01-22 基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010074478.4A CN111239118A (zh) 2020-01-22 2020-01-22 基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法

Publications (1)

Publication Number Publication Date
CN111239118A true CN111239118A (zh) 2020-06-05

Family

ID=70874916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010074478.4A Pending CN111239118A (zh) 2020-01-22 2020-01-22 基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法

Country Status (1)

Country Link
CN (1) CN111239118A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965150A (zh) * 2020-07-30 2020-11-20 济南大学 一种基于原位生成的2,3-二氨基吩嗪荧光检测碱性磷酸酶的方法
CN112730367A (zh) * 2020-12-30 2021-04-30 四川农业大学 一种基于便携式智能终端的多信号光谱传感平台对碱性磷酸酶的测定方法及装置
CN113433103A (zh) * 2021-06-29 2021-09-24 中国农业大学 一种检测2,4-二氯苯氧乙酸的方法
CN115931786A (zh) * 2022-08-25 2023-04-07 南京农业大学 一种用于检测有机磷农药的双信号传感器及其制备方法和应用
WO2023159532A1 (zh) * 2022-02-24 2023-08-31 江苏大学 一种基于荧光传感薄膜的微流体芯片检测有机磷农药的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136706A (zh) * 2015-08-19 2015-12-09 江苏省检验检疫科学技术研究院 一种检测纺织品中有机磷农药的方法
CN107607507A (zh) * 2017-09-06 2018-01-19 吉林大学 一种有机磷农药残留的荧光检测方法
CN107937480A (zh) * 2017-11-09 2018-04-20 安徽师范大学 一种荧光生物传感器、制备方法及其检测有机磷农药的应用
CN109270041A (zh) * 2018-10-29 2019-01-25 济南大学 一种定量检测碱性磷酸酶活性的方法
CN110174396A (zh) * 2019-05-15 2019-08-27 济南大学 一种比色和电致发光双模式适配体传感器及测定马拉硫磷的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136706A (zh) * 2015-08-19 2015-12-09 江苏省检验检疫科学技术研究院 一种检测纺织品中有机磷农药的方法
CN107607507A (zh) * 2017-09-06 2018-01-19 吉林大学 一种有机磷农药残留的荧光检测方法
CN107937480A (zh) * 2017-11-09 2018-04-20 安徽师范大学 一种荧光生物传感器、制备方法及其检测有机磷农药的应用
CN109270041A (zh) * 2018-10-29 2019-01-25 济南大学 一种定量检测碱性磷酸酶活性的方法
CN110174396A (zh) * 2019-05-15 2019-08-27 济南大学 一种比色和电致发光双模式适配体传感器及测定马拉硫磷的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DAN ZHAO ET AL.: "Fluorescence Immunoassay Based on the Alkaline Phosphatase Triggered in Situ Fluorogenic Reaction of o-Phenylenediamine and Ascorbic Acid", 《ANAL. CHEM.》 *
FRANCO MAZZEI ET AL.: "Alkaline phosphatase inhibition based electrochemical sensors for the detection of pesticides", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 *
冯春梁 等: "催化动力学光度法研究氧化乐果对碱性磷酸酶的抑制作用", 《平顶山学院学报》 *
冯春梁 等: "电位型有机磷农药传感器的制备及对硫磷的测试", 《辽宁师范大学学报(自然科学版)》 *
单敏: "毒死蜱、百菌清、丁草胺对土壤微生物和土壤酶的影响", 《万方数据库》 *
李宏观 等: "毒死蜱和重金属对金海沉积物碱性磷酸酶和过氧化氢酶活性的影响", 《海洋湖沼通报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965150A (zh) * 2020-07-30 2020-11-20 济南大学 一种基于原位生成的2,3-二氨基吩嗪荧光检测碱性磷酸酶的方法
CN111965150B (zh) * 2020-07-30 2022-12-20 济南大学 一种基于原位生成的2,3-二氨基吩嗪荧光检测碱性磷酸酶的方法
CN112730367A (zh) * 2020-12-30 2021-04-30 四川农业大学 一种基于便携式智能终端的多信号光谱传感平台对碱性磷酸酶的测定方法及装置
CN112730367B (zh) * 2020-12-30 2022-07-15 四川农业大学 一种基于便携式智能终端的多信号光谱传感平台对碱性磷酸酶的测定方法及装置
CN113433103A (zh) * 2021-06-29 2021-09-24 中国农业大学 一种检测2,4-二氯苯氧乙酸的方法
WO2023159532A1 (zh) * 2022-02-24 2023-08-31 江苏大学 一种基于荧光传感薄膜的微流体芯片检测有机磷农药的方法
CN115931786A (zh) * 2022-08-25 2023-04-07 南京农业大学 一种用于检测有机磷农药的双信号传感器及其制备方法和应用
CN115931786B (zh) * 2022-08-25 2024-03-15 南京农业大学 一种用于检测有机磷农药的双信号传感器及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN111239118A (zh) 基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法
Tong et al. Aggregation-induced emission of luminol: a novel strategy for fluorescence ratiometric detection of ALP and As (V) with high sensitivity and selectivity
Yang et al. A fluorescein-based fluorogenic and chromogenic chemodosimeter for the sensitive detection of sulfide anion in aqueous solution
Zhang et al. Chemiluminescence flow-injection analysis of captopril applying a sensitized rhodamine 6G method
Güler et al. Speciation of selenium in vitamin tablets using spectrofluorometry following cloud point extraction
CN110320187B (zh) 基于二氧化锰纳米片的比率型荧光传感器检测有机磷农药
CN112525873B (zh) 一种用于检测微囊藻毒素-lr的荧光化学传感器及制备方法
CN111323405B (zh) 基于荧光分子OliGreen响应构建的有机磷农药活性检测的方法
RU2135586C1 (ru) Способ стандартизации химического анализа (варианты), набор для проведения стандартизации атф биолюминесцентного анализа
CN108489954B (zh) 基于双发射荧光探针的碱性磷酸酶及砷酸根检测方法
CN110927153A (zh) 一种定量或半定量检测尿液中碘离子浓度的方法
Xu et al. Quantitative determination of AI-2 quorum-sensing signal of bacteria using high performance liquid chromatography–tandem mass spectrometry
Chang et al. Determination of L-cysteine base on the reversion of fluorescence quenching of calcein by copper (II) ion
CN112179882A (zh) 在农田环境中利用MOFs@QDs材料检测有机磷农药的方法
Goldenson Detection of nerve gases by chemiluminescence
CN107589099A (zh) 基于金纳米团簇的6‑巯基嘌呤检测方法及其试剂盒
Toribara et al. Analytical chemistry of micro quantities of beryllium
Fujiwara et al. Luminol chemiluminescence with heteropoly acids and its application to the determination of arsenate, germanate, phosphate and silicate by ion chromatography
CN109536574A (zh) 一种简易检测凝血酶的比色法
CN111829999B (zh) 钙钛矿荧光微球和多巴胺体系的应用方法
Alesso et al. Solid surface fluorescence methodology for fast monitoring of 2, 4-dichlorophenoxyacetic acid in seed samples
CN107941773B (zh) 一种基于荧光分子的内毒素的检测方法
Lin et al. [51] A rapid, sensitive fluorometric assay for avidin and biotin
CA2231191A1 (en) Improved chemiluminescent 1,2-dioxetanes
CN106290275B (zh) 利用分子荧光差异加标测定蛋黄、vb2药片中核黄素的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200605