CN111217793B - 一种C-α-甘露糖基化色氨酸中间体及其制备方法和应用 - Google Patents

一种C-α-甘露糖基化色氨酸中间体及其制备方法和应用 Download PDF

Info

Publication number
CN111217793B
CN111217793B CN202010054172.2A CN202010054172A CN111217793B CN 111217793 B CN111217793 B CN 111217793B CN 202010054172 A CN202010054172 A CN 202010054172A CN 111217793 B CN111217793 B CN 111217793B
Authority
CN
China
Prior art keywords
tryptophan
mannosylated
alpha
compound
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010054172.2A
Other languages
English (en)
Other versions
CN111217793A (zh
Inventor
陈弓
何刚
王权权
安爽
祝婉君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202010054172.2A priority Critical patent/CN111217793B/zh
Publication of CN111217793A publication Critical patent/CN111217793A/zh
Application granted granted Critical
Publication of CN111217793B publication Critical patent/CN111217793B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Indole Compounds (AREA)

Abstract

本发明利用自主设计的酰胺原料,该酰胺原料中具有双齿导向基团,首次利用了Pd催化的双齿导向基团辅助的远端芳烃C(sp2)‑H活化的方法,实现了C‑α‑甘露糖基化色氨酸中间体简单高效高立体选择性的合成,将合成的C‑α‑甘露糖基化色氨酸中间体进一步应用,可以简单快速的合成脱晶糖肽激素,有效避免了现有技术中存在的合成步骤冗长,反应效率不高的问题。本发明的合成方法具有非常好的实用性,方法中用到的糖给体(化合物10)和氨基酸片段合成步骤简单,适合大量生产应用,且使用的导向基团种类多样,容易脱除,极大的简化了该类化合物的合成难度。

Description

一种C-α-甘露糖基化色氨酸中间体及其制备方法和应用
技术领域
本发明属于金属催化以及天然产物合成应用技术领域,具体涉及C-α-甘露糖基化色氨酸中间体及其制备方法和应用。
背景技术
1992年,Gade报道了从竹节虫(Carausius morosus)中分离出Cam-HrTH-I(即序号为1的化合物,如图1所示),这是一种脱晶糖肽激素(Proefke,M.L.Biochem.Biophys.Res.Commun.1992,189,1303-1309)。值得注意的是,Cam-HrTH-I的色氨酸(Trp,W)残基上有一个非常不寻常的己糖修饰,尽管其己糖和糖链结构的身份尚不清楚。不久,Hofsteenge报道相关的糖基化修饰的Trp核糖核酸酶并确定了糖片段连接在色氨酸吲哚C2位置。基于这些开创性的研究,C-α-甘露糖基化色氨酸(C-α-Mannosyl Tryptophan)已经逐渐被认为是一种普遍的PTM蛋白。
C-α-甘露糖基化色氨酸(C-α-Mannosyl Tryptophan)具有独特的挑战性结构,吸引了大量的合成研究。目前这一类碳苷化合物的合成方法主要有两例:
1)Ito组报道了第一个以BF3OEt2介导的1,2-无水甘露糖环氧化合物开环为关键步骤的全合成(Ito,Y.,Chem.Eur.J.2003,9,1435–1447)。然而,由于化合物3的制备过程非常复杂,且需要提前进行预官能团化,才能得到相应的C-H锂化中间体;另外化合物3对空气和水汽敏感;因此该方法在制备和使用过程中不方便,不利于大规模生产。此外,糖给体(化合物4)制备相对复杂,且在制备出化合物5后还需要经过7步反应,才能得到C-α-甘露糖基化色氨酸(化合物2)。总而言之,该方法制备复杂性和,反应步骤冗长,另外还存在立体选择性的问题,大大限制了这种方法的应用。
2)Isobe的路线是以C-烷基甘露糖前体(化合物6)为原料,在Cu催化下Castro吲哚环化制备C-甘露糖吲哚片断(化合物7);随后用丝氨酸衍生的氮杂环丙烷(化合物8)安装到吲哚骨架完成C-α-甘露糖基化色氨酸(化合物2)的合成(Isobe,M.,Org.Biomol.Chem.2005,3,687-700)。然而,Isobe的路线这三个片段的合成步骤冗长,反应效率不高,限制了该方法的试剂应用。
综上所述,尽管C-α-甘露糖基化色氨酸(化合物2)已经有了合成方法报道,但是均存在合成步骤冗长,反应效率不高的问题,具有很大的局限性,因此,发展高效高立体选择性的C-α-甘露糖基化色氨酸(化合物2)的合成方法,是目前需要解决的重要问题。
Figure BDA0002372234940000021
发明内容
本发明自主设计了酰胺原料中,首次将双齿导向基团引入酰胺原料中,并通过钯催化的C-H键活策略形成环钯中间体作为亲核试剂,该方法省去了底物的预官能团化步骤(即化合物3等的合成步骤),随后生成的环钯中间体同体系中氯代糖反应,实现相应的碳苷键的构筑,从而实现C-α-甘露糖基化色氨酸中间体的简单高效合成,这是N-Boc-C-α-甘露糖基化色氨酸合成中的关键中间体,利用该C-α-甘露糖基化色氨酸中间体通过简单的反应便可制得N-Boc-C-α-甘露糖基化色氨酸,相对比现有技术,本发明的制备方法具有非常好的实用性,方法中用到的糖给体(化合物10)和氨基酸片段合成步骤简单,总收率相对已报道的合成方法实现了大的提高,适合大量生产应用;同时本发明使用的导向基团种类多样,容易脱除,极大的简化了该类化合物的合成难度。
为实现上述目的,本发明采用如下技术方案:
一种制备C-α-甘露糖基化色氨酸中间体所用的酰胺原料,具有以下结构通式:
Figure BDA0002372234940000022
其中Aux为导向基团。
优选的,所述Aux为
Figure BDA0002372234940000023
中的一种。
本发明还提供了一种C-α-甘露糖基化色氨酸中间体,具有以下结构通式:
Figure BDA0002372234940000024
本发明还提供了一种C-α-甘露糖基化色氨酸中间体合成方法,包括以下步骤:将所述酰胺原料、糖给体(化合物10)、二价钯金属催化剂、碱以及有机溶剂在指定温度下搅拌反应后冷却至室温,直接过滤,滤液旋干,柱层析分离制得所述C-α-甘露糖基化色氨酸中间体。本发明的反应后处理简单,反应结束后只需要旋干溶剂,进行简单的柱层析分离即可得到。
具体的制备通式如图4所示:
Figure BDA0002372234940000031
优选的,C-α-甘露糖基化色氨酸中间体合成的反应原料中还包括添加剂;所述添加剂为2-苯基苯甲酸、磷酸二苄酯、PPh3、特戊酸、N-Boc-Pro、AcOH或N-Ac-IIe-OH中的一种;所述糖给体(化合物10)的结构式为
Figure BDA0002372234940000032
本发明反应中无需添加当量的促进剂,引发剂的使用,之前方法利用的促进剂起到活化糖给体(化合物10)的目的,本发明中所用的催化量的金属钯催化剂不仅可以促进碳氢活化反应,同时可以用作Lewis酸活化糖给体(化合物10)。
优选的,所述碱为醋酸钾、碳酸钾、碳酸铯、碳酸氢钾、碳酸铯、醋酸钠或碳酸银中的一种;所述有机溶剂为PhMe、PhCl、tBu-Ph、DCM或或碳酸银中的一种;所述有机溶剂为PhMe、PhCl、tBu-Ph、DCM或CHCl3中的一种;所述二价钯金属催化剂为Pd(OAc)2、PdCl2、PdBr2、Pd(PhCN)2Cl2、Pd(CH3CN)2Cl2、Pd(PPh3)2Cl2或Pd(TFA)2中的一种。优选的,所述酰胺原料在溶剂中的反应浓度为0.001M-5M;所述酰胺原料、糖给体(化合物10)(mol/L)、二价钯金属催化剂、碱以及添加剂的摩尔比为1:1.2-3.0:0.1-1.0:1.5-3.0:0.3-1.0;在指定温度下搅拌反应条件为:温度区间是100-130℃;搅拌的时长为1-24小时。其中。本发明酰胺原料的反应浓度为0.001-5M,适合大量生产。本发明所用到的金属钯催化剂用量少,在保持良好催化效果的同时,达到了简化工艺、降低成本、方便后处理工序,溶剂的回收利用便捷,减少环境污染等要求。
本发明还提供了一种C-α-甘露糖基化色氨酸中间体的应用,利用所述C-α-甘露糖基化色氨酸中间体合成N-Boc-C-α-甘露糖基化色氨酸,即化合物32,或者苄基保护的N-Boc-C-α-甘露糖基化色氨酸,即化合物33,具体的结构式为:
Figure BDA0002372234940000041
优选的,合成化合物32或化合物33的具体合成方法:C-α-甘露糖基化色氨酸中间体通过盐酸,锌粉处理,得到导向基团Aux脱除产物,随后,在NEt3条件下,利用Boc2O在氨基上引入Boc保护基,即化合物31;最后通过氢化反应脱除Bn保护基,碱性条件水解得到相应的N-Boc-C-α-甘露糖基化色氨酸,即化合物32,或者在对化合物31直接进行水解得到苄基保护的N-Boc-C-α-甘露糖基化色氨酸,即化合物33。
本发明还提供了一种C-α-甘露糖基化色氨酸中间体的应用,利用所述C-α-甘露糖基化色氨酸中间体合成脱晶糖肽激素(即化合物1)。本发明简单高效的合成了C-α-甘露糖基化色氨酸中间体,利用该中间体可以简单高效的合成脱晶糖肽激素(即化合物1),实现该天然产物的高效合成,具有非常好的应用价值。
发明原理:我们通过在底物(即酰胺原料)中引入导向基团,如异喹啉1-羧酸作为导向基团,直接利用Pd催化的碳氢键活化策略直接活化邻位C-H键,原位生成芳基金属试剂,利用异喹啉羧酸中杂环N原子与酰胺N原子同Pd络合,异喹啉1-羧酸作为一种强的配位基团,与Pd的络合能力很强,随后,通过导向的C-H键活化实现色氨酸吲哚二位的活化,生成六元环钯中间体作为亲核试剂,同体系中生成的氧鎓中间体进行反应,实现C-C键的构筑。相比于以往C-H键活化反应中常用的双齿导向基团,我们首次利用异喹啉1-羧酸作为双齿导向基团活化色氨酸吲哚2-位。我们认为该导向基团优于其他双齿导向基团主要是优于异喹啉1-羧酸的芳香性较强,在同Pd进行络合的时候可以提高Pd中心的电荷密度,从而增强环钯中间体的亲和性,使得反应能顺利进行。
另外,现有技术中芳基金属试剂起到亲核试剂作用,进攻反应中生成的氧鎓中间体。而本发明无需提前制备芳基金属试剂,有效克服了芳基金属试剂制备繁琐以及储存使用较为麻烦的问题。在本发明中,底物在Pd作用下发生C-H活化,生成环钯中间体II,氯代糖在Pd作用下生成氧鎓中间体,与生成环钯中间体II发生氧化加成反应,生成中间体III,中间体III随后发生还原消除反应生成IV;最后,IV发生质子解生成相应的目标产物。
Figure BDA0002372234940000051
有益效果
1.本发明通过自主设计的酰胺原料,通过一般糖基化反应即可得到C-α-甘露糖基化色氨酸中间体,相对于现有技术中复杂的中间体片段合成,本发明更加简单高效。
2.本发明基于向基团辅助的C-H键官能团化反应思路,自主设计出了酰胺原料,该酰胺原料相对于背景技术中介绍的底物相比,可以省去底物的预官能团化操作,且酰胺原料本身制备容易,同时对水和氧气不敏感,在反应效率和操作上无疑都是很大的改进,使C-α-甘露糖基化色氨酸中间体的合成更加简单高效。
3.本发明酰胺原料中的上引入双齿导向基团,通过双齿导向的C-H键官能团化反应,生成的环金属中间体反应性高,可以环钯中间体同体系中氯代糖反应,实现相应的碳苷键的构筑,从而实现C-α-甘露糖基化色氨酸中间体的简单高效合成。导向基团(Aux),如PA(吡啶甲酸)导向的C-H键官能团化反应。而异喹啉1-羧酸除了具有导向能力以外,还能够增强Pd中心的电荷密度,从而提高环钯中间体的亲和性。另外氯代甘露糖制备和储存起来比较容易,因此,该方法有着很好的应用前景。
4.本发明无需提前制备芳基金属试剂,采用的酰胺类原料简单易制备且对空气,水不敏感,使用方便,并首次利用了Pd催化的碳氢键活化策略,实现了C-α-MannosylTryptophan的高效高立体选择性的合成。
5.本发明采用的糖基给体的制备步骤简单,无毒,制备过程无需严格的无水无氧,反应所用的受体结构稳定易得,对设备要求简单,后处理也无特别要求,大大降低了合成该类化合物的生产成本。
附图说明
图1为脱晶糖肽激素(化合物1)的结构式;
图2为实施例30-35对应的酰胺原料的结构式;
图3为对比例1-5对应的导向基为AQ的酰胺原料的结构式;
图4为本发明C-α-甘露糖基化色氨酸中间体的制备通式。
具体实施方法
下面的实施示例将更好的说明本发明,所给出的数据包括具体操作和反应条件及产物。产物纯度通过核磁鉴定。本实验中采用的物质简称如下:
HATU:2-(7-氧化苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯HOAT:1-羟基-7-氮杂苯并三氮唑DIPEA:N,N-二异丙基乙胺。
本发明的实施例共分为四个部分:第一部分为C-α-甘露糖基化色氨酸中间体及其对应的制备方法;第二部分为C-α-甘露糖基化色氨酸中间体的应用-即采用C-α-甘露糖基化色氨酸中间体合成化合物32或化合物33及其对应的合成方法;第三部分为C-α-甘露糖基化色氨酸中间体的应用-即脱晶糖肽激素的合成(即化合物1);第四部分为C-α-甘露糖基化色氨酸中间体所用的酰胺原料及酰胺原料的合成方法。
第一部分:C-α-甘露糖基化色氨酸中间体及其对应的制备方法
实施例1-5
在8mL反应瓶中依次加入酰胺原料(化合物23)(29.2mg,0.1mmol,1.0mol/L),氯代糖(112mg,0.2mmol,2.0mol/L),醋酸钯(2.2mg,0.01mmol,0.1mol/L),乙酰基异亮氨酸(Ac-Ile-OH)(5.2mg,0.03mmol,0.3mol/L),醋酸钾(14.7mg,0.15mmol,1.5mol/L),加入1mL溶剂,盖上反应瓶盖(无需特别严格的无水无氧条件),110℃下搅拌12小时。待反应进行完全,将反应瓶冷却至室温,过滤,浓缩,柱层析分离,得到化合物24-C和24-N。实施例1-9的制备步骤基本相同,区别在于采用反应溶剂不同。
Figure BDA0002372234940000061
表1反应溶剂的考察
Figure BDA0002372234940000071
a:NMR Yield
通过实施例1-5可以发现,当反应溶剂为PhMe时,实施例3的产率最好。
其中化合物24-C和24-N的测试数据如下:
Figure BDA0002372234940000072
白色固体,Rf=0.6,40%乙酸乙酯的正己烷溶液.
1H NMR(400MHz,Chloroform-d)δ9.42(dd,J=8.7,1.1Hz,1H),8.90(d,J=7.3Hz,1H),8.39(d,J=5.5Hz,1H),8.33(s,1H,N-H of indole),7.77(d,J=8.2Hz,1H),7.73–7.62(m,3H),7.57(m,1H),7.32–7.06(m,20H),6.96–6.86(m,2H),5.22(d,J=8.4Hz,1H, anomeric H),5.05(q,J=7.2Hz,1H,α-H of Trp),4.69(m,2H),4.61(d,J=2.6Hz,1H),4.55(d,J=11.9Hz,1H),4.52–4.43(m,2H),4.36(s,2H),4.26(td,J=6.8,2.5Hz,1H),4.19–4.07(m,2H),4.04–3.96(m,1H),3.89–3.81(m,3H),3.73–3.64(m,1H),3.59(s,3H),3.44(dd,J=14.4,7.2Hz,1H),3.37(dd,J=14.4,6.9Hz,1H).
13C NMR(101MHz,CDCl3)δ173.02,166.13,148.17,140.45,138.28,137.94,137.75,137.24,135.34,133.82,130.34,128.49,128.45,128.36,128.34,128.29,128.17,128.01,127.92,127.87,127.84,127.81,127.77,127.66,127.61,127.58,127.52,126.98,126.69,124.16,122.13,119.55,118.80,110.99,108.41,77.38,77.27,77.07,76.75,75.87,75.22,74.93,74.83,74.47,73.11,72.97,72.16,71.89,68.34,67.21,53.63,52.28,27.23.
HRMS:calculated for C56H54N3O8[M+H+]:896.3911;found:896.3905.
Figure BDA0002372234940000073
白色固体,Rf=0.65,40%乙酸乙酯的正己烷溶液.
1H NMR(400MHz,Chloroform-d)δ9.55(d,J=9.0Hz,1H),8.74(d,J=7.7Hz,1H),8.26(d,J=5.5Hz,1H),7.74(dd,J=8.0,1.6Hz,1H),7.69–7.55(m,4H),7.45(d,J=5.5Hz,1H),7.35–7.22(m,13H),7.15(m,6H),7.07–6.98(m,2H),6.91(s,1H,C2-H of indole),5.93(d,J=5.8Hz,1H,anomeric H),5.10(dt,J=7.9,5.9Hz,1H),4.73–4.59(m,3H),4.59–4.49(m,2H),4.45(d,J=12.0Hz,1H),4.32–4.23(m,2H),4.19(d,J=12.0Hz,1H),4.06–3.95(m,2H),3.89(q,J=5.0Hz,1H),3.82(dd,J=10.4,5.6Hz,1H),3.69(dd,J=10.4,4.2Hz,1H),3.63(s,3H),3.39(d,J=5.9Hz,2H).
13C NMR(101MHz,CDCl3)δ172.37,165.68,147.31,140.52,138.11,138.08,137.69,137.28,136.89,130.38,128.64,128.59,128.49,128.46,128.37,128.22,128.11,127.99,127.96,127.94,127.81,127.79,127.67,127.62,127.01,126.78,124.44,124.14,122.47,120.21,118.89,112.05,110.53,80.86,77.40,77.08,76.76,74.76,74.51,73.27,73.11,73.08,72.63,68.24,52.70,52.43,27.96.
HRMS:calculated for C56H54N3O8[M+H+]:896.3911;found:896.3905.
实施例6-12
实施例6-12的制备方法与实施例3的制备方法基本相同,区别仅在于实施例6-12选用的二价钯金属催化剂有所不同,具体如表2所示:
表2二价钯金属催化剂的筛选
Figure BDA0002372234940000081
a:NMR Yield
通过实施例6-12可以发现,当二价钯金属催化剂为Pd(OAc)2时,实施例3的产率最好。
实施例13-17
实施例13-17制备方法与实施例3的制备方法基本相同,区别仅在于实施例13-17选用的碱有所不同,具体如表3所示
表3碱的考察
Figure BDA0002372234940000091
a:NMR Yield
通过实施例13-17可以发现,当碱为醋酸钾时,实施例3的产率最好。
实施例18-23
实施例18-23的制备方法与实施例3的制备方法基本相同,区别仅在于实施例18-23选用的添加剂有所不同,具体如表4所示
表4添加剂的考察
Figure BDA0002372234940000092
a:NMR Yield
通过实施例18-23可以发现,当添加剂为N-Ac-Ile-OH时,实施例3的产率最好。
实施例24-29
实施例24-29与实施例3采用的反应、催化剂等相同,不同的筛选最优的反应条件;实施例24-29具体的反应条件如表5所示。
表5反应条件的筛选
Figure BDA0002372234940000093
从以上实施例可以看出,虽然实施例26的产率最高,但与实施例3相比,原料的用量更多,基于成本的考虑,选用实施例3的制备条件为最有条件。
实施例30-35
实施例30-35与实施例3的制备条件基本相同,不同的是酰胺原料不同,不同酰胺原料的编号如图2所示,不同酰胺原料的产率如表6所示,其中酰胺原料各编号对应的化合物如图2所示:
表6酰胺原料的考察
Figure BDA0002372234940000101
实施例30-35中制备的化合物的结构式及核磁数据如下;
Figure BDA0002372234940000102
白色固体,Rf=0.5,40%乙酸乙酯的正己烷溶液.
1H NMR(400MHz,Chloroform-d)δ8.72(d,J=7.4Hz,1H),8.44(d,J=4.8Hz,1H),8.23(s,1H,N-H of indole),8.09(d,J=7.8Hz,1H),7.74(m,1H),7.65(d,J=7.7Hz,1H),7.36–7.25(m,14H),7.23–7.18(m,4H),7.17–7.07(m,4H),6.96(d,J=7.4Hz,2H),5.21(d,J =8.2Hz,1H,anomeric H),5.01(q,J=7.2Hz,1H),4.72(d,J=12.2Hz,1H),4.62(d,J=12.2Hz,1H),4.59–4.46(m,4H),4.30–4.10(m,3H),3.99(d,J=8.3Hz,1H),3.94–3.77(m,4H),3.55(s,3H),3.40(dd,J=14.4,7.2Hz,1H),3.31(dd,J=14.4,7.0Hz,1H).
13C NMR(101MHz,CDCl3)δ172.83,164.36,149.66,148.17,138.31,137.97,137.82,137.05,135.27,133.73,128.44,128.39,128.18,127.93,127.90,127.78,127.68,127.61,127.58,126.12,122.31,122.10,119.54,118.77,110.91,108.29,77.36,77.04,76.72,75.88,75.05,74.87,74.59,73.24,72.98,72.21,71.91,68.43,67.34,53.42,52.21,27.30.
HRMS:calculated for C52H52N3O8[M+H+]:846.3754;found:846.3750.
Figure BDA0002372234940000111
白色固体,Rf=0.55,40%乙酸乙酯的正己烷溶液.
1H NMR(400MHz,Chloroform-d)δ8.51(d,J=7.8Hz,1H),8.31(d,J=4.8Hz,1H),8.10(d,J=7.8Hz,1H),7.70(t,J=7.6Hz,1H),7.57(t,J=7.9Hz,2H),7.33–7.24(m,13H),7.23–7.17(m,5H),7.13(d,J=9.2Hz,3H),7.07–7.03(m,2H),6.85(s,1H,C2-H of indole),5.91(d,J=5.8Hz,1H,anomeric H),5.05(q,J=6.5Hz,1H),4.72–4.65(m,2H),4.61(dd,J=14.5,3.3Hz,2H)4.56–4.51(m,2H),4.46(d,J=12.1Hz,1H),4.04–3.96(m,2H),3.90(q,J=5.0Hz,1H),3.83(dd,J=10.4,5.6Hz,1H),3.70(dd,J=10.4,4.4Hz,1H),3.61(s,3H),3.34(d,J=6.0Hz,2H).
13C NMR(101MHz,CDCl3)δ172.16,163.95,148.36,138.12,138.05,137.75,137.07,136.87,128.57,128.45,128.43,128.34,128.21,128.11,127.96,127.89,127.78,127.74,127.64,127.58,126.17,124.04,122.44,122.13,120.18,118.85,111.99,110.40,80.82,77.33,77.02,76.70,74.83,74.63,73.27,73.14,73.03,72.64,68.29,52.52,52.33,29.71.
HRMS:calculated for C52H52N3O8[M+H+]:846.3754;found:846.3751.
Figure BDA0002372234940000112
白色固体,Rf=0.5,40%乙酸乙酯的正己烷溶液.
1H NMR(400MHz,Chloroform-d)δ9.10(s,1H),8.88(d,J=7.6Hz,1H),8.52(s,1H),8.28(s,1H,N-H of indole),7.90(m,2H),7.78–7.61(m,3H),7.36–7.18(m,16H),7.18–7.15(m,2H),7.15–7.06(m,3H),7.00–6.89(m,2H),5.26(d,J=7.9Hz,1H),5.10(q,J=7.0Hz,1H),4.74(d,J=12.2Hz,1H),4.62(d,J=12.2Hz,1H),4.56–4.47(m,2H),4.37(s,2H),4.26–4.07(m,4H),4.02(dd,J=7.9,2.1Hz,1H),3.85(dt,J=9.5,4.1Hz,3H),3.77(dd,J=9.7,6.7Hz,1H),3.57(s,3H),3.44(dd,J=14.5,6.7Hz,1H),3.36(dd,J=14.5,7.0Hz,1H).
13C NMR(101MHz,CDCl3)δ172.85,164.78,151.21,143.45,138.39,137.99,135.91,135.29,133.72,130.87,129.73,128.75,128.43,128.35,128.14,127.89,127.84,127.79,127.75,127.61,127.54,122.09,120.49,119.52,118.83,110.91,108.28,77.36,77.04,76.72,76.00,75.39,74.99,74.74,73.13,73.01,72.34,72.01,68.61,67.62,53.45,52.23,27.43.
HRMS:calculated for C56H54N3O8[M+H+]:896.3911;found:896.3907.
Figure BDA0002372234940000121
白色固体,Rf=0.55,40%乙酸乙酯的正己烷溶液.
1H NMR(400MHz,Chloroform-d)δ8.95(s,1H),8.73(d,J=7.9Hz,1H),8.54(s,1H),7.89(d,J=8.2Hz,1H),7.70(m,1H),7.67–7.54(m,4H),7.28(m,14H),7.22–7.10(m,6H),7.03(m,2H),6.93(s,1H,C2-H of indole),5.92(d,J=5.9Hz,1H,anomeric H),5.14(dt,J=8.0,5.9Hz,1H),4.72–4.51(m,5H),4.45(d,J=12.1Hz,1H),4.31–4.21(m,2H),4.18(d,J=12.0Hz,1H),4.03(dd,J=5.7,3.0Hz,1H),3.96(m,2H),3.83(dd,J=10.5,5.4Hz,1H),3.70(dd,J=10.4,4.1Hz,1H),3.62(s,3H),3.45–3.32(m,2H).
13C NMR(101MHz,CDCl3)δ172.28,164.51,151.36,143.15,138.15,138.08,137.76,136.89,135.79,130.90,129.73,128.74,128.54,128.45,128.33,128.18,128.07,128.06,127.94,127.80,127.76,127.72,127.65,127.62,127.57,124.06,122.44,120.41,120.19,118.92,111.98,110.56,80.85,77.36,77.15,77.04,76.72,74.86,74.82,74.62,73.24,73.09,72.98,72.71,68.30,52.68,52.36,28.10.
HRMS:calculated for C56H54N3O8[M+H+]:896.3911;found:896.3904.
Figure BDA0002372234940000122
白色固体,Rf=0.5,40%乙酸乙酯的正己烷溶液.
1H NMR(400MHz,Chloroform-d)δ8.80(d,J=7.8Hz,1H),8.29(s,1H,N-H of indole),8.25–8.16(m,2H),8.11(d,J=8.5Hz,1H),7.84(d,J=8.1Hz,1H),7.70(d,J=7.7Hz,2H),7.59(t,J=7.5Hz,1H),7.31–7.25(m,11H),7.25–7.17(m,6H),7.13(m,3H),6.98(m,2H),5.31(d,J=7.9Hz,1H,anomeric H),5.08(q,J=7.2Hz,1H),4.73(d,J=12.3Hz,1H),4.61(d,J=12.3Hz,1H),4.50(s,2H),4.34(d,J=2.5Hz,2H),4.20(s,2H),4.13(s,1H),3.97(d,J=8.0Hz,1H),3.83(m,2H),3.79(dd,J=6.5,3.3Hz,1H),3.70(dd,J=9.6,6.8Hz,1H),3.56(s,3H),3.43(m,2H).
HRMS:calculated for C56H54N3O8[M+H+]:896.3911;found:896.3908.
Figure BDA0002372234940000123
白色固体,Rf=0.55,40%乙酸乙酯的正己烷溶液.
1H NMR(400MHz,Chloroform-d)δ8.77(d,J=8.2Hz,1H),8.29–8.13(m,2H),7.96(d,J=8.4Hz,1H),7.80(d,J=8.0Hz,1H),7.60(m,4H),7.26(m,14H),7.20–7.10(m,6H),7.01–6.87(m,3H),5.90(d,J=6.4Hz,1H,anomeric H),5.15(dt,J=8.2,5.9Hz,1H),4.67–4.42(m,7H),4.22(dt,J=8.8,4.4Hz,1H),4.13(d,J=12.0Hz,1H),4.06(d,J=11.9Hz,1H),3.94(m,3H),3.86–3.78(m,2H),3.72(dd,J=10.4,4.9Hz,1H),3.62(s,3H),3.43(qd,J=14.7,5.5Hz,2H).
HRMS:calculated for C56H54N3O8[M+H+]:896.3911;found:896.3906.
Figure BDA0002372234940000131
白色固体,Rf=0.5,40%乙酸乙酯的正己烷溶液.
1H NMR(400MHz,Chloroform-d)δ8.72(d,J=7.5Hz,1H),8.24(m,2H),7.72–7.56(m,2H),7.39–7.24(m,14H),7.24–7.09(m,7H),7.01–6.90(m,2H),6.82(dd,J=5.6,2.6Hz,1H),5.21(d,J=8.1Hz,1H,anomeric H),5.00(q,J=7.1Hz,1H),4.72(d,J=12.2Hz,1H),4.62(d,J=12.2Hz,1H),4.58–4.43(m,4H),4.25–4.13(m,3H),3.99(d,J=8.2Hz,1H),3.93–3.71(m,7H),3.55(s,3H),3.38(dd,J=14.4,7.0Hz,1H),3.30(dd,J=14.3,7.1Hz,1H).
13C NMR(101MHz,CDCl3)δ172.73,166.75,164.29,151.66,149.30,138.33,138.30,137.97,137.85,135.26,133.70,128.45,128.43,128.37,128.17,127.89,127.77,127.66,127.59,127.56,122.09,119.52,118.76,113.11,110.90,108.23,107.33,77.34,77.03,76.71,75.89,75.15,74.86,74.61,73.23,72.96,72.24,71.92,68.46,67.43,55.43,53.80,53.44,52.20,29.29,27.31.
HRMS:calculated for C53H54N3O9[M+H+]:876.3860;found:876.3857.
Figure BDA0002372234940000132
化合物28产率较低,未收集纯谱。
Figure BDA0002372234940000133
白色固体,Rf=0.55,40%乙酸乙酯的正己烷溶液.
1H NMR(400MHz,Chloroform-d)δ8.56(d,J=7.8Hz,1H),8.14(d,J=5.7Hz,1H),7.66(d,J=2.6Hz,1H),7.63–7.55(m,2H),7.36–7.27(m,13H),7.25–7.18(m,5H),7.18–7.06(m,2H),6.85(s,1H,C2-H of indole),6.58(dd,J=5.6,2.6Hz,1H),5.94(d,J= 5.7Hz,1H,anomeric H),5.05(dt,J=7.8,6.0Hz,1H),4.74–4.56(m,5H),4.49(d,J=12.1Hz,1H),4.35–4.22(m,3H),4.06–3.95(m,2H),3.93–3.84(m,2H),3.83(s,3H),3.72(dd,J=10.5,4.3Hz,1H),3.64(s,3H),3.35(m,2H).
HRMS:calculated for C53H54N3O9[M+H+]:876.3860;found:876.3856.
Figure BDA0002372234940000141
化合物30产率较低,未收集纯谱。
对比例1-5
对比例1-5采用的制备方法与实施例3基本相同,不同的是采用的酰胺原料不同,对比例1-5采用的酰胺原料的编号对应的化合物如图3所示:
Figure BDA0002372234940000142
Figure BDA0002372234940000143
无色油状物,Rf=0.6,40%乙酸乙酯的正己烷溶液
1H NMR(400MHz,Chloroform-d)δ10.39(s,1H),8.57(d,J=4.2Hz,1H),8.51(t,J=4.5Hz,1H),8.04(d,J=8.2Hz,1H),7.77(d,J=7.9Hz,1H),7.43(d,J=4.4Hz,2H),7.38–7.21(m,14H),7.07(dt,J=10.5,5.5Hz,6H),6.94(d,J=7.4Hz,2H),6.77(d,J=7.5Hz,2H),5.71(d,J=17.2Hz,1H),5.53(d,J=17.2Hz,1H),5.46(d,J=9.4Hz,1H,anomeric H),4.86–4.70(m,2H),4.67–4.58(m,2H),4.45(m,4H),4.20–4.11(m,2H),4.06–3.93(m,5H),3.77(d,J=15.4Hz,1H).
HRMS:calculated for C60H55N3NaO6[M+Na+]:936.3989;found:936.3988.
Figure BDA0002372234940000151
白色泡沫,Rf=0.6,40%乙酸乙酯的正己烷溶液.
1H NMR(400MHz,Chloroform-d)δ9.96(s,1H),8.76(d,J=7.6Hz,1H),8.47(d,J=4.3Hz,1H),7.93(d,J=8.2Hz,1H),7.69(d,J=8.0Hz,1H),7.60(d,J=7.7Hz,1H),7.52–7.43(m,1H),7.39(d,J=8.0Hz,1H),7.36–7.13(m,23H),6.83(m,1H),6.57(s,1H,C2-H of indole),5.93(d,J=4.8Hz,1H,anomeric H),4.73(m,2H),4.62(m,3H),4.54–4.36(m,3H),4.23(d,J=4.1Hz,1H),4.17–4.00(m,2H),3.87(m,4H),3.72(dd,J=9.8,2.8Hz,1H).
13C NMR(101MHz,CDCl3)δ138.39,137.56,137.29,134.35,129.93,128.60,128.48,128.36,128.32,128.12,128.08,127.82,77.34,77.22,77.02,76.70,35.93.
HRMS:calculated for C53H50N3O6[M+H+]:824.3700;found:824.3697.
Figure BDA0002372234940000152
白色泡沫,Rf=0.4,40%乙酸乙酯的正己烷溶液
1H NMR(400MHz,Chloroform-d)δ11.24(s,1H),8.79(d,J=4.2Hz,1H),8.62(d,J=7.6Hz,1H),8.09(d,J=8.3Hz,1H),8.05(d,J=8.3Hz,1H),7.53(m,2H),7.46–7.34(m,2H),7.32–7.12(m,16H),7.07(m,2H),7.02(m,2H),6.64(m,2H),5.65(d,J=9.8Hz,1H, anomeric H),4.49(t,J=11.8Hz,3H),4.40(dd,J=9.9,3.0Hz,1H),4.33(m,3H),4.20(t,J=6.6Hz,1H),3.99(dd,J=10.2,6.9Hz,1H),3.73(dd,J=10.3,6.1Hz,1H),3.64(t,J=3.6Hz,1H),3.48(m,3H),2.35(s,3H).
13C NMR(101MHz,CDCl3)δ150.65,148.43,140.05,138.34,138.24,138.01,137.63,136.99,135.99,135.17,130.29,129.48,128.35,128.23,128.20,128.15,128.13,127.63,127.54,127.50,127.45,127.37,127.21,127.06,124.42,122.13,121.59,121.39,118.85,118.37,117.93,114.28,77.37,77.05,76.73,75.28,75.07,73.90,73.85,73.27,73.10,72.42,70.47,68.05,65.15,9.56.HRMS:calculated for C53H50N3O6[M+H+]:824.3700;found:824.3696.
第二部分:C-α-甘露糖基化色氨酸中间体的应用-即采用C-α-甘露糖基化色氨酸中间体合成化合物32或化合物33及其对应的合成方法:
实施例36
化合物32的制备如下:
Figure BDA0002372234940000161
步骤1:24-C(89.5mg,0.1mmol,1.0mol/L)溶于2mL THF/H2O(VTHF:VH2O=1:1)中,反应体系加入2mL 1mol/L HCl,室温搅拌5min。然后加入锌粉(65mg,1.0mmol,10mol/L)添加到反应系统,反应混合物搅拌30分钟。加入饱和NaHCO3(10mL)至体系,随后乙酸乙酯萃取(20mL,3次)。合并后的有机层是用水洗和盐水,在无水Na2SO4干燥处理,减压蒸馏。粗产物用于下一步不进一步纯化。
步骤2:粗品溶于2mL MeCN中。反应体系加入Boc2O(70μL,0.3mmol,3.0mol/L)andNEt3(28μL,0.2mmol,2.0mol/L)后,在室温下搅拌过夜。用薄层色谱法监测起始原料,待原料全部消耗后,将反应体系减压蒸馏。得到的产物(化合物31)经过柱层析分离,产率为81%。
Figure BDA0002372234940000162
无色泡沫,Rf=0.6,20%乙酸乙酯的正己烷溶液.
1H NMR(400MHz,Chloroform-d)δ8.17(s,1H,N-H of indol),7.64(d,J=7.8Hz,1H),7.35–7.14(m,20H),7.06(m,2H),6.83(d,J=7.7Hz,2H),6.02(d,J=5.7Hz,1H),5.11 (d,J=9.1Hz,1H,anomeric H),4.71(d,J=12.0Hz,1H),4.66–4.44(m,6H),4.40(d,J=11.9Hz,1H),4.30(d,J=12.6Hz,1H),4.21(m,2H),3.94–3.84(m,3H),3.86–3.76(m,2H),3.71(s,3H),3.29(dd,J=14.6,4.8Hz,1H),3.05(dd,J=14.6,10.0Hz,1H),1.28(s,9H).
13C NMR(101MHz,CDCl3)δ173.70,155.69,138.21,138.11,137.76,137.30,135.73,133.44,128.52,128.45,128.40,128.24,128.14,128.04,127.94,127.90,127.83,127.76,127.68,127.63,122.37,119.57,118.90,111.14,109.09,79.47,77.39,77.27,77.07,76.75,75.52,74.68,74.62,73.50,73.22,73.19,71.91,70.74,67.89,64.97,54.29,53.46,52.17,29.73,28.30,27.03.
HRMS:calculated for C51H57N2O9[M+H+]:841.4064;found:841.4058.
Figure BDA0002372234940000163
步骤3:将化合物31(84mg,0.1mmol,1.0mol/L)溶于2mL EA/MeOH/HCO2H(VEA:VMeOH:VHCOOH=1:1:0.05)中,加入Pd(OH)2/C(10mol%),在H2保护下室温搅拌12h。反应体系经膜过滤、真空浓缩,粗产物经柱层析纯化,得到所需产物32-1,产率为78%。
Figure BDA0002372234940000171
1H NMR(400MHz,Methenol-d4)δ7.51(d,J=7.9Hz,1H),7.32(d,J=8.1Hz,1H),7.09(t,J=7.5Hz,1H),7.01(t,J=7.5Hz,1H),5.10(d,J=7.9Hz,1H),4.46(t,J=7.8Hz,1H),4.24(dd,J=8.3,3.4Hz,1H),4.16(dd,J=11.9,7.4Hz,1H),3.97(t,J=4.2Hz,1H),3.89(t,J=4.3Hz,1H),3.78(m,2H),3.66(s,1H),3.39–3.26(m,2H),3.21(dd,J=14.3,8.4Hz,1H),1.34(s,9H).
13C NMR(101MHz,MeOD)δ175.42,157.89,137.52,135.13,129.21,122.85,119.99,119.28,112.15,109.49,80.70,80.61,72.52,70.68,69.68,69.11,61.62,55.92,52.72,49.68,49.54,49.47,49.44,49.42,49.40,49.37,49.35,49.33,49.31,49.25,49.22,49.20,49.18,49.16,49.14,49.11,49.09,49.04,49.01,48.99,48.97,48.95,48.92,48.90,48.88,48.86,48.83,48.80,48.78,48.76,48.73,48.71,48.69,48.67,48.65,48.62,48.59,48.40,28.65.
HRMS:calculated for C23H31N2O9[M-H+]:479.2030;found:479.2031.
步骤4:将化合物32-1(46.6mg,0.1mmol,1.0mol/L)溶解在3mL EA/甲醇/HCO2H(VEA:VMeOH:VHCO2H=1:1:1:0.05),然后LiOH(24mg,1.0mmol,10mol/L)被添加到反应系统,反应混合物室温搅拌6h。然后加入阳离子交换树脂,反应混合物过滤减压蒸馏,粗产物无需进一步纯化,得到化合物32,产率为90%。
Figure BDA0002372234940000172
无色絮状物,Rf=0.6,VCHCl3:VMeOH:VH2O=7:4:1.
1H NMR(400MHz,Methanol-d4)δ7.58(d,J=7.8Hz,1H),7.32(d,J=8.0Hz,1H),7.09(t,J=7.4Hz,1H),7.01(t,J=7.4Hz,1H),5.12(d,J=8.2Hz,1H),4.43(dd,J=9.2,5.7Hz,1H),4.25(dd,J=8.2,3.2Hz,1H),4.17(dd,J=12.1,7.6Hz,1H),3.97(dd,J=5.0,3.2Hz,1H),3.92–3.88(m,1H),3.84(q,J=3.8Hz,1H),3.76(dd,J=12.1,3.9Hz,1H),3.30(p,J=1.6Hz,1H),3.20(dd,J=14.3,9.5Hz,1H),1.33(s,9H).
13C NMR(101MHz,MeOD)δ176.71,157.93,137.53,135.18,129.26,122.81,119.98,119.41,112.09,109.76,80.65,80.56,72.49,70.71,69.68,68.92,61.48,55.76,28.65.
HRMS:calculated for C22H29N2O9[M-H+]:465.1879;found:465.1875.
实施例37
化合物33的制备如下:
Figure BDA0002372234940000181
步骤1:将化合物31(84mg,0.1mmol,1.0mol/L)溶于3mL THF/MeOH/H2O(VTHF:VMeOH:VH2O=1:1:1)中,加入LiOH(24mg,1.0mmol,10mol/L),在室温下搅拌6h,加入EA(30mL)。结合后的有机层用水和盐水冲洗,加入无水Na2SO4干燥,在真空中浓缩。粗产物用于下一步不经进一步提纯,收率75%,即得化合物33。
Figure BDA0002372234940000182
化合物33,无色絮状物,Rf=0.6,VCH2Cl2:VMeOH=10:1.
1H NMR(400MHz,Chloroform-d)δ8.13(s,1H),7.70(s,1H),7.38–7.09(m,21H),6.84(s,2H),6.02(s,1H),5.16(d,J=8.9Hz,1H),4.68(d,J=12.1Hz,1H),4.47(m,6H),4.33–4.16(m,3H),4.01–3.84(m,3H),3.69(s,2H),3.23(m,2H),1.27(s,9H).13C NMR(101MHz,CDCl3)δ138.02,137.74,137.40,135.87,128.52,128.49,128.42,128.29,128.21,128.12,128.05,127.90,127.85,127.72,127.67,122.28,119.63,111.04,79.71,77.36,77.24,77.04,76.72,75.39,74.56,73.06,71.93,67.64,28.31.
第三部分C-α-甘露糖基化色氨酸中间体的应用-即脱晶糖肽激素的合成(即化合物1):
实施例38
化合物1的制备如下:
Figure BDA0002372234940000183
将羧酸34-2(875mg,5mmol,1.0mol/L)、34-1(1.22g,5.0mmol,1.0mol/L)、HATU(2.28g,6mmol,1.2mol/L)、DIPEA(1.7mL,10mmol,2.0mol/L)在DMF(20mL)中室温搅拌过夜;加水(50mL),DCM(50mL,3次)提取混合后的有机层,用水和盐水冲洗,在无水Na2SO4上干燥,真空浓缩;加入20mL 4mol/L HCl,反应混合物在室温下搅拌1小时;将溶剂浓缩于真空中,用石油醚洗涤固体,两步法合成了化合物34,收率85%。
Figure BDA0002372234940000191
白色固体,Rf=0.3,10%甲醇的二氯甲烷溶液.
1H NMR(400MHz,DMSO-d6)δ8.50(d,J=8.9Hz,1H),8.21(m,3H),7.51(s,1H),7.35–7.30(m,3H),7.28–7.24(m,2H),4.85–4.59(m,3H),4.55(d,J=12.0Hz,1H),4.45(d,J=12.1Hz,1H),4.35(dt,J=9.0,2.3Hz,1H),4.04(qd,J=6.3,3.9Hz,1H),3.73(m,1H),3.63(m,1H),1.11(d,J=6.4Hz,1H).
13C NMR(101MHz,DMSO)δ171.86,166.97,139.07,128.56,127.95,127.78,74.99,70.93,57.53,16.88.
HRMS:calculated for C13H21N3O3[M-Cl-]:266.1505;found:266.1499.
Figure BDA0002372234940000192
将化合物33(826mg,1mmol,1.0mol/L),化合物34(332mg,1.1mmol,1.1mol/L),HATU(418mg,1.1mol,1.1mol/L),HOAT(150mmol,1.1mmol,1.1mol/L)和DIPEA(330μL,2mmol,2mol/L)在DMF(10mL)在室温下搅拌过夜;用EA(20mL,3次)提取混合后的有机层,用水和盐水冲洗,用无水Na2SO4上干燥,真空浓缩;得到的产物经硅胶闪蒸层析纯化,得率为85%,得到化合物35。
Figure BDA0002372234940000193
无色,Rf=0.6,10%甲醇的二氯甲烷溶液.
1H NMR(400MHz,Chloroform-d)δ8.26(s,1H,N-H of indol),7.62(d,J=7.9Hz,1H),7.41–7.17(m,20H),7.09(d,J=7.2Hz,3H),6.89(m,2H),6.82(s,1H),6.67(s,1H),6.16(s,1H),5.60(s,1H),5.14(d,J=9.4Hz,1H,anomeric H),4.70(d,J=12.0Hz,1H),4.62–4.45(m,6H),4.39(m,2H),4.25(m,4H),4.05–3.88(m,3H),3.75(m,3H),3.59(m,1H),3.27(dd,J=14.7,5.3Hz,1H),3.04(dd,J=14.5,9.4Hz,1H),1.25(s,9H),1.10(d,J=6.5Hz,3H).
13C NMR(101MHz,CDCl3)δ174.05,172.15,169.00,155.98,138.14,138.09,137.68,137.23,135.60,133.45,128.57,128.52,128.44,128.41,128.35,128.16,128.04,127.96,127.93,127.87,127.82,127.78,127.75,127.71,127.66,127.50,122.41,119.67,118.97,111.07,109.27,79.94,77.42,77.31,77.10,76.79,75.58,74.86,74.63,73.72,73.64,73.24,73.17,73.12,71.92,71.54,70.92,67.83,65.15,56.92,55.88,43.63,38.64,28.30,28.19,27.40,16.13.
HRMS:calculated for C63H72N5O11[M+H+]:1074.5228;found:1074.5225.
将化合物35溶于3mL 4mol/LHCl的EA和3mL EA中,室温下反应体系搅拌3h,然后将溶剂浓缩于真空中。粗产物无需进一步提纯即可用于下一步。采用常规酰胺偶联法(同化合物34的制备方法)合成化合物36-1,产率65%。
Figure BDA0002372234940000201
无色,Rf=0.6,10%甲醇的二氯甲烷溶液.
1H NMR(400MHz,Methenol-d4)δ7.64(d,J=7.8Hz,1H),7.43–7.38(m,2H),7.31(m,17H),7.24–7.20(m,1H),7.17(m,2H),7.15–7.06(m,3H),7.03(m,2H),6.93–6.83(m,2H),5.02(s,1H),4.74(d,J=11.7Hz,1H),4.70–4.43(m,10H),4.24(t,J=6.2Hz,1H),4.16(m,2H),4.11–4.05(m,1H),4.02(m,1H),3.97–3.88(m,2H),3.83–3.73(m,3H),3.73–3.65(m,1H),3.46(dd,J=14.7,5.4Hz,1H),3.33(p,J=1.6Hz,1H),3.27(dd,J=14.7,8.6Hz,1H),2.56–2.40(m,2H),1.36(s,9H),1.17(d,J=6.2Hz,3H).
13C NMR(101MHz,MeOD)δ175.16,175.01,174.69,173.93,172.09,157.64,139.85,139.80,139.71,139.49,139.03,137.11,134.42,130.90,129.57,129.53,129.51,129.47,129.37,129.35,129.29,129.24,129.20,129.09,129.02,128.99,128.97,128.86,128.76,128.73,128.69,128.57,122.72,120.15,119.55,112.21,107.52,85.28,81.20,80.24,78.71,76.15,76.04,75.68,75.49,75.22,74.46,73.04,72.42,70.38,59.13,56.50,53.16,49.70,49.56,49.49,49.37,49.36,49.34,49.32,49.28,49.23,49.22,49.20,49.18,49.16,49.14,49.12,49.11,49.07,49.02,49.00,48.99,48.97,48.95,48.93,48.91,48.85,48.77,48.75,48.70,48.68,48.64,48.43,44.02,38.13,30.79,30.37,28.75,28.15,27.03,16.90.
Figure BDA0002372234940000211
化合物37-1是由如上六个氨基酸从左到右依次通过常规的酰胺缩合反应得到(同化合物34的制备方法)。
Figure BDA0002372234940000212
无色,Rf=0.6,10%甲醇的二氯甲烷溶液.
1H NMR(400MHz,DMSO-d6)δ8.38(d,J=7.9Hz,1H),8.18(d,J=8.2Hz,1H),7.93(d,J=8.2Hz,1H),7.76(m,2H),7.46–7.20(m,10H),7.19–7.03(m,3H),4.74(q,J=7.7,6.9Hz,1H),4.60(t,J=7.3Hz,1H),4.51(s,2H),4.46–4.35(m,3H),4.27(dd,J=8.4,4.9Hz,1H),4.03(dd,J=8.6,3.7Hz,1H),3.76(t,J=6.3Hz,1H),3.68(m,1H),3.60(s,3H),2.96(dd,J=13.8,4.8Hz,1H),2.82(dd,J=13.9,8.2Hz,1H),2.15(q,J=9.6Hz,2H),2.08–1.93(m,2H),1.82(m,3H),1.56(m,1H),1.45(dt,J=9.2,4.8Hz,2H),1.13(d,J=6.2Hz,3H),1.02(d,J=6.2Hz,3H),0.83(m,6H).
13C NMR(101MHz,DMSO)δ177.92,172.90,172.55,172.46,170.84,169.53,168.64,139.20,139.11,137.63,129.65,128.55,128.46,128.38,127.99,127.96,127.68,126.70,79.65,75.40,70.93,58.99,56.71,55.74,55.36,53.58,52.21,51.53,47.42,40.91,40.61,40.47,40.40,40.19,39.98,39.77,39.57,39.36,38.27,29.58,29.15,25.80,25.09,24.60,23.54,21.95,16.80,16.70.
HRMS:calculated for C48H63N6O10[M+H+]:883.4606;found:883.4602.
Figure BDA0002372234940000213
将化合物37-1(88.2mg,0.1mmol,1.0mol/L)溶解在3mL四氢呋喃/甲醇/水(VTHF:VMeOH:VH2O=比),然后LiOH(24mL,1.0mmol,10mol/L)被添加到反应系统,反应混合物搅拌6h。然后加入阳离子交换树脂,反应混合物过滤,集中在真空,原有产品没有进一步净化,制得化合物37。无色絮状物,Rf=0.2,VCH2Cl2:VMeOH=10:1.
因为化合物37没有进一步净化,直接用于制备化合物38的反应,所以本发明未给出化合物37的测试数据。
将化合物37和化合物36通过常规酰胺缩合反应制备(同化合物34的制备方法),制备得到化合物38,化合物38的制备方程式如下所示:
将化合物38(84mg,0.1mmol,1.0mol/L)溶解在3毫升四氢呋喃/甲醇/水/HCO2H(VTHF:VMeOH:VH2O:VHCO2H=1:1:1:0.05),然后Pd(OH)2/C(10mol%)被添加到反应系统,H2的保护下反应混合物室温搅拌24h。反应体系经膜过滤、真空浓缩,经高效液相色谱法进一步纯化,收率63%,即得到化合物1。
Figure BDA0002372234940000221
其中,化合物38的数据如下:
Figure BDA0002372234940000222
无色絮状物,Rf=0.6,10%MeOH inCHCl3
1H NMR(600MHz,DMSO-d6)δ10.38(s,1H),8.42(d,J=7.6Hz,1H),8.30(m,1H),8.17(m,1H),8.09(dd,J=19.9,8.1Hz,1H),7.83(dd,J=18.6,8.5Hz,1H),7.77(m,1H),7.62(d,J=8.2Hz,1H),7.48–7.38(m,3H),7.34–7.25(m,23H),7.21(m,3H),7.19(m,3H),7.16(m,2H),7.14–7.10(m,3H),7.09(m,1H),7.05(m,2H),6.98(m,3H),5.33(m,1H),5.01(s,1H),4.84(d,J=10.8Hz,1H),4.75(m,2H),4.64(d,J=11.6Hz,1H),4.58–4.36(m,21H),4.33–4.29(m,2H),4.21(m,1H),4.03(m,2H),3.99–3.94(m,2H),3.91(m,2H),3.85(m,1H),3.72(m,2H),3.68–3.60(m,3H),3.48(m,1H),3.29(dd,J=13.1,8.0Hz,1H),3.04–2.97(m,1H),2.97–2.90(m,1H),2.82(dd,J=13.5,8.4Hz,1H),2.61–2.52(m,1H),2.17(m,1H),2.07–1.95(m,3H),1.89–1.77(m,3H),1.67(q,J=5.3Hz,1H),1.58(m,1H),1.45(m,2H),1.24(m,5H),1.12(d,J=6.1Hz,3H),1.05(d,J=6.2Hz,3H),1.02(d,J=6.3Hz,3H),0.84(d,J=6.9Hz,3H),0.81(d,J=6.7Hz,3H).
HRMS:calculated for C109H127N13NaO20[M+Na+]:1960.9218;found:1960.9218.
化合物1的数据如下:
Figure BDA0002372234940000231
1H NMR(600MHz,DMSO-d6)δ10.53(s,1H),8.42(s,1H),8.28(m,1H),8.19(m,1H),8.06(dd,J=14.3,7.5Hz,1H),7.78(d,J=4.4Hz,2H),7.71(d,J=8.5Hz,1H),7.56(m,2H),7.45(s,1H),7.33(d,J=8.0Hz,1H),7.23–7.08(m,7H),7.02(m,2H),6.94(t,J=7.6Hz,1H),6.66(s,1H),5.32(m,2H),5.00(d,J=8.5Hz,1H),4.85(m,2H),4.74(m,1H),4.62(td,J=8.0,4.5Hz,1H),4.47(q,J=6.7Hz,1H),4.40–4.31(m,3H),4.28(dd,J=7.5,4.7Hz,1H),4.17(dd,J=8.3,4.1Hz,1H),4.06(m,3H),3.97(q,J=5.9,5.0Hz,1H),3.91(s,1H),3.89–3.81(m,2H),3.76(d,J=10.2Hz,1H),3.66(q,J=7.7Hz,1H),3.61–3.49(m,4H),3.28(m,2H),3.15(m,1H),3.03–2.93(m,1H),2.80(dd,J=13.5,8.3Hz,1H),2.63–2.54(m,1H),2.47–2.40(m,1H),2.28–2.15(m,1H),2.15–2.08(m,1H),2.07–1.95(m,4H),1.91–1.77(m,3H),1.71–1.53(m,3H),1.45(m,3H),1.33–1.19(m,14H),1.11(d,J=6.0Hz,3H),1.03(d,J=6.4Hz,3H),0.96(d,J=6.3Hz,3H),0.85(d,J=6.5Hz,3H),0.83(d,J=6.8Hz,3H).
13C NMR(151MHz,DMSO)δ177.99,174.82,172.94,172.78,172.70,172.56,172.46,171.73,171.48,170.80,169.76,169.35,169.33,137.71,135.66,134.67,130.12,129.81,128.34,128.00,126.63,121.10,118.62,118.56,111.57,106.76,81.63,75.02,74.11,72.07,67.15,67.12,66.94,66.76,61.72,59.57,58.64,58.27,57.08,55.79,55.38,55.26,53.57,51.62,50.00,49.07,47.70,42.97,40.92,40.55,40.48,40.43,40.42,40.36,40.29,40.22,40.16,40.08,40.02,39.94,39.88,39.80,39.74,39.66,39.60,39.53,37.93,37.53,35.58,31.75,29.60,29.58,29.54,29.49,29.46,29.44,29.33,29.29,29.20,29.16,29.04,27.07,27.02,25.78,25.58,24.80,24.60,23.52,22.56,21.93,20.55,20.52,20.00,19.73,14.42.
HRMS:calculated for C60H86N13O20[M+H+]:1308.6112;found:1308.6109.
第四部分C-α-甘露糖基化色氨酸中间体所用的酰胺原料及酰胺原料的合成方法:
实施例39
Figure BDA0002372234940000241
将化合物22(10mmol,1equiv),吡啶羧酸(及其类似物)(即Ar对应的骨架与Aux中的骨架对应相同)(12mol,1.2equiv),HATU(15mmol,1.5equiv),DIPEA(20mmol,2.0equiv),HOAT(15mmol,1.5equiv)溶于DMF,室温搅拌过夜。待反应完全,将反应体系溶解在乙酸乙酯中,依次用水,饱和食盐水洗涤,无水硫酸钠干燥处理,过滤,旋干。最后经过柱层析分离得到目标产物,即C-α-甘露糖基化色氨酸中间体所用的酰胺原料,对应的结构式如图2所示。

Claims (4)

1.一种C-α-甘露糖基化色氨酸中间体的合成方法,其特征在于,包括以下步骤:将酰胺原料、糖给体、二价钯金属催化剂、碱以及有机溶剂在指定温度下搅拌反应后冷却至室温,
直接过滤,滤液旋干,柱层析分离制得所述C-α-甘露糖基化色氨酸中间体;
指定温度的温度区间为100℃–130℃;
所述酰胺原料的结构式如下:
Figure FDA0003980148520000011
其中Aux为导向基团;所述Aux为
Figure FDA0003980148520000012
中的一种;
所述糖给体的结构式为
Figure FDA0003980148520000013
反应原料中还包括添加剂;所述添加剂为2-苯基苯甲酸、磷酸二苄酯、PPh3、特戊酸、N-Boc-Pro、AcOH或N-Ac-Ile-OH中的一种。
2.根据权利要求1所述的一种C-α-甘露糖基化色氨酸中间体的合成方法,其特征在于,所述碱为醋酸钾、碳酸钾、碳酸铯、碳酸氢钾、碳酸铯、碳酸氢钾、醋酸钠或碳酸银中的一种;所述有机溶剂为PhMe、PhCl、tBu-Ph、DCM或CHCl3中的一种;所述二价钯金属催化剂为Pd(OAc)2、PdCl2、PdBr2、Pd(PhCN)2Cl2、Pd(CH3CN)2Cl2、Pd(PPh3)2Cl2或Pd(TFA)2中的一种。
3.根据权利要求1所述的一种C-α-甘露糖基化色氨酸中间体合成方法,其特征在于,所述酰胺原料在溶剂中的反应浓度为0.001M-5M;所述酰胺原料、糖给体、二价钯金属催化剂、碱以及添加剂的摩尔比为1:1.2-3.0:0.1-1.0:1.5-3.0:0.3-1.0;在指定温度下搅拌反应条件为:搅拌的时长为1-24小时。
4.一种利用权利要求1-3任一项所述的方法制备的C-α-甘露糖基化色氨酸中间体的应用,其特征在于,C-α-甘露糖基化色氨酸中间体具有以下结构通式:
Figure FDA0003980148520000021
Aux为
Figure FDA0003980148520000022
中的一种;
利用所述C-α-甘露糖基化色氨酸中间体合成化合物1所示的脱晶糖肽激素,化合物1所示的结构如下:
Figure FDA0003980148520000023
CN202010054172.2A 2020-01-17 2020-01-17 一种C-α-甘露糖基化色氨酸中间体及其制备方法和应用 Active CN111217793B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010054172.2A CN111217793B (zh) 2020-01-17 2020-01-17 一种C-α-甘露糖基化色氨酸中间体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010054172.2A CN111217793B (zh) 2020-01-17 2020-01-17 一种C-α-甘露糖基化色氨酸中间体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111217793A CN111217793A (zh) 2020-06-02
CN111217793B true CN111217793B (zh) 2023-03-31

Family

ID=70811042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010054172.2A Active CN111217793B (zh) 2020-01-17 2020-01-17 一种C-α-甘露糖基化色氨酸中间体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111217793B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105924A (zh) * 2020-09-01 2022-03-01 兰州大学 非天然糖氨基酸及其衍生物的合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1016866A1 (en) * 1997-08-20 2000-07-05 Kyowa Medex Co., Ltd. NOVEL COMPOUND 2-AMINO-3-[2-(a)-MANNOPYRANOSYL)INDOL-3-YL]PROPIONIC ACID, PROCESS FOR PREPARING THE SAME, AND METHOD FOR INSPECTING FUNCTION OF LIVING BODY WITH THE NOVEL COMPOUND
CN108530497A (zh) * 2018-04-09 2018-09-14 江南大学 糖氨基酸及利用糖氨基酸制备的寡糖模拟物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1016866A1 (en) * 1997-08-20 2000-07-05 Kyowa Medex Co., Ltd. NOVEL COMPOUND 2-AMINO-3-[2-(a)-MANNOPYRANOSYL)INDOL-3-YL]PROPIONIC ACID, PROCESS FOR PREPARING THE SAME, AND METHOD FOR INSPECTING FUNCTION OF LIVING BODY WITH THE NOVEL COMPOUND
CN108530497A (zh) * 2018-04-09 2018-09-14 江南大学 糖氨基酸及利用糖氨基酸制备的寡糖模拟物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
438247-03-1;STN;《Registry》;20020711 *
Synthesis of pseudopeptides based L-tryptophan as a potential antimicrobial agent;Jian Lv et al.;《Bioorganic & Medicinal Chemistry Letters》;20070104;第17卷;第1601-1607页 *

Also Published As

Publication number Publication date
CN111217793A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
CN111205327B (zh) 一种瑞德西韦的制备方法
CN108203404A (zh) (r)-3-苯基哌啶或/和(s)-3-苯基哌啶以及尼拉帕尼的手性中间体的合成方法
CN102382001B (zh) 一种邻氨基芳甲酸芳基酯衍生物的合成方法
CN109956870A (zh) 一种罗沙司他的合成方法及其中间体化合物
CN105294536B (zh) 一种制备3-亚氨基异吲哚啉酮类化合物的方法
CN109369661B (zh) [3+2]环加成脱芳构化合成手性氢化苯并呋喃类化合物的方法
CN111217793B (zh) 一种C-α-甘露糖基化色氨酸中间体及其制备方法和应用
CN113698325A (zh) 一种制备烷基磺酰氟的方法
Harayama et al. Aryl–Aryl Coupling Reaction Using a Novel and Highly Active Palladium Reagent Prepared from Pd (OAc) 2, 1, 3-Bis [diphenylphosphino] propane (DPPP), and Bu3P
CN111995565B (zh) 一种(s)-2-哌啶甲酸的制备方法
CN103980120A (zh) 一种混旋丹参素异丙酯的合成方法
CN114308121B (zh) 膦氧催化剂及其制备方法和应用
CN113214104B (zh) 一种合成芳香乙酰胺的方法
CN116003360A (zh) 一种二氧化碳和炔烃合成橙酮类化合物制备方法
EP1995250A1 (en) Ligand, method for producing the same, and catalyst using the ligand
CN115215814A (zh) 异恶唑烷类化合物的合成方法
CN110845512B (zh) 杂萜类天然产物(+)-Arisugacins F/G的全合成方法
CN106810485A (zh) 一种手性联苯吡咯烷酮的制备方法及其中间体
CN111087405A (zh) 一种不对称合成石蒜科生物碱(+)-γ-lycorane的方法
CN108659094B (zh) 一种mycoleptodiscin A的合成方法
CN112430212B (zh) 可循环铋络合物催化的不对称n-二芳基甲基取代的杂环化合物的合成方法
CN115353437B (zh) 一种顺-2-甲基-7-十八烯以及顺式-7,8-环氧-2-甲基十八烷的合成方法
CN114105855B (zh) 一种在吲哚c2位引入异戊烯基的方法
CN111635359B (zh) 一种通过氟烷基亚磺酰基制备芳香族烯基化合物的方法
CN113549063B (zh) 一种光学异构的八氢-2H-吡咯并[3,4-c]吡啶-2-羧酸叔丁酯的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant