CN107937480A - 一种荧光生物传感器、制备方法及其检测有机磷农药的应用 - Google Patents
一种荧光生物传感器、制备方法及其检测有机磷农药的应用 Download PDFInfo
- Publication number
- CN107937480A CN107937480A CN201711094717.7A CN201711094717A CN107937480A CN 107937480 A CN107937480 A CN 107937480A CN 201711094717 A CN201711094717 A CN 201711094717A CN 107937480 A CN107937480 A CN 107937480A
- Authority
- CN
- China
- Prior art keywords
- solution
- culture
- organophosphorus pesticide
- preparation
- polyt30
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/26—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/902—Oxidoreductases (1.)
- G01N2333/90219—Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
- G01N2333/90222—Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3) in general
- G01N2333/90225—Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3) in general with a definite EC number (1.10.3.-)
- G01N2333/90229—Catechol oxidase, i.e. Tyrosinase (1.10.3.1)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明提供了一种荧光生物传感器、制备方法及其检测有机磷农药的应用,使用携带聚胸腺嘧啶单链DNA为模板的铜纳米粒子发光作用,利用酪氨酸酶猝灭铜纳米粒子的发光,加入有机磷农药抑制酪氨酸酶活性的现象,制备出基于携带胸腺嘧啶DNA为模板的铜纳米粒子与酪氨酸酶和有机磷农药构建荧光传感器,实现了对有机磷农药灵敏性、特异性的检测。与现有技术相比,本发明使用的是无标记的DNA,操作简单,成本很低,避免任何化学标记和修饰。通过抑制酶活性,能够制备出检测有机磷农药的传感器。结果显示此传感器对有机磷农药有0.1ng/L到1000ng/L有灵敏的检测,且具有操作简单,灵敏度高,检测限低。
Description
技术领域
本发明属于荧光传感器制备技术领域,具体涉及一种荧光生物传感器、制备方法及其检测有机磷农药的应用,是一种基于无标记的携带聚胸腺嘧啶的单链DNA为模板的铜纳米粒子体系构建的荧光生物传感器,在检测有机磷农药的应用。
背景技术
有机磷农药(OPs)广泛存在于食品和环境中,具高毒性,Ops残留能通过空气、水和土壤进入食物链,对人类和动物产生健康威胁,能够引起严重的临床并发症包括呼吸道损伤,瘫痪甚至死亡,因此,发展简单,敏感,快速,高效,可靠的测定方法,显得尤为迫切。
目前已经存在方法例如液/气色谱-质谱光谱法,免疫测定法,表面增强拉曼光谱,电化学等方法,仪器较为复杂,昂贵,且耗时,对于有机磷农药在实际样品中的检测多涉及复杂和耗时冗长的检测过程,或是涉及到外部荧光信号分子的标记,因此开发高选择性、高灵敏性、简单无标记的荧光生物传感器检测有机磷农药至关重要。
发明内容
本发明的目的在于提供一种荧光生物传感器及其制备方法,基于无标记的携带聚胸腺嘧啶单链DNA为模板的铜纳米粒子发光与有机磷农药抑制酪氨酸酶活性构建的荧光生物传感器,利用无标记的携带聚胸腺嘧啶单链DNA模板,产生铜纳米粒子发光体,构建由有机磷农药抑制酪氨酸酶活性的荧光传感器。
本发明的另一目的在于提供一种荧光生物传感器检测机磷农药的应用,利用制备的荧光生物传感器,不同浓度的有机磷农药荧光强度不同,构建线性关系,实现了对有机磷农药灵敏性、特异性的检测。
本发明提供的一种荧光生物传感器的制备方法,包括以下步骤:
1)、将PolyT30-DNA溶液加入缓冲溶液中,加入抗坏血酸钠溶液,培养后,加入CuSO4溶液,继续培养;
2)、向步骤1)所得体系中加入酪氨酸酶溶液和有机磷农药的混合溶液,培养,制备信号“打开”的荧光生物传感器。
上述制备方法中,PolyT30-DNA溶液:缓冲溶液:抗坏血酸钠溶液:CuSO4溶液:酪氨酸酶溶液:有机磷农药体积比为2:88:50:50:10。
所述PolyT30-DNA溶液制备方法为:将PolyT30-DNA序列溶解在10mM MOPSPH=7.6的缓冲溶液中,PolyT30-DNA基因序列的浓度为1μM。
进一步的,所述PolyT30-DNA序列为携带聚胸腺嘧啶的单链DNA序列:PolyT30:TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT。
步骤1)中第一步培养为20℃-50℃培养5-10min,第二步培养是指在20℃-50℃培养10-30min。
步骤1)中所述抗坏血酸溶液浓度为8.0mM溶液,所述硫酸铜溶液浓度为800μM。
步骤1)具体为:将2μL的PolyT30-DNA溶液加入88μL的10mM MOPS(3-(N-吗啉基)丙磺酸)PH=7.6的缓冲溶液中,然后加入50μL抗坏血酸溶液,37℃培养10min后,加入50μL的硫酸铜溶液,20℃-50℃培养10-30min。
步骤2)所述培养为:20℃-50℃培养10-30min。
步骤2)具体为:向步骤1)体系中加入10μL酪氨酸酶和有机磷农药混合溶液,20℃-50℃培养10-30min。
步骤2)所述酪氨酸酶和有机磷农药混合溶液制备方法为:将5μL酪氨酸酶溶液与5μL有机磷农药混合,4℃混合培养10-50min。
步骤2)中所述酪氨酸酶溶液浓度4U/mL,有机磷农药浓度100ng/L。
本发明提供的一种荧光生物传感器,采用上述方法制备得到。
本发明提供的一种荧光生物传感器检测机磷农药的应用。
具体检测方法为:
1)、将PolyT30-DNA溶液加入缓冲溶液中,加入抗坏血酸钠溶液,培养后,加入CuSO4溶液,继续培养;
2)、向步骤1)所得体系中分别加入酪氨酸酶溶液和不同浓度有机磷农药的混合溶液,培养,不同浓度的有机磷荧光强度不同,构建线性关系,实现了对有机磷农药检测。
本发明提供的无标记的携带聚胸腺嘧啶单链DNA为模板的铜纳米粒子发光与酪氨酸酶和有机磷农药构建的荧光生物传感器,可应用于有机磷农药的检测。本发明使用携带聚胸腺嘧啶单链DNA为模板的铜纳米粒子发光作用,利用酪氨酸酶猝灭铜纳米粒子的发光,加入有机磷农药抑制酪氨酸酶活性的现象,制备出基于携带胸腺嘧啶DNA为模板的铜纳米粒子与酪氨酸酶和有机磷农药构建荧光传感器,实现了对有机磷农药灵敏性、特异性的检测。
与现有技术相比,本发明提供的荧光传感器的制备方法,使用的是无标记的DNA,操作简单,成本很低,避免任何化学标记和修饰。通过抑制酶活性,能够制备出检测有机磷农药的传感器。结果显示此传感器对有机磷农药有0.1ng/L到1000ng/L有灵敏的检测,且具有操作简单,灵敏度高,检测限低。
附图说明
图1为实施例1制备的发荧光的Cu NPs,酪氨酸酶淬灭及有机磷农药恢复原理图,
图2为实验可行性图,a为PolyT30-DNA/铜纳米粒子荧光光谱图,b为加入有机磷农药恢复PolyT30-DNA/铜纳米粒子荧光光谱图,c为加入酪氨酸酶淬灭PolyT30-DNA/铜纳米粒子荧光光谱图;
图3A为PolyT30-DNA/铜纳米粒子的紫外吸收可见图;
图3B为PolyT30-DNA/铜纳米粒子的荧光激发和发射光谱;
图3C为PolyT30-DNA/铜纳米粒子的透射电镜;
图3D为PolyT30-DNA/铜纳米粒子的透射电镜结果的统计;
图4A为PolyT30-DNA/铜纳米粒子加入不同浓度的酪氨酸酶猝灭的荧光光谱图,a-i分别表示酪氨酸酶溶液的浓度,分别为0.01,0.1,0.5,1,1.5,2,2.5,3,4U/mL
图4B根据图3A构建的线性关系;
图5A为加入不同浓度的有机磷农药,PolyT30-DNA/铜纳米粒子荧光恢复光谱图,a-i分别表示有机磷农药溶液在体系中终浓度,分别为0.1,1,5,10,50,100,500,1000,5000,10000,50000,100000ng/L。
图5B根据图4A构建的线性关系;
图5C根据图4B构建的线性关系;
图5D为酪氨酸酶选择性图;
图5E为合成发光体CuNPs的pH优化图。
具体实施方式
验证酪氨酸酶可以猝灭Cu NPs:
a、取2μL的PolyT30-DNA序列溶液加入到93μL的10mM MOPS(3-(N-吗啉基)丙磺酸)PH=7.6的缓冲溶液中,加入50μL抗坏血酸钠溶液(8.0mM),37℃条件下培养10min之后,再加入50μL的CuSO4溶液(800μM),37℃培养15min,得到发荧光的Cu NPs,检测荧光强度;
所述PolyT30-DNA序列溶液的制备方法为:将PolyT30溶解到10mM MOPS(3-(N-吗啉基)丙磺酸)PH=7.6的缓冲溶液中,使PolyT30序列浓度为1μM。
b、取2μL的PolyT30-DNA序列溶液(1.0μM)加入到93μL的MOPS(10mMMOPS(3-(N-吗啉基)丙磺酸)PH=7.6的缓冲溶液中)中,加入50μL抗坏血酸钠溶液(8.0mM),37℃培养10min之后,再加入50μL的硫酸铜溶液(800μM),37℃培养15min之后,测荧光,然后加入5μL的酪氨酸酶溶液(4U/mL),1min之后测荧光,发现荧光淬灭,基于此验证酪氨酸酶可以猝灭Cu NPs。
制备PolyT30-DNA/Cu NPs-酪氨酸酶-有机磷农药体系:
取2μL的PolyT30-DNA序列加入到88μL的MOPS(10mM(3-(N-吗啉基)丙磺酸)PH=7.6的缓冲溶液中)中,加入抗坏血酸钠溶液(8.0mM)37℃培养10min之后,再加入50μL的CuSO4溶液(800μM),37℃培养15min之后,加入酪氨酸酶(4U/mL)与有机磷农药(100ng/L)混合培养液,得到PolyT30-DNA/CuNPs-酪氨酸酶-有机磷农药体系,制备得到的体系荧光恢复。
实施例1
一种荧光生物传感器的制备方法,包括以下步骤:
1)、取2μL的PolyT30-DNA序列加入到88μL的MOPS(10mM(3-(N-吗啉基)丙磺酸)PH=7.6的缓冲溶液中)中,加入抗坏血酸钠溶液(8.0mM)37℃培养10min之后,再加入50μL的CuSO4溶液(800μM)37℃培养15min;
2)将4U/mL酪氨酸酶溶液与100ng/L有机磷农药混合,4℃混合培养30min得,酪氨酸酶和有机磷农药混合溶液,向步骤1)体系中加入酪氨酸酶和有机磷农药混合溶液10μL,20℃-50℃培养10-30min,得到PolyT30-DNA/Cu NPs-酪氨酸酶-有机磷农药体系,制备信号“打开”的荧光生物传感器。
实施例2
一种荧光生物传感器,采用上述方法制备得到。
确定酪氨酸酶浓度最佳浓度:
1)、将2μL的PolyT30-DNA溶液(1μM),加入到93μL的MOPS(10mM(3-(N-吗啉基)丙磺酸)PH=7.6的缓冲溶液中)中,再加入50μL抗坏血酸钠溶液(8.0mM),37℃培养10min之后,再加入50μL的CuSO4溶液(800μM),37℃培养15min,制备得到发光的PolyT30-DNA铜纳米粒子;
2)酪氨酸酶溶液稀释,配置成0.01,0.1,0.5,1,1.5,2,2.5,3和4U/mL的酪氨酸酶溶液,向步骤1)制备的体系住中再分别加入制备的不同浓度的酪氨酸酶溶液5μL,酪氨酸酶浓度为4U/mL时,达到淬灭最大值。见图4A。
实施例3
一种荧光生物传感器检测机磷农药的应用。
具体检测方法为:
1)、将2μL的PolyT30-DNA溶液(1μM),加入到88μL的MOPS(10mM(3-(N-吗啉基)丙磺酸)PH=7.6的缓冲溶液中)中,加入50μL抗坏血酸钠溶液(8.0mM),37℃培养10min之后,再加入50μL的CuSO4溶液(800μM),37℃培养15min,制备得到发光的PolyT30-DNA铜纳米粒子;
2)、将5μL 4U/mL酪氨酸酶与5μL不同浓度的有机磷农药混合4℃培养30min后,分别加入步骤1)中制备的发光的铜纳米粒子中,37℃培养30min后,检测不同浓度荧光强度,随着有机磷农药浓度的增加,铜纳米粒子的荧光强度会逐渐变强,构建不同浓度有机磷农药与荧光强度的线性关系,实现对不同浓度的有机磷农药进行定量检测。见图5A和图5B。
加入有机磷农药在体系中终浓度分别为0.1,1,5,10,50,100,500,1000,5000,10000,50000,100000ng/L。
相同条件下,对比其他检测有机磷农药的方法,结果如表1:
表1
本发明试验检测的回收率如下表2
表2
样本 | 加入量(ng/L) | 重现(ng/L) | 回收(%) | 相对误差(%,n=3) |
1 | 100 | 96.70 | 96.70 | 3.3 |
2 | 1000 | 1009 | 100.9 | 0.1 |
3 | 10000 | 9899 | 989.9 | 1.01 |
上面结合附图对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种改进,或未经改进直接应用于其它场合的,均在本发明的保护范围之内。
Claims (10)
1.一种荧光生物传感器的制备方法,其特征在于,所述制备方法包括以下步骤:
1)、将PolyT30-DNA溶液加入缓冲溶液中,加入抗坏血酸钠溶液,培养后,加入CuSO4溶液,继续培养;
2)、向步骤1)所得体系中加入酪氨酸酶溶液和有机磷农药的混合溶液,培养,制备信号“打开”的荧光生物传感器。
2.根据权利要求1所述的制备方法,其特征在于,PolyT30-DNA溶液:缓冲溶液:抗坏血酸钠溶液:CuSO4溶液:酪氨酸酶溶液:有机磷农药体积比为2:88:50:50:10。
3.根据权利要求1或2所述的制备方法,其特征在于,所述PolyT30-DNA序列为携带聚胸腺嘧啶的单链DNA序列:PolyT30:TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT。
4.根据权利要求1或2所述的制备方法,其特征在于,步骤1)中第一步培养为20℃-50℃培养5-10min,第二步培养是指在20℃-50℃培养10-30min。
5.根据权利要求1或2所述的制备方法,其特征在于,步骤1)具体为:将2μL的PolyT30-DNA溶液加入88μL的10mM MOPS(3-(N-吗啉基)丙磺酸)PH=7.6的缓冲溶液中,然后加入50μL抗坏血酸溶液,37℃培养10min后,加入50μL的硫酸铜溶液,20℃-50℃培养10-30min。
6.根据权利要求1或5所述的制备方法,其特征在于,步骤2)所述培养为:20℃-50℃培养10-30min。
7.根据权利要求1或6所述的制备方法,其特征在于,步骤2)具体为:向步骤1)体系中加入10μL酪氨酸酶和有机磷农药混合溶液,20℃-50℃培养10-30min。
8.一种采用权利要求1-7项所述的方法制备得到的荧光生物传感器。
9.一种权利要求8所述的荧光生物传感器检测机磷农药的应用。
10.根据权利要求8所述的应用,具体检测方法为:
1)、将PolyT30-DNA溶液加入缓冲溶液中,加入抗坏血酸钠溶液,培养后,加入CuSO4溶液,继续培养;
2)、向步骤1)所得体系中分别加入酪氨酸酶溶液和不同浓度有机磷农药的混合溶液,培养,不同浓度的有机磷荧光强度不同,构建线性关系,实现了对有机磷农药检测。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711094717.7A CN107937480B (zh) | 2017-11-09 | 2017-11-09 | 一种荧光生物传感器、制备方法及其检测有机磷农药的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711094717.7A CN107937480B (zh) | 2017-11-09 | 2017-11-09 | 一种荧光生物传感器、制备方法及其检测有机磷农药的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107937480A true CN107937480A (zh) | 2018-04-20 |
CN107937480B CN107937480B (zh) | 2021-12-03 |
Family
ID=61934683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711094717.7A Active CN107937480B (zh) | 2017-11-09 | 2017-11-09 | 一种荧光生物传感器、制备方法及其检测有机磷农药的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107937480B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109553180A (zh) * | 2018-11-12 | 2019-04-02 | 中国石油天然气集团有限公司 | 一种石油烃污染清除组合物及其应用 |
CN109765203A (zh) * | 2018-10-29 | 2019-05-17 | 四川大学 | 一种荧光-稳定同位素双模态对三硝基甲苯的检测方法 |
CN110455759A (zh) * | 2019-08-14 | 2019-11-15 | 吉林大学 | 一种基于铜纳米颗粒的乐果检测试剂盒及检测乐果浓度的方法 |
CN110632050A (zh) * | 2019-09-27 | 2019-12-31 | 中国科学院兰州化学物理研究所 | 利用具有荧光性能的共价有机纳米球检测酪氨酸酶的方法 |
CN110954518A (zh) * | 2019-12-12 | 2020-04-03 | 安徽师范大学 | 一种哑铃型dna/铜纳米粒子荧光生物传感器的制备方法及其在定量检测atp中的应用 |
CN111239118A (zh) * | 2020-01-22 | 2020-06-05 | 南京海关工业产品检测中心 | 基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107084954A (zh) * | 2017-05-02 | 2017-08-22 | 安徽师范大学 | 一种荧光传感器的制备方法、一种检测酪氨酸酶的方法 |
-
2017
- 2017-11-09 CN CN201711094717.7A patent/CN107937480B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107084954A (zh) * | 2017-05-02 | 2017-08-22 | 安徽师范大学 | 一种荧光传感器的制备方法、一种检测酪氨酸酶的方法 |
Non-Patent Citations (2)
Title |
---|
XU YAN等: "A novel fluorimetric sensing platform for highly sensitive detection of organophosphorus pesticides by using egg white-encapsulated gold nanoclusters", 《BIOSENSORS AND BIOELECTRONICS》 * |
ZHENGUI MAO ET AL.: "Poly(thymine)-Templated Copper Nanoparticles as a Fluorescent Indicator for Hydrogen Peroxide and Oxidase-Based Biosensing", 《ANAL.CHEM.》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109765203A (zh) * | 2018-10-29 | 2019-05-17 | 四川大学 | 一种荧光-稳定同位素双模态对三硝基甲苯的检测方法 |
CN109765203B (zh) * | 2018-10-29 | 2021-07-16 | 四川大学 | 一种“荧光-稳定同位素”双模态对三硝基甲苯的检测方法 |
CN109553180A (zh) * | 2018-11-12 | 2019-04-02 | 中国石油天然气集团有限公司 | 一种石油烃污染清除组合物及其应用 |
CN110455759A (zh) * | 2019-08-14 | 2019-11-15 | 吉林大学 | 一种基于铜纳米颗粒的乐果检测试剂盒及检测乐果浓度的方法 |
CN110632050A (zh) * | 2019-09-27 | 2019-12-31 | 中国科学院兰州化学物理研究所 | 利用具有荧光性能的共价有机纳米球检测酪氨酸酶的方法 |
CN110954518A (zh) * | 2019-12-12 | 2020-04-03 | 安徽师范大学 | 一种哑铃型dna/铜纳米粒子荧光生物传感器的制备方法及其在定量检测atp中的应用 |
CN110954518B (zh) * | 2019-12-12 | 2022-08-02 | 安徽师范大学 | 一种哑铃型dna/铜纳米粒子荧光生物传感器的制备方法及其在定量检测atp中的应用 |
CN111239118A (zh) * | 2020-01-22 | 2020-06-05 | 南京海关工业产品检测中心 | 基于碱性磷酸酶触发的荧光和比色双读数传感器检测有机磷农药的分析方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107937480B (zh) | 2021-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107937480A (zh) | 一种荧光生物传感器、制备方法及其检测有机磷农药的应用 | |
Trouillon et al. | Chemical analysis of single cells | |
Massey et al. | Mind your P's and Q's: the coming of age of semiconducting polymer dots and semiconductor quantum dots in biological applications | |
Falco et al. | In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles | |
Pathak et al. | Detection of reactive oxygen species (ROS) in cyanobacteria using the oxidant-sensing probe 2’, 7’-dichlorodihydrofluorescein diacetate (DCFH-DA) | |
CN107589113B (zh) | 一种纸基双模式检测铅离子的方法 | |
Ivleva et al. | Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization | |
Wei et al. | A fluorescence aptasensor based on carbon quantum dots and magnetic Fe3O4 nanoparticles for highly sensitive detection of 17β-estradiol | |
Krizkova et al. | Multi-instrumental analysis of tissues of sunflower plants treated with silver (I) ions–plants as bioindicators of environmental pollution | |
Li et al. | A Hg (II)-specific probe for imaging application in living systems and quantitative analysis in environmental/food samples | |
Chen et al. | Aggregation-induced emission luminogen@ manganese dioxide core-shell nanomaterial-based paper analytical device for equipment-free and visual detection of organophosphorus pesticide | |
Dong et al. | Ratio fluorescent hybrid probe for visualized fluorescence detection of H2O2 in vitro and in vivo | |
McLamore et al. | Self-referencing optrodes for measuring spatially resolved, real-time metabolic oxygen flux in plant systems | |
Ren et al. | A sensitive biosensor for the fluorescence detection of the acetylcholinesterase reaction system based on carbon dots | |
McLamore et al. | Non-invasive tools for measuring metabolism and biophysical analyte transport: self-referencing physiological sensing | |
Liu et al. | Dopamine-functionalized upconversion nanoparticles as fluorescent sensors for organophosphorus pesticide analysis | |
Lin et al. | Carbon dot based sensing platform for real-time imaging Cu2+ distribution in plants and environment | |
CN107084954B (zh) | 一种荧光传感器的制备方法、一种检测酪氨酸酶的方法 | |
Wei et al. | Recent advances in single-cell ultra-trace analysis | |
Khan et al. | High biocompatible nitrogen and sulfur Co-doped carbon dots for Hg (II) detection and their long-term biological stability in living cells | |
Cao et al. | Oxygen sensor nanoparticles for monitoring bacterial growth and characterization of dose–response functions in microfluidic screenings | |
CN106220663A (zh) | 一种过氧化氢荧光探针化合物的制备与应用 | |
CN105203515A (zh) | 一种荧光生物传感器的制备方法及其应用 | |
Rosário et al. | Photoluminescent organisms: how to make fungi glow through biointegration with lanthanide metal-organic frameworks | |
Chaturvedi et al. | Emerging technologies for non-invasive quantification of physiological oxygen transport in plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |