CN111205080B - 一种高强度铝酸锌多孔陶瓷及其制备方法 - Google Patents

一种高强度铝酸锌多孔陶瓷及其制备方法 Download PDF

Info

Publication number
CN111205080B
CN111205080B CN202010059276.2A CN202010059276A CN111205080B CN 111205080 B CN111205080 B CN 111205080B CN 202010059276 A CN202010059276 A CN 202010059276A CN 111205080 B CN111205080 B CN 111205080B
Authority
CN
China
Prior art keywords
porous ceramic
znal
preparation
zinc aluminate
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010059276.2A
Other languages
English (en)
Other versions
CN111205080A (zh
Inventor
付萍
李沁键
肖金坤
杜飞鹏
林志东
陈喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN202010059276.2A priority Critical patent/CN111205080B/zh
Publication of CN111205080A publication Critical patent/CN111205080A/zh
Application granted granted Critical
Publication of CN111205080B publication Critical patent/CN111205080B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • C04B38/0041Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter the particulate matter having preselected particle sizes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明公开一种高强度铝酸锌多孔陶瓷及其制备方法,制备方法具体包括以下步骤:步骤S1、按重量份计将1‑10份铝酸锌纳米棒、1‑5份SiO2纳米颗粒放入球磨罐中,加入分散剂后混合共磨,并烘干、过筛后获得混合粉料;步骤S2、将所述步骤S1中获得的混合粉料烧结后,随炉自然冷却至室温,得到铝酸锌陶瓷。本申请所述高强度铝酸锌多孔陶瓷的制备工艺简单,且制得的高强度铝酸锌多孔陶瓷具有高孔隙率的同时还具有高的力学性能,并且具有优异的透波性,应用前景广阔。

Description

一种高强度铝酸锌多孔陶瓷及其制备方法
技术领域
本发明涉及无机化工技术领域,特别涉及一种高强度铝酸锌多孔陶瓷及其制备方法。
背景技术
应用于航空航天领域的透波多孔陶瓷须具备优异的综合性能,包括稳定的高温介电性能,即低的介电常数(1-4)和低的介电损耗(10-4-10-2),材料的介电常数不随温度、频率有明显的变化,良好的抗腐蚀耐热性能,良好的高温力学性能,低的热导率,密度低等性能。
孔洞既是多孔陶瓷所需的“功能结构”,也是造成材料强度下降、裂纹扩展的直接原因。由于孔洞是引起陶瓷性能下降的“缺陷”,所以导致多孔陶瓷的高孔隙率与高强度相互矛盾,而解决这一矛盾的关键环节是多孔陶瓷的制备工艺和烧结工艺,多孔陶瓷的制备工艺和烧结工艺决定了孔隙的形貌和尺寸分布,也决定了多孔陶瓷的结构和性能。
在保持高孔隙率的同时,为了提高多孔陶瓷的强度,目前常用的方法之一是利用高强度的纤维、晶须等一维增强体来增强多孔陶瓷的骨架,提高多孔陶瓷的强度。一维增强体作为陶瓷颗粒与孔隙之间的连接桥梁,具有良好的增强效果。然而,常用的增强纤维和晶须往往与陶瓷基体组成不同,异相纤维的引入,会影响复合材料的化学性能,另外在烧结过程中晶须和纤维还会直接与基体材料发生反应。此外,对于高孔隙率、大孔径的多孔陶瓷,晶须在短距离内的桥接作用非常有限,如果纤维含量过多,纤维在制备过程中难以均匀分散,纤维之间的大孔隙也会降低材料的强度。因此,通过将一维增强体与陶瓷基体复合制备多孔陶瓷对力学性能的改善程度有限。
发明内容
为解决上述技术问题,本发明提供一种高强度的多孔陶瓷及其制备方法,采用的技术方案为:
一种高强度铝酸锌多孔陶瓷的制备方法,包括以下步骤:
步骤S1、按重量份计将1-10份铝酸锌纳米棒、1-5份SiO2纳米颗粒放入球磨罐中,加入分散剂后混合共磨,并烘干、过筛后获得混合粉料;
步骤S2、将所述步骤S1中获得的混合粉料烧结后,随炉自然冷却至室温,得到铝酸锌陶瓷。
优选地,所述步骤S1中的所述铝酸锌纳米棒直径为20-50nm,长度为300-1000nm。
铝酸锌纳米棒相互搭接形成三维网络孔隙结构,避免因铝酸锌纳米棒相互搭接形成三维网络孔隙过大造成的多孔陶瓷的强度减低,同时便于SiO2纳米颗粒的填充。
优选地,所述步骤S1中的SiO2纳米颗粒为直径为30-50nm。
颗粒活性高,保证SiO2纳米颗粒在铝酸锌纳米棒相互搭接形成的三维网络孔隙内的填充效果。
优选地,所述步骤1中的分散剂为无水乙醇,且无水乙醇的重量份数为1-5份。
无水乙醇有利于使铝酸锌纳米棒和SiO2纳米颗粒混合更均匀。
优选地,所述步骤S1中采用氧化锆球作为球磨介质,在200-500r/min转速下球磨0.5-2小时。
球磨使铝酸锌纳米棒和SiO2纳米颗粒的粒径变小,提高SiO2纳米颗粒的活性。
优选地,所述步骤S1中烘干温度为50-75℃,烘干时间为2-5h。
优选地,所述步骤S1中过筛的筛网的目数为30-40目。
优选地,所述步骤2中将所述步骤1中获得的混合粉料倒入石墨模具后置于放电等离子烧结炉中烧结。
放电等离子烧结炉的升温速率快,效率高;且混合粉料无需造粒,工艺简单、操作方便。
优选地,所述步骤S2中烧结的升温速率为100-250℃/min,烧结压力10-30MPa,保温温度为1000-1200℃,烧结保温时间为2-8min。
一种高强度铝酸锌多孔陶瓷,采用上述制备方法制得。
本发明所述高强度铝酸锌多孔陶瓷及其制备方法的有益效果在于:
铝酸锌具有低的介电常数和介电损耗,低的热膨胀系数,良好的机械性能,耐高温及化学稳定性,是制备透波材料的潜在材料;
以铝酸锌纳米棒为原料与SiO2纳米颗粒复合,以利用铝酸锌纳米棒的高表面活性和高长径比,使铝酸锌纳米棒相互搭接形成三维网络孔隙结构,赋予多孔陶瓷高的强度;
适量的SiO2复合在铝酸锌纳米棒形成的三维网络孔隙结构中,以填充到因铝酸锌纳米棒桥架效应而产生的大孔隙中,进一步改善多孔陶瓷的力学性能;
SiO2颗粒的熔点低,SiO2纳米颗粒烧结过程中形成液相,通过粘性流动机制加速铝酸锌纳米棒的运动及重排,降低了界面能,促进烧结,降低烧结温度,节约烧结能耗;
本申请制备的得到的铝酸锌多孔陶瓷,具有均匀的孔径尺寸分布,平均孔径尺寸约200nm-1μm,且孔隙率为30%-75%,热导率为0.15-1.2W/mK,抗压强度为200-400MPa,抗弯强度为200-350MPa,介电常数为2.0-4.8,介电损耗为10-4-10-3;即本申请所述高强度铝酸锌多孔陶瓷具有高孔隙率的同时还具有高的力学性能,并且具有优异的透波性,应用前景广阔。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例详细说明如后。本发明的具体实施方式由以下实施例详细给出。
具体实施方式
以下结合具体实施例对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。在下列段落中以举例方式更具体地描述本发明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例1
步骤S1、按重量份计将1份铝酸锌纳米棒、1份SiO2纳米颗粒和1份无水乙醇放入球磨罐中,以氧化锆球为球磨介质在200r/min的转速下共磨2h后得到料浆,将料浆放入干燥箱内,在温度为50℃的环境下干燥2h后,采用目数为30目的筛网过筛并获得混合粉料;
步骤S2、将所述步骤S1中获得的混合粉料倒入石墨模具后,置于放电等离子烧结炉中,在烧结升温速率为100℃/min,烧结压力10MPa,保温温度为1000℃,保温时间为2min的条件下烧结后,随炉自然冷却至室温,得到铝酸锌多孔陶瓷。
实施例2
步骤S1、按重量份计将10份铝酸锌纳米棒、5份SiO2纳米颗粒和5份无水乙醇放入球磨罐中,以氧化锆球为球磨介质在500r/min的转速下共磨0.5h后得到料浆,将料浆放入干燥箱内,在温度为75℃的环境下干燥5h后,采用目数为40目的筛网过筛并获得混合粉料;
步骤S2、将所述步骤S1中获得的混合粉料倒入石墨模具后,置于放电等离子烧结炉中,在烧结升温速率为250℃/min,烧结压力30MPa,保温温度为1200℃,保温时间为8min的条件下烧结后,随炉自然冷却至室温,得到铝酸锌多孔陶瓷。
实施例3
步骤S1、按重量份计将5份铝酸锌纳米棒、3份SiO2纳米颗粒和3份无水乙醇放入球磨罐中,以氧化锆球为球磨介质在350r/min的转速下共磨1h后得到料浆,将料浆放入干燥箱内,在温度为65℃的环境下干燥3h后,采用目数为40目的筛网过筛并获得混合粉料;
步骤S2、将所述步骤S1中获得的混合粉料倒入石墨模具后,置于放电等离子烧结炉中,在烧结升温速率为200℃/min,烧结压力为20MPa,保温温度为1100℃,保温时间为5min的条件下烧结后,随炉自然冷却至室温,得到铝酸锌多孔陶瓷。
对比例1
步骤S1、按重量份计将5份铝酸锌纳米棒和3份无水乙醇放入球磨罐中,以氧化锆球为球磨介质在350r/min的转速下共磨1h后得到料浆,将料浆放入干燥箱内,在温度为65℃的环境下干燥3h后,采用目数为40目的筛网过筛并获得铝酸锌粉料;
步骤S2、将所述步骤S1中获得的铝酸锌粉料倒入石墨模具后,置于放电等离子烧结炉中,在烧结升温速率为200℃/min,烧结压力为20MPa,保温温度为1100℃,保温时间为5min的条件下烧结后,随炉自然冷却至室温,得到铝酸锌多孔陶瓷。
分别检测实施例1-3和对比例1制得的铝酸锌多孔陶瓷的性能,检测结果如表1所示:
表1实施例1-3和对比例1制得的铝酸锌多孔陶瓷的性能
Figure BDA0002373893750000061
由上述检测数据可知:
(1)本申请所述制备方法制得的高强度铝酸锌多孔陶瓷具有均匀的孔径尺寸分布,且平均孔径尺寸约200nm-1μm,孔隙率为30%~75%,热导率为0.15-1.2W/mK,抗压强度为200-400MPa,抗弯强度为200-350MPa,介电常数为2.0-4.8,介电损耗为10-4-10-3
(2)实施例3制得的所述高强度铝酸锌多孔陶瓷的抗压强度和抗弯强度明显高于对比例1所制得的铝酸锌多孔陶瓷。
即实施例1-3制得的所述高强度铝酸锌多孔陶瓷具有高孔隙率的同时还具有高的力学性能,并且具有优异的透波性,应用前景广阔。
以上所述,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按以上所述而顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所作的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护范围之内。

Claims (9)

1.一种高强度ZnAl2O4多孔陶瓷的制备方法,其特征在于,包括以下步骤:
步骤S1、按重量份计将1-10份ZnAl2O4纳米棒、1-5份SiO2纳米颗粒放入球磨罐中,加入分散剂后混合共磨,并烘干、过筛后获得混合粉料;
步骤S2、将所述步骤S1中获得的混合粉料烧结后,随炉自然冷却至室温,得到ZnAl2O4陶瓷;
所述步骤S2中烧结的升温速率为100-250℃/min,烧结压力10-30MPa,保温温度为1000-1200℃,烧结保温时间为2-8min。
2.根据权利要求1所述的高强度ZnAl2O4多孔陶瓷的制备方法,其特征在于,所述步骤S1中的所述ZnAl2O4纳米棒直径为20-50nm,长度为300-1000nm。
3.根据权利要求2所述的高强度ZnAl2O4多孔陶瓷的制备方法,其特征在于,所述步骤S1中的SiO2纳米颗粒的直径为30-50nm。
4.根据权利要求1所述的高强度ZnAl2O4多孔陶瓷的制备方法,其特征在于,所述步骤S1中的分散剂为无水乙醇,且无水乙醇的重量份数为1-5份。
5.根据权利要求1所述的高强度ZnAl2O4多孔陶瓷的制备方法,其特征在于,所述步骤S1中采用氧化锆球作为球磨介质,在200-500r/min转速下球磨0.5-2小时。
6.根据权利要求1所述的高强度ZnAl2O4多孔陶瓷的制备方法,其特征在于,所述步骤S1中烘干温度为50-75℃,烘干时间为2-5h。
7.根据权利要求1所述的高强度ZnAl2O4多孔陶瓷的制备方法,其特征在于,所述步骤S1中过筛的筛网的目数为30-40目。
8.根据权利要求1所述的高强度ZnAl2O4多孔陶瓷的制备方法,其特征在于,所述步骤S2中将所述步骤S1中获得的混合粉料倒入石墨模具后置于放电等离子烧结炉中烧结。
9.一种高强度ZnAl2O4多孔陶瓷,其特征在于,采用如权利要求1-8任一项所述制备方法制得。
CN202010059276.2A 2020-01-19 2020-01-19 一种高强度铝酸锌多孔陶瓷及其制备方法 Active CN111205080B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010059276.2A CN111205080B (zh) 2020-01-19 2020-01-19 一种高强度铝酸锌多孔陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010059276.2A CN111205080B (zh) 2020-01-19 2020-01-19 一种高强度铝酸锌多孔陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN111205080A CN111205080A (zh) 2020-05-29
CN111205080B true CN111205080B (zh) 2022-04-29

Family

ID=70783738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010059276.2A Active CN111205080B (zh) 2020-01-19 2020-01-19 一种高强度铝酸锌多孔陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111205080B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555029A (zh) * 2008-04-09 2009-10-14 清华大学 铝酸锌纳米材料的制备方法
AU2012262674A1 (en) * 2011-06-01 2014-01-09 Allegra Orthopaedics Limited Biocompatible material and uses thereof
CN105529425A (zh) * 2014-11-19 2016-04-27 比亚迪股份有限公司 一种陶瓷隔膜及其制备方法和应用
CN105819849A (zh) * 2016-05-04 2016-08-03 武汉工程大学 一种铝酸锌纳米粉体及其制备方法
CN209957661U (zh) * 2019-02-22 2020-01-17 湖南德智新材料有限公司 一种空心陶瓷微球

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555029A (zh) * 2008-04-09 2009-10-14 清华大学 铝酸锌纳米材料的制备方法
AU2012262674A1 (en) * 2011-06-01 2014-01-09 Allegra Orthopaedics Limited Biocompatible material and uses thereof
CN105529425A (zh) * 2014-11-19 2016-04-27 比亚迪股份有限公司 一种陶瓷隔膜及其制备方法和应用
CN105819849A (zh) * 2016-05-04 2016-08-03 武汉工程大学 一种铝酸锌纳米粉体及其制备方法
CN209957661U (zh) * 2019-02-22 2020-01-17 湖南德智新材料有限公司 一种空心陶瓷微球

Also Published As

Publication number Publication date
CN111205080A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
WO2022144013A1 (zh) 一种刚玉质微纳孔绝隔热耐火材料及其制备方法
CN104894418A (zh) 一种原位合成尖晶石晶须增强铝基复合泡沫及其制备方法
CN103288468A (zh) 一种纤维增强碳-碳化硅-碳化锆基复合材料的制备方法
CN108484194B (zh) 一种Al2O3-SiO2基复合材料及其快速制备方法
CN106220218A (zh) 一种泡沫陶瓷过滤器及其制造方法
CN108249944B (zh) 一种SiO2基复合材料的制备方法
CN112645729B (zh) 具有介孔结构的耐高温氧化锆复合隔热材料及其制备方法
CN112125653A (zh) 一种基于3d打印制备的石墨烯陶瓷复合材料及其制备方法
CN108658616B (zh) 一种ZrO2-SiO2基复合材料的低温快速制备方法
CN115849949B (zh) 高强度低热导率陶瓷气凝胶材料的制备方法
CN112062515B (zh) 一种利用碳化硅制备的高强地聚合物闭孔发泡材料及其制备方法
Li et al. Effects of V2O5 addition on the synthesis of columnar self-reinforced mullite porous ceramics
Jiang et al. Fabrication and properties of Si2N2O-Si3N4 ceramics via direct ink writing and low-temperature sintering
Wu et al. Preparation and properties of porous ceramics from nickel slag by aerogel gelcasting
CN110483081A (zh) 一种耐高温纳米隔热材料及其制备方法
CN111205080B (zh) 一种高强度铝酸锌多孔陶瓷及其制备方法
Xue et al. Alumina hollow sphere-based ceramics bonded with preceramic polymer-filler derived ceramics
Ren et al. Preparation of porous Y2SiO5 ceramics with high porosity and extremely low thermal conductivity for radome applications
CN114057448A (zh) 一种聚乙烯粉轻质泡沫混凝土及其制备方法
CN111020264B (zh) 一种三维堆积体增强钛基复合材料及其制备方法
Liu et al. Additive manufacturing of continuous carbon fiber–reinforced silicon carbide ceramic composites
CN117285338A (zh) 一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法
Zhang Preparation of porous ceramic building decoration materials by foaming method and research on nanomechanical properties
CN101560097A (zh) AlN/C复合泡沫材料及其制备方法
CN111039695A (zh) 碳化硅拓补骨架结构增强氧化铝多孔陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant