CN111233495B - 一种制备细晶碳化硼的烧结方法 - Google Patents

一种制备细晶碳化硼的烧结方法 Download PDF

Info

Publication number
CN111233495B
CN111233495B CN202010170918.6A CN202010170918A CN111233495B CN 111233495 B CN111233495 B CN 111233495B CN 202010170918 A CN202010170918 A CN 202010170918A CN 111233495 B CN111233495 B CN 111233495B
Authority
CN
China
Prior art keywords
sintering
carbon black
layer
boron carbide
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010170918.6A
Other languages
English (en)
Other versions
CN111233495A (zh
Inventor
李瑞迪
陈雨
袁铁锤
周志辉
张梅
樊毅
张金生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202010170918.6A priority Critical patent/CN111233495B/zh
Publication of CN111233495A publication Critical patent/CN111233495A/zh
Application granted granted Critical
Publication of CN111233495B publication Critical patent/CN111233495B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种制备细晶碳化硼的烧结方法,包括以下步骤:烧结管的改进:烧结管包括有加热体、加热套筒、隔离层,炭黑层和炭黑层固定筒,加热套筒的筒壁上均匀开设有多个插孔,加热体插入至插孔中,加热套筒外部包覆一层隔离层,炭黑固定筒底部通过焊接或卡接的方式固定于加热套筒的外侧,炭黑固定筒与隔离层之间,填充炭黑并压实,形成炭黑层;在加热体外层上涂覆一层炭黑层,插入至插孔中,即得改进的烧结管;将烧结管安装于烧结炉中;烧结后即得细晶碳化硼。采用本发明改进的烧结管进行烧结,可以缩短了热压烧结的周期,大大减少了碳化硼晶粒在保温阶段的长大,从而有利于细晶碳化硼材料的制备。

Description

一种制备细晶碳化硼的烧结方法
技术领域
本发明属于碳化硼热压烧结领域,具体涉及一种制备细晶碳化硼的烧结方法。
背景技术
碳化硼材料作为一种硬度大、熔点高,耐磨损、耐腐蚀性能好,自润滑及自抛光性能优良的稳定性材料,被广泛的应用于陶瓷、工业材料、航空航天以及汽车、机械零部件等领域。热压烧结是一种集压力加工与烧结为一体的一种粉体材料成形技术,是通过将粉末装入模具内部,在高温下利用热压机把粉末加热到熔点以下,同时施加单向或双向的压力使之烧结成形的过程。热压烧结具有烧结时间短,温度低,产品性能优良等优点。
目前,传统的用以制备碳化硼材料的方法主要为热压烧结,但是传统的热压烧结往往需要进行繁琐的抽真空(或通保护气体)以及卸压等操作,这就使得材料烧结周期大大延长,同时也容易导致高温烧结过程中晶粒的异常长大;同时传统的真空热压烧结还需要考虑气密性的问题,这也在一定程度上提高了制备性能优良的细晶碳化硼材料的成本与技术难度。因此研究出一种新型的、用以制备性能优良的细晶碳化硼材料的热压烧结方法成为了当下的一个趋势。
发明内容
本发明的目的是提供一种烧结周期短,且可减少碳化硼晶粒异常长大的制备细晶碳化硼的烧结方法。
本发明这种制备细晶碳化硼的烧结方法,包括以下步骤:
1)烧结管的改进:烧结管包括有加热体、加热套筒、隔离层,炭黑层和炭黑层固定筒,加热套筒的筒壁上均匀开设有多个插孔,加热体插入至插孔中,加热套筒外部包覆一层隔离层,炭黑固定筒底部通过焊接或卡接的方式固定于加热套筒的外侧,炭黑固定筒与隔离层之间,填充炭黑并压实,形成炭黑层;在加热体外层上涂覆一层炭黑层,插入至插孔中,即得改进的烧结管;将烧结管安装于烧结炉中。
2)烧结:将碳化硼粉末装入热压烧结模具中,开启烧结炉,设置烧结条件后,开启烧结,烧结完毕后,直接脱模取出,进行空冷,即得细晶碳化硼。
所述步骤1)中,所述的加热体为棒状,其材质为钼、钨和石墨中的一种;所述的隔离层为多层石棉隔热屏或氧化铝硅酸纤维棉层;其作用在于减少炭黑粉层对加热体的污染,同时使加热体所产生的热量能更有效的传导到炭黑粉层以及烧结炉内;所述的炭黑层固定筒为铜材料制备而成,底部和桶体下部是铜板制备,桶体上部为铜网结构;炭黑层的厚度为100~140mm。
优选的,加热体的数量为6~10个。
优选的,所述的炭黑粉层在烧结过程中会发生消耗,是需要更换的,每烧结3~5次,更换一次炭黑层。
进一步优选的,炭黑层固定筒顶部留空,用于更换炭黑粉。
所述步骤2)中,烧结条件为:烧结温度为1400~1600℃,烧结保温时间为10~60min,升温速率为15~25℃/min;烧结压力为90~110kN、电流70~90A。
本发明的有益效果:(1)本发明通过对烧结管进行改进,在加热套筒外层增加了一层炭黑粉层且在加热体表层也增加了一层炭黑粉层,因而在烧结过程中,烧结管中的炭黑粉层和加热棒表面的炭黑粉会消耗管内外的氧气,生成CO和CO2还原气氛,因此在烧结过程中无需进行抽真空过程,简化了烧结工艺。(2)本发明通过改进型的烧结管,由于烧结之前无需抽真空,因此省去了传统真空热压烧结完成后的卸压过程,碳化硼烧结致密后便可直接脱模取出,不仅减少脱模时间,还大大减少了碳化硼晶粒在卸载阶段的异常长大,从而制备出细晶碳化硼材料。(3)采用本发明改进的烧结管进行烧结,可以缩短了热压烧结的周期,大大减少了碳化硼晶粒在保温阶段的长大,从而有利于细晶碳化硼材料的制备。(4)本发明的烧结方法以实现无需真空装置的情况下正常运行,而且不影响产品的质量,因此大大减少了工业用电的成本,同时也缩短了热压烧结所需的周期,在一定程度上提高了工业生产的效益。
附图说明
图1本发明改进烧结管的结构示意图;
图2本发明改进烧结管的结构平面图;
其中:1-加热体、2-加热套筒、3-隔离层、4-炭黑层、5-炭黑层固定筒。
具体实施方式
实施例1
本实施例改进的烧结管,其三维结构如图1所示,其平面结构如图2所示,该烧结管包括有加热体1、加热套筒2、隔离层3,炭黑层4和炭黑层固定筒5,加热套筒的筒壁上均匀开设有多个圆形插孔,加热体1插入至插孔,加热体1的数量与插孔数量一致,本实施例中共用8个插孔。加热套筒2外层包覆一层隔离层3,隔离层3采用多层石棉隔热屏。炭黑固定筒5底部通过焊接的方式固定于加热套筒的外侧;炭黑层固定筒为铜材料制备而成,底部和桶体下部是铜板制备而成,桶体上部为铜网结构,用于增大了炉内的氧气与炭黑粉层之间的反应面积,有利于除氧过程的进行。在炭黑固定筒5与隔离层3之间,填充炭黑并压实,形成炭黑层4;将8根加热体1外层上涂覆一层炭黑层,插入至加热套筒的插孔中,即得改进的烧结管;将烧结管安装于烧结炉中。
炭黑粉层4在烧结过程中会发生消耗,是需要更换的,每烧结3~5次,更换一次炭黑粉层4;所以炭黑层固定筒5顶部留空,用于更换炭黑粉。
炭黑层固定筒5与隔离层的间距为120mm,也就是炭黑层的厚度为120mm。
本实施例中的加热体1为石墨棒。
实施例2
选用纯度约为99%的碳化硼粉末(W1.5),用电子天平称取研磨过后的碳化硼粉末25g(B/C比4.33,中位粒径1.06μm),然后将称量好的粉末装入热压烧结模具中,打开水循环系统,开启压缩机,同时打开脉冲控制开关;然后打开主电源控制开关,设置压力为100kN、电流70A,烧结温度设置为1400℃。碳化硼粉末预成型后放在模具中预压,然后将模具放入实施例1中改装了加热管的加热炉内,无需启动抽真空装置,启动烧结设备,以20℃/min升温至烧结温度1400℃,在1400℃烧结10分钟,待烧结完成后无需卸压直接脱模取出,进行空冷,得到细晶碳化硼。
实施例3
选用纯度约为99%的碳化硼粉末(W1.5),用电子天平称取研磨过后的碳化硼粉末25g(B/C比4.33,中位粒径1.06μm),然后将称量好的粉末装入热压烧结模具中,打开水循环系统,开启压缩机,同时打开脉冲控制开关;然后打开主电源控制开关,设置压力为100kN、电流80A,烧结温度设置为1400℃。碳化硼粉末预成型后放在模具中预压,然后将模具放入实施例1中改装了加热管的加热炉内,无需启动抽真空装置,启动烧结设备,以20℃/min升温至烧结温度1400℃,在1400℃烧结30分钟,待烧结完成后无需卸压直接脱模取出,进行空冷,得到细晶碳化硼。
实施例4
选用纯度约为99%的碳化硼粉末(W1.5),用电子天平称取研磨过后的碳化硼粉末25g(B/C比4.33,中位粒径1.06μm),然后将称量好的粉末装入热压烧结模具中,打开水循环系统,开启压缩机,同时打开脉冲控制开关;然后打开主电源控制开关,设置压力为100kN、电流90A,烧结温度设置为1400℃。碳化硼粉末预成型后放在模具中预压,然后将模具放入实施例1中改装了加热管的加热炉内,无需启动抽真空装置,启动烧结设备,以20℃/min升温至烧结温度1400℃,在1400℃烧结60分钟,待烧结完成后无需卸压直接脱模取出,进行空冷,得到细晶碳化硼。
对照例1
选用纯度约为99%的碳化硼粉末(W1.5),用电子天平称取研磨过后的碳化硼粉末25g(B/C比4.33,中位粒径1.06μm),然后将称量好的粉末装入热压烧结模具中,打开水循环系统,开启压缩机,同时打开脉冲控制开关;然后打开主电源控制开关,设置压力为100kN、电流100A,烧结温度设置为1400℃。碳化硼粉末预成型后放在模具中预压,然后放到真空室中,启动抽真空设备,将烧结炉内的真空度控制在6.67×10-1Pa左右,烧结炉抽真空后,以20℃/min升温至烧结温度1400℃,在1400℃烧结10分钟,待烧结完成后,通过进气阀缓缓对炉体进行充气到常压,然后将炉盖打开,取出烧结完成后的试样。
对照例2
选用纯度约为99%的碳化硼粉末(W1.5),用电子天平称取研磨过后的碳化硼粉末25g(B/C比4.33,中位粒径1.06μm),然后将称量好的粉末装入热压烧结模具中,打开水循环系统,开启压缩机,同时打开脉冲控制开关;然后打开主电源控制开关,设置压力为100kN、电流100A,烧结温度设置为1400℃。碳化硼粉末预成型后放在模具中预压,然后放到真空室中,启动抽真空设备,将烧结炉内的真空度控制在6.67×10-1Pa左右,烧结炉抽真空后,以20℃/min升温至烧结温度1400℃,在1400℃烧结30分钟,待烧结完成后,通过进气阀缓缓对炉体进行充气到常压,然后将炉盖打开,取出烧结完成后的试样。
对照例3
选用纯度约为99%的碳化硼粉末(W1.5),用电子天平称取研磨过后的碳化硼粉末25g(B/C比4.33,中位粒径1.06μm),然后将称量好的粉末装入热压烧结模具中,打开水循环系统,开启压缩机,同时打开脉冲控制开关;然后打开主电源控制开关,设置压力为100kN、电流100A,烧结温度设置为1400℃。碳化硼粉末预成型后放在模具中预压,然后放到真空室中,启动抽真空设备,将烧结炉内的真空度控制在6.67×10-1Pa左右,烧结炉抽真空后,以20℃/min升温至烧结温度1400℃,在1400℃烧结60分钟,待烧结完成后,通过进气阀缓缓对炉体进行充气到常压,然后将炉盖打开,取出烧结完成后的试样。
表1不同制备工艺的碳化硼材料致密度、平均粒径以及烧结所需周期时间
Figure BDA0002409146620000051
备注:烧结周期为样品放入到烧结炉进行烧结至取出的时间。

Claims (6)

1.一种制备细晶碳化硼的烧结方法,包括以下步骤:
1)烧结管的改进:烧结管包括有加热体、加热套筒、隔离层、 炭黑层和炭黑层固定筒,加热套筒的筒壁上均匀开设有多个插孔,加热体插入至插孔中,加热套筒外部包覆一层隔离层,炭黑固定筒底部通过焊接或卡接的方式固定于加热套筒的外侧,炭黑固定筒与隔离层之间,填充炭黑并压实,形成炭黑层;在加热体外层上涂覆一层炭黑,插入至插孔中,即得改进的烧结管;将烧结管安装于烧结炉中;
2)烧结:将碳化硼粉末装入热压烧结模具中,开启烧结炉,设置烧结条件后,开启烧结,烧结完毕后,直接脱模取出,进行空冷,即得细晶碳化硼。
2.根据权利要求 1 所述的制备细晶碳化硼的烧结方法,其特征在于,所述步骤 1)中,所述的加热体为棒状,其材质为钼、钨和石墨中的一种;所述的隔离层为多层石棉隔热屏或氧化铝硅酸纤维棉层;所述的炭黑层固定筒为铜材料制备而成,底部和桶体下部是铜板制备,桶体上部为铜网结构;炭黑层的厚度为100~140mm。
3.根据权利要求 2 所述的制备细晶碳化硼的烧结方法,其特征在于,加热体的数量为6~10 个。
4.根据权利要求 1 所述的制备细晶碳化硼的烧结方法,其特征在于,所述的炭黑固定筒与隔离层之间填充的炭黑层在烧结过程中会发生消耗,是需要更换的,每烧结 3~5 次,更换一次炭黑层。
5.根据权利要求 1 或 4 所述的制备细晶碳化硼的烧结方法,其特征在于,炭黑层固定筒顶部留空,用于更换炭黑粉。
6.根据权利要求 1 所述的制备细晶碳化硼的烧结方法,其特征在于,所述步骤2)中,烧结条件为:烧结温度为 1400~1600℃,烧结时间为 10~60min,升温速率为 15~25℃/min;烧结压力为 90~110kN、电流 70~90A。
CN202010170918.6A 2020-03-12 2020-03-12 一种制备细晶碳化硼的烧结方法 Active CN111233495B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010170918.6A CN111233495B (zh) 2020-03-12 2020-03-12 一种制备细晶碳化硼的烧结方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010170918.6A CN111233495B (zh) 2020-03-12 2020-03-12 一种制备细晶碳化硼的烧结方法

Publications (2)

Publication Number Publication Date
CN111233495A CN111233495A (zh) 2020-06-05
CN111233495B true CN111233495B (zh) 2021-05-11

Family

ID=70867659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010170918.6A Active CN111233495B (zh) 2020-03-12 2020-03-12 一种制备细晶碳化硼的烧结方法

Country Status (1)

Country Link
CN (1) CN111233495B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB827509A (en) * 1957-01-29 1960-02-03 Gen Electric Co Ltd Improvements in or relating to electric furnaces
GB1143933A (en) * 1965-02-25 1969-02-26 Texas Instruments Inc Self-regulating heating device and component oven
US3504093A (en) * 1968-11-01 1970-03-31 Union Carbide Corp Induction furnace apparatus for the manufacture of metal carbide
JPS5760177A (en) * 1980-09-30 1982-04-10 Tokyo Yogyo Kk Porous refractory blick for melting metal
US4789506A (en) * 1986-11-07 1988-12-06 Gas Research Institute Method of producing tubular ceramic articles
EP0501737A3 (en) * 1991-02-25 1994-08-17 Leco Corp Analytical furnace
CN1251618A (zh) * 1996-12-27 2000-04-26 阿拉巴马动力公司 带绝缘电极的电炉和生产熔融金属的工艺方法
CN1309723A (zh) * 1998-07-17 2001-08-22 艾普科尔公司 用于金属还原和熔化过程的感应炉
CN1364996A (zh) * 2001-01-15 2002-08-21 西安科技学院 冶炼碳化硅的多炉芯炉及其生产碳化硅的方法
CN101824575A (zh) * 2010-05-27 2010-09-08 中南大学 一种超细晶碳化钨/钴系硬质合金及其制备方法
CN104180655A (zh) * 2014-08-21 2014-12-03 重庆科技学院 一种超声振动活化辅助烧结箱式电阻炉
CN107677134A (zh) * 2017-09-28 2018-02-09 中南大学 一种铝电解槽用阳极炭块热处理炉
CN108840681A (zh) * 2018-08-16 2018-11-20 景德镇陶瓷大学 一种纳米碳化硼及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB827509A (en) * 1957-01-29 1960-02-03 Gen Electric Co Ltd Improvements in or relating to electric furnaces
GB1143933A (en) * 1965-02-25 1969-02-26 Texas Instruments Inc Self-regulating heating device and component oven
US3504093A (en) * 1968-11-01 1970-03-31 Union Carbide Corp Induction furnace apparatus for the manufacture of metal carbide
JPS5760177A (en) * 1980-09-30 1982-04-10 Tokyo Yogyo Kk Porous refractory blick for melting metal
US4789506A (en) * 1986-11-07 1988-12-06 Gas Research Institute Method of producing tubular ceramic articles
EP0501737A3 (en) * 1991-02-25 1994-08-17 Leco Corp Analytical furnace
CN1251618A (zh) * 1996-12-27 2000-04-26 阿拉巴马动力公司 带绝缘电极的电炉和生产熔融金属的工艺方法
CN1309723A (zh) * 1998-07-17 2001-08-22 艾普科尔公司 用于金属还原和熔化过程的感应炉
CN1364996A (zh) * 2001-01-15 2002-08-21 西安科技学院 冶炼碳化硅的多炉芯炉及其生产碳化硅的方法
CN101824575A (zh) * 2010-05-27 2010-09-08 中南大学 一种超细晶碳化钨/钴系硬质合金及其制备方法
CN104180655A (zh) * 2014-08-21 2014-12-03 重庆科技学院 一种超声振动活化辅助烧结箱式电阻炉
CN107677134A (zh) * 2017-09-28 2018-02-09 中南大学 一种铝电解槽用阳极炭块热处理炉
CN108840681A (zh) * 2018-08-16 2018-11-20 景德镇陶瓷大学 一种纳米碳化硼及其制备方法

Also Published As

Publication number Publication date
CN111233495A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN110698205B (zh) 一种石墨烯增韧碳化硅陶瓷的制备方法
CN102382997B (zh) 一种微波烧结制备WC-Co硬质合金的方法
CN109590476B (zh) 一步法制备高致密度WRe/TZM梯度复合材料的方法
CN102423802B (zh) 高纯钴靶材的制备方法
CN102072638A (zh) 双向热压高温振荡烧结炉及其工作方法
JPS6241281B2 (zh)
CN112441835A (zh) 一种高强高密炭素材料及其制备方法和应用
CN102374772A (zh) 双向热压高温烧结炉及其工作方法
CN110157971B (zh) 一种原位增强高熵合金复合材料的感应熔炼方法
CN101413605B (zh) 一种低压铸造用特种复合结构升液管的制备方法
CN112723891B (zh) 一种镧钙复合六硼化物多晶阴极材料及其制备方法
CN106270530A (zh) 一种高密度纯铼试管的制造方法
CN111233495B (zh) 一种制备细晶碳化硼的烧结方法
CN110184519B (zh) 一种大直径异型薄壁管状钼基合金零件的制备方法
CN209872799U (zh) 一种低能耗热压生产氮化硼基陶瓷的装置
CN113831128B (zh) 一种石墨热等静压成型的加工方法
CN114481055A (zh) 一种粉末冶金制备钽靶材的烧结夹具和方法
CN115679282A (zh) 一种钛硅靶材的制备方法
CN109180209B (zh) 一种采用原位自生法制备碳化硅纳米线增强石墨-碳化硅复合材料的方法
EP0375469B1 (en) Method for electroconsolidation of a preformed particulate workpiece
CN115626641B (zh) 一种洋葱碳极细颗粒等静压石墨制备方法
CN117344167A (zh) 一种钼钨合金的制备方法
CN113355545B (zh) 一种钛合金材料的制备方法
CN112146439B (zh) 一种高温高压气液联合烧结装置和烧结方法
CN217895467U (zh) 一种用于制备硼化锆陶瓷块体的燃烧合成装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant