CN111223948A - 一种基于锑快门开关的无失配ii类超晶格结构及制备方法 - Google Patents

一种基于锑快门开关的无失配ii类超晶格结构及制备方法 Download PDF

Info

Publication number
CN111223948A
CN111223948A CN202010126548.6A CN202010126548A CN111223948A CN 111223948 A CN111223948 A CN 111223948A CN 202010126548 A CN202010126548 A CN 202010126548A CN 111223948 A CN111223948 A CN 111223948A
Authority
CN
China
Prior art keywords
layer
inas
gasb
shutter
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010126548.6A
Other languages
English (en)
Inventor
徐志成
朱艺红
梁钊铭
陈凯豪
陈建新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke aibisaisi (Changzhou) Photoelectric Technology Co.,Ltd.
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN202010126548.6A priority Critical patent/CN111223948A/zh
Publication of CN111223948A publication Critical patent/CN111223948A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开了一种基于锑快门开关的无失配II类超晶格结构及制备方法。其单周期结构包括GaSb层,InAs层和InAsSb界面层三层结构。其制备方法是在II类超晶格周期性结构生长过程中,GaSb生长后直接生长InAs层,InAs生长后,打开Sb快门,使得Sb和InAs层中的As进行元素置换,从而形成InAsSb界面层。其特点在于:由于取消了InSb界面层的直接生长,仅在InAs生长后通过引入Sb浸润形成InAsSb界面层,既满足了应力补偿的需求,又简化了界面制备工艺难度,此外,避免了大失配InSb界面直接生长时引入的岛装结构缺陷,提高了材料性能。

Description

一种基于锑快门开关的无失配II类超晶格结构及制备方法
技术领域
本发明涉及一种超晶格材料,特别涉及一种基于锑快门开关的无失配II类超晶格结构及制备方法,它应用于红外焦平面探测器。
背景技术
20世纪70年代初,IBM实验室的科学家L.Esaki和Sakaki提出了InAs/GaSbⅡ类超晶格的概念,接着,在80年代末期,Smith和Maihiot提出了InAs/GaSbⅡ类超晶格可以应用于红外探测技术的设想。InAs/GaSb II类超晶格通过改变InAs和GaSb层厚,可以实现探测波长从3μm到30μm的调控,是新一代高性能红外探测器制备的优选材料体系。基于超晶格在红外探测器应用方面的诸多理论优势及特点,国内外研究机构在II类超晶格材料物理特性、材料生长技术、器件制备技术等方面开展了大量的研究工作。从90年代材料生长技术的研究和材料质量的提高到2000年左右具有器件质量的外延材料的成功制备,从单元器件的获得到21世纪初陆续出现的焦平面探测器以及各种势垒结构器件和双色、多色探测器的研制,InAs/GaSb超晶格红外探测技术得到了长足的发展。
目前高质量的InAs/GaSb II类超晶格材料通常生长在GaSb衬底上,由于InAs与衬底GaSb之间存在着0.6%的晶格失配,为了获得波长级厚度的超晶格材料,需要生长晶格常数比GaSb大的InSb界面层进行应变补偿,通常情况下InAs/GaSb II类超晶格结构主要包含GaSb层、InAs-on-GaSb界面层、InAs层和GaSb-on-InAs界面层四层结构,其中InAs-on-GaSb界面和GaSb-on-InAs界面是由生长的InSb界面层构成,此方法解决了InAs/GaSb超晶格与衬底的晶格不匹配问题,不过通过该方法获得无失配材料为超晶格的生长制备带来了一些困难,如(1)由于InSb与GaSb之间的晶格失配高达6.3%,当直接在GaSb或InAs上外延InSb界面层时,其将以岛状结构进行生长,增加了超晶格材料的表面粗糙度,随着外延材料厚度的增加材料表面将越来越粗糙,严重制约了超晶格红外探测材料外延层厚度,制约了红外探测器量子效率的提高。(2)为了外延生长InSb界面层,不仅需要严格控制In、As、Ga、Sb四种元素的快门开关时间,还需要对界面处的快门开关次第顺序进行精心的设计,增加了超晶格材料MBE生长工艺的复杂度,同时过于频繁的快门开关增加了表面点缺陷引入的几率。(3)由于InSb与GaSb之间晶格失配大,因此在外延生长InSb界面层时非常容易引入缺陷和位错,降低了材料的晶体质量。(4)InAs生长结束后,由于As较高的饱和蒸气压,MBE腔体内残余的As会进入GaSb层中形成GaAsSb,增加了超晶格材料与衬底的失配度。
发明内容
本发明的目的是提供一种基于锑快门开关的无失配II类超晶格结构及制备方法,解决目前存在以下技术问题:
1.大失配InSb界面层外延生长时岛状结构引起表面粗糙的问题;
2.InSb界面层直接外延生长时工艺复杂的问题;
3.InSb界面层直接外延生长时易引入缺陷和位错的问题;
4.InAs生长结束后As背景压高的问题;
如附图1所示,本发明的II类超晶格结构为:由衬底自下而上依次为GaSb层1、InAs层2和InAsxSb1-x层3。其中:
所述的GaSb层1的厚度为1.05nm-2.4nm;
所述的InAs层2的厚度为1.2nm-3.0nm;
所述的InAsxSb1-x层3的厚度为0.3nm,组分x为0.01-0.5;
具体制备方法步骤如下:
1)将GaSb衬底升温至脱氧温度,并且在Sb束流保护下去除其表面的氧化层,脱氧温度560℃至580℃之间,Sb束流不小于1×10-6Torr;
2)将GaSb衬底降温至II类超晶格生长温度,生长温度范围395℃至405℃之间;
3)将As/In和Sb/Ga生长束流比设定至II类超晶格生长所用范围;
4)采用分子束外延方法在GaSb衬底上生长InAs/GaSb II类超晶格,第一步将Ga、Sb的快门打开外延GaSb层1,第二步将In、As快门打开外延InAs层2,第三步只打开Sb快门,引入Sb束流浸润1-6s,通过与InAs层中的As进行元素置换形成InAsxSb1-x层3。之后循环往复,直至材料生长结束。
本发明的优点在于:(1)取消了GaSb之后的InSb界面层,并且InAs生长结束后仅通过打开Sb快门束流浸润形成InAsSb界面层,极大地简化了II类超晶格材料界面制备的工艺步骤,降低了无失配超晶格材料快门开关控制的复杂度,降低了因快门频繁开关导致的表面点缺陷增加的问题;(2)通过Sb束流浸润以元素置换的形式形成InAsSb界面层,避免了因InSb界面层直接外延生长引起的岛状结构生长问题,降低了超晶格材料的表面粗糙度;(3)避免了InSb界面直接外延生长导致的界面缺陷和位错;(4)InAs层之后的Sb束流浸润降低了As进入GaSb层的几率,提高了材料的纯度。
附图说明:
图1是InAs/GaSb II类超晶格三层结构模型;1为GaSb层,2为InAs层,3为InAsxSb1-x层。
图2是InAs/GaSb II类超晶格材料一个生长周期内快门开关次第顺序示意图。
具体实施方式
实施例1
根据发明内容,我们制备了一种II类超晶格材料,其具体结构为:
GaSb层1的厚度为1.05nm;
InAs层2的厚度为2.45nm;
InAsxSb1-x层3的厚度为0.3nm,组分x为0.20;
其具体制备方法为:
1)将GaSb衬底升温至脱氧温度,并且在Sb束流保护下去除其表面的氧化层,脱氧温度560℃,Sb束流为2×10-6Torr;
2)将GaSb衬底降温至II类超晶格生长温度395℃;
3)将As/In和Sb/Ga生长束流比分别设定至为4和5;
4)采用分子束外延方法在GaSb衬底上生长InAs/GaSb II类超晶格,第一步将Ga、Sb的快门打开外延GaSb层1,第二步将In、As快门打开外延InAs层2,第三步只打开Sb快门,引入Sb束流浸润3s,通过与InAs层中的As进行元素置换形成InAsxSb1-x层3。之后循环往复,直至材料生长结束。
实施例2
根据发明内容,我们制备了一种II类超晶格材料,其具体结构为:
GaSb层1的厚度为2.1nm;
InAs层2的厚度为1.2nm;
InAsxSb1-x层3的厚度为0.3nm,组分x为0.39,Sb浸润时间1s;
其具体制备方法为:
1)将GaSb衬底升温至脱氧温度,并且在Sb束流保护下去除其表面的氧化层,脱氧温度570℃,Sb束流为2×10-6Torr;
2)将GaSb衬底降温至II类超晶格生长温度400℃;
3)将As/In和Sb/Ga生长束流比分别设定至为4和5;
4)采用分子束外延方法在GaSb衬底上生长InAs/GaSb II类超晶格,第一步将Ga、Sb的快门打开外延GaSb层1,第二步将In、As快门打开外延InAs层2,第三步只打开Sb快门,引入Sb束流浸润1s,通过与InAs层中的As进行元素置换形成InAsxSb1-x层3。之后循环往复,直至材料生长结束。
实施例3
根据发明内容,我们制备了第三种II类超晶格材料,其具体结构为:
GaSb层1的厚度为2.4nm;
InAs层2的厚度为3.0nm;
InAsxSb1-x层3的厚度为0.3nm,组分x为0.02;
其具体制备方法为:
1)将GaSb衬底升温至脱氧温度,并且在Sb束流保护下去除其表面的氧化层,脱氧温度580℃,Sb束流为2×10-6Torr;
2)将GaSb衬底降温至II类超晶格生长温度405℃;
3)将As/In和Sb/Ga生长束流比分别设定至为4和5;
4)采用分子束外延方法在GaSb衬底上生长InAs/GaSb II类超晶格,第一步将Ga、Sb的快门打开外延GaSb层1,第二步将In、As快门打开外延InAs层2,第三步只打开Sb快门,引入Sb束流浸润6s,通过与InAs层中的As进行元素置换形成InAsxSb1-x层3。之后循环往复,直至材料生长结束。

Claims (2)

1.一种基于锑快门开关的无失配II类超晶格结构,其特征在于:
所述的超晶格结构为:由衬底自下而上依次为GaSb层(1)、InAs层(2)和InAsxSb1-x层(3);
所述的GaSb层(1)的厚度为1.05nm-2.4nm;
所述的InAs层(2)的厚度为1.2nm-3.0nm;
所述的InAsxSb1-x层(3)的厚度为0.3nm,组分x为0.01-0.5。
2.一种如权利要求1所述的基于锑快门开关的无失配II类超晶格结构的制备方法,其特征在于包括以下步骤:
1)将GaSb衬底升温至脱氧温度,并且在Sb束流保护下去除其表面的氧化层;
2)将GaSb衬底降温至II类超晶格生长温度;
3)将As/In和Sb/Ga生长束流比设定至II类超晶格生长所用范围;
4)采用分子束外延方法在GaSb衬底上依次外延GaSb层(1)和InAs层(2),然后打开Sb快门浸润1-6秒,形成InAsxSb1-x层(3)。
CN202010126548.6A 2020-02-28 2020-02-28 一种基于锑快门开关的无失配ii类超晶格结构及制备方法 Pending CN111223948A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010126548.6A CN111223948A (zh) 2020-02-28 2020-02-28 一种基于锑快门开关的无失配ii类超晶格结构及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010126548.6A CN111223948A (zh) 2020-02-28 2020-02-28 一种基于锑快门开关的无失配ii类超晶格结构及制备方法

Publications (1)

Publication Number Publication Date
CN111223948A true CN111223948A (zh) 2020-06-02

Family

ID=70826211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010126548.6A Pending CN111223948A (zh) 2020-02-28 2020-02-28 一种基于锑快门开关的无失配ii类超晶格结构及制备方法

Country Status (1)

Country Link
CN (1) CN111223948A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117293229A (zh) * 2023-11-23 2023-12-26 苏州焜原光电有限公司 一种超晶格材料生长界面控制方法、加工设备及探测器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117293229A (zh) * 2023-11-23 2023-12-26 苏州焜原光电有限公司 一种超晶格材料生长界面控制方法、加工设备及探测器
CN117293229B (zh) * 2023-11-23 2024-01-26 苏州焜原光电有限公司 一种超晶格材料生长界面控制方法、加工设备及探测器

Similar Documents

Publication Publication Date Title
US7405142B2 (en) Semiconductor substrate and field-effect transistor, and manufacturing method for same
Kawanami Heteroepitaxial technologies of III–V on Si
CN114197055B (zh) InAs/InSb应变超晶格材料及其制备方法
CN108648987B (zh) 一种分子束外延生长长波红外超晶格界面的优化方法
CN105932106B (zh) InAs/InSb/GaSb/InSbⅡ类超晶格材料制造方法及产品
TWI497569B (zh) Used in the integration of compound semiconductor components in silicon or germanium substrate crystal structure
CN103500765B (zh) 基于砷阀开关的ii类超晶格结构及制备方法
CN109616403B (zh) 分子束外延生长AlInAsSb超晶格材料的方法
CN111223948A (zh) 一种基于锑快门开关的无失配ii类超晶格结构及制备方法
RU2696352C2 (ru) Способ эпитаксиального выращивания границы раздела между материалами из iii-v групп и кремниевой пластиной, обеспечивающий нейтрализацию остаточных деформаций
CN211208457U (zh) 一种基于锑快门开关的无失配ii类超晶格结构
CN109473496B (zh) 一种雪崩探测器过渡层结构及制备方法
CN111584657A (zh) 半导体材料及其制备方法和应用、激光器、光电探测器
US20200343093A1 (en) Structure of epitaxy on heterogeneous substrate and method for fabricating the same
JPH10256154A (ja) 半導体ヘテロ構造およびその製造方法並びに半導体装置
Mano et al. High-density GaAs/AlGaAs quantum dots formed on GaAs (3 1 1) A substrates by droplet epitaxy
CN113178771B (zh) 一种基于GaAsOI衬底的InAs量子点激光器结构及制备方法
JPS61189621A (ja) 化合物半導体装置
TWI505504B (zh) Method for manufacturing epitaxial crystal substrate
CN205542814U (zh) 一种基于砷化铟衬底的ii类超晶格结构
CN107611221A (zh) 提高锑化物基ⅱ类超晶格材料质量的方法
CN106601839B (zh) 一种啁啾数字递变结构的低缺陷异变缓冲层
CN106409937A (zh) 一种砷化铟基ii类超晶格结构及制备方法
CN115732594B (zh) 一种优化InAs/GaSb红外超晶格的制备方法及InAs/GaSb超晶格
JP3224118B2 (ja) エピタキシャル成長法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210121

Address after: 213022 No.23, middle Huashan Road, Xinbei District, Changzhou City, Jiangsu Province

Applicant after: Changzhou Zhongke Decai Technology Development Co.,Ltd.

Address before: 200083 No. 500, Yutian Road, Shanghai, Hongkou District

Applicant before: Shanghai Institute of Technical Physics, Chinese Academy of Sciences

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210618

Address after: 23 Huashan Middle Road, Xinbei District, Changzhou City, Jiangsu Province 213000

Applicant after: Zhongke aibisaisi (Changzhou) Photoelectric Technology Co.,Ltd.

Address before: 213022 No.23, middle Huashan Road, Xinbei District, Changzhou City, Jiangsu Province

Applicant before: Changzhou Zhongke Decai Technology Development Co.,Ltd.