CN111203279B - 一种三明治纳米材料ZIF-8@Au25@ZIF-67及其制备方法和应用 - Google Patents

一种三明治纳米材料ZIF-8@Au25@ZIF-67及其制备方法和应用 Download PDF

Info

Publication number
CN111203279B
CN111203279B CN202010081397.7A CN202010081397A CN111203279B CN 111203279 B CN111203279 B CN 111203279B CN 202010081397 A CN202010081397 A CN 202010081397A CN 111203279 B CN111203279 B CN 111203279B
Authority
CN
China
Prior art keywords
zif
reaction
dichloromethane
solution
nano material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010081397.7A
Other languages
English (en)
Other versions
CN111203279A (zh
Inventor
盛鸿婷
鲍亢
貟亚培
朱满洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202010081397.7A priority Critical patent/CN111203279B/zh
Publication of CN111203279A publication Critical patent/CN111203279A/zh
Application granted granted Critical
Publication of CN111203279B publication Critical patent/CN111203279B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/15Preparation of carboxylic acids or their salts, halides or anhydrides by reaction of organic compounds with carbon dioxide, e.g. Kolbe-Schmitt synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/55Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种三明治纳米材料ZIF‑8@Au25@ZIF‑67及其制备方法和应用,该材料的分子式为ZIF‑8@Au25@ZIF‑67,以ZIF‑8为内核,中间层为Au25纳米团簇,最外层为ZIF‑67。本发明三明治材料的合成条件温和,不需要PVP等其他添加剂。该材料可用于催化末端炔羰基化反应,能有效转换CO2,具有较高的活性和稳定性,可保持高活性循环利用五次,具有很好的实用性。

Description

一种三明治纳米材料ZIF-8@Au25@ZIF-67及其制备方法和应用
技术领域
本发明涉及一种三明治纳米材料ZIF-8@Au25@ZIF-67及其制备方法和应用,属于材料合成领域。
背景技术
利用可再生资源是解决日益严重的环境问题的有效途径。其中,二氧化碳是最容易获得的资源,它具有无毒、可再生和廉价的优点。因此,利用二氧化碳转化是绿色化学背景下的一个研究热点,可以在获得有机精细化学品的同时解决化石能源短缺和温室效应问题。
炔酸类衍生物是有机合成工业重要的中间体之一,广泛用于医药、塑料、香料和感光树脂等化工产品中,早在1942年,MarieReimer首先报道了苯丙炔酸的合成方法,后来杨增家等利用阳光引发,制备苯丙炔酸,但这些产率均不高,且反应过程不易控制。Zhang课题组,在2011年先是合成了一种不含过渡金属的催化剂,在120℃加热状态下使用2.5atm CO2和 1.2倍当量的Cs2CO3完成了苯乙炔的羧化过程。(Green Chem.2011,13,1275-1279)后又用无配体Ag(I)催化系统催化末端炔烃的羧化,在1mol%的AgI,1.5倍当量的Cs2CO3,50-60℃, CO2为2atm的条件下完成催化反应(Org.Lett.2011,13,2402-2405)。随后为了提高催化剂的稳定性,金属修饰的金属有机框架(MOF)得到了广泛的发展。Cheng课题组,在MIL-101里将Ag离子原位还原成Ag纳米颗粒得到Ag@MOL-101催化剂,在70mg,2.7mmol%的Ag,Cs2CO3(1.5倍当量),CO2(1.0atm),50℃,DMF(5mL),15h的反应条件下,对末端芳香炔进行羰基化反应(Angew.Chem.Int.Ed.2015,54,988-991)。该反应存在催化剂,碱和溶剂的用量大等不足。随后,Trivedi课题组合成Pd-Cu@MOL-101催化剂,在100mg,2wt%的Pd-Cu,在Cs2CO3(1.5倍当量),CO2(1.0atm),25℃,DMF(5mL),24h的温和条件下对苯乙炔羰基化为苯丙炔酸,(New J.Chem.,2016,40,3109)。虽然在催化剂用量上有所下降,但碱和溶剂的用量依然很大。Beletskaya课题组合成了CuNPs/Al2O3的催化剂,在Cu NP(0.0075mmol),炔(0.15mmol)在Cs2CO3(2.0倍当量),CO2(2.0atm),60℃,DMF(2mL),6or 16h的温和条件下对苯乙炔羰基化为苯丙炔酸(Catal Lett,2017,147,2570–2580),但该反应还存在CO2压力大,碱和溶剂的用量大等缺点。
发明内容
本发明针对上述现有技术所存在的问题,提供了一种三明治纳米材料 ZIF-8@Au25@ZIF-67及其制备方法和应用。本发明设计合成的三明治纳米材料催化剂 ZIF-8@Au25@ZIF-67,外层为ZIF-67,其具有高稳定性,高孔隙率和有机功能,能够催化,分离,固载和活化气体(J.CO Util.2017,20,282-291),另外,外层ZIF-67的厚度直接影响催化反应。与文献报道过的材料Au25/ZIF-8和Au25@ZIF-8相比,实验证明 ZIF-8@Au25@ZIF-67可在温和条件下,高效的催化CO2的炔基化反应,并且该催化剂能够保持高活性的情况下多次循环使用。
本发明三明治纳米材料,其分子式为ZIF-8@Au25@ZIF-67,是以金属有机框架ZIF-8为内核,中间层为Au25纳米团簇,最外层为金属有机框架ZIF-67。所述三明治纳米材料中,Au25的负载量为1%,外层ZIF-67的厚度范围为2~25nm,优选为12nm。
本发明三明治纳米材料ZIF-8@Au25@ZIF-67的制备方法,包括如下步骤:
步骤1:按照常规方法分别合成ZIF-8(合成方法参见J.Membrane Sci.2017,540,155-164)、水溶性Au25纳米团簇(合成方法参见Angew.Chem.Int.Ed.2014,126,4711-471);
步骤2:将步骤1获得的Au25纳米团簇水溶液(2mg,10mL)滴加至ZIF-8的水相悬浊液(50mg,10mL)中,室温剧烈搅拌30分钟,离心分离,收集得到前驱体Au25/ZIF-8沉淀;
步骤3:将步骤2获得的前驱体Au25/ZIF-8均匀分散至10mL甲醇溶液中,得到Au25/ZIF-8 甲醇溶液;
步骤4:向步骤3获得的Au25/ZIF-8甲醇溶液中加入2-甲基咪唑和硝酸钴的甲醇溶液,室温下搅拌反应24小时,离心分离、洗涤并干燥,即可获得三明治纳米材料 ZIF-8@Au25@ZIF-67。
进一步地,步骤4中,调控外层ZIF-67厚度的硝酸钴和2-甲基咪唑的用量范围为:硝酸钴0.038~0.291g,2-甲基咪唑0.360~0.308g。
进一步地,步骤4中,向步骤3获得的Au25/ZIF-8甲醇溶液中先滴加硝酸钴的甲醇溶液,间隔半个小时之后,再滴加2-甲基咪唑的甲醇溶液,温和搅拌24小时,离心分离、洗涤并干燥,即可获得三明治纳米材料ZIF-8@Au25@ZIF-67,外层ZIF-67的厚度为2-25nm。
作为对比,Au25@ZIF-8纳米复合材料的合成方法参见Adv.Mater.2018,30,1704576。具体是将一定量的Au25和Zn(NO3)2溶于10mL去离子水中,超声分散30分钟,迅速将上述混合物倒入2-甲基咪唑的水溶液中(Zn(NO3)2与2-甲基咪唑的摩尔比为1:70),在剧烈搅拌下反应10分钟后,离心收集沉淀,洗涤并干燥,得到浅棕色粉末Au25@ZIF-8。其中Au25的负载量为1%。
本发明三明治纳米材料ZIF-8@Au25@ZIF-67的用途,是在末端炔羰基化的反应中作为催化剂使用。该三明治材料ZIF-8@Au25@ZIF-67作为催化剂对末端炔羧基化反应具有优异的活性和稳定性,从而有效实现了CO2的转化利用。
本发明三明治纳米材料ZIF-8@Au25@ZIF-67的应用,在末端炔羰基化的反应中作为催化剂,实现CO2的固载及转化。具体包括如下步骤:
向10mL的Schlenk反应瓶中依次加入0.5mmol末端炔、80mg ZIF-8@Au25@ZIF-67,0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空,接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球,待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmol Cs2CO3,然后用30mL二氯甲烷分三次萃取,水层用盐酸酸化 PH=1,再用40mL二氯甲烷分4次萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物。
所述末端炔包括芳香族炔、N杂环炔、脂肪族炔等,具体选自苯乙炔、对甲基苯乙炔、对甲氧基苯乙炔、对硝基苯乙炔、对氟苯乙炔、2-吡啶乙炔、三甲基硅炔、环丙烷炔或炔丙胺等。
本发明的有益效果体现在:
1、材料合成制备简单,室温下即可进行反应。
2、采用化学配位法原理制备材料,材料性能稳定,适用范围较广。
3、与文献报道过的材料Au25/ZIF-8和Au25@ZIF-8相比,本发明三明治纳米材料ZIF-8@Au25@ZIF-67作为催化剂能够在温和条件下催化末端炔的羰基化反应,并且具有优异的催化活性和稳定性。
附图说明
图1是Au25纳米团簇的紫外可见光谱。通过图1可以看出其吸收峰在440,546,670,780nm。
图2是Au25/ZIF-8的TEM图,通过图2可以看出Au25/ZIF-8为正十二面体结构,颗粒大小不变,负载均匀。
图3是ZIF-8@Au25@ZIF-67的TEM图,通过图3可以看出ZIF-8@Au25@ZIF-67为三层夹心正十二面体结构,颗粒大小不变,负载均匀。
图4是不同催化剂的催化反应活性。从图4中可以看出,产率分别为 99.0%(ZIF-8@Au25@ZIF-67),40.5%(Au25/ZIF-8),38.0%(Au25@ZIF-8),11.0%(Au25),27.9% (ZIF-8)和52.0%(ZIF-8@ZIF-67)。由此可知,在不同催化剂中,ZIF-8@Au25@ZIF-67的催化活性最高。
图5是ZIF-8@Au25@ZIF-67的循环性能测试。从图5中可以看出,该催化剂循环5次之后稳定性依然保持良好。
具体实施方式
下面通过具体的实施例对本发明技术方案作进一步分析说明。
实施例1:Au25纳米团簇的制备
12毫克L-半胱氨酸溶于10毫升去离子水中置于50毫升反应瓶中,加入100微升,0.2g/mL 的HAuCl4水溶液。接着加入0.3mL,1M的氢氧化钠水溶液。最后取100微升配置溶液A(将 21mg硼氢化钠与5mL,0.2M的氢氧化钠水溶液混合)。反应6小时,整个过程都在匀速搅拌情况下完成。反应结束后产物用10,000转,离心5分钟收集溶液部分,将溶液中加入2倍量的乙腈溶液,离心收集沉淀,再次用乙腈洗涤沉淀3次,得到较为纯净的Au25纳米团簇。图1为Au25纳米团簇的紫外可见光谱。通过图1可以看出其吸收峰在440,546,670,780nm。
实施例2:ZIF-8的制备
6.8mmol的2-甲基咪唑溶于20mL去离子水,然后2mmol的Zn(NO3)2·6H2O溶于20mL的DMF。搅拌情况下向咪唑溶液快速注入Zn溶液,室温快速搅拌1.5小时。反应结束后,产物用10,000转的转速离心8分钟,然后用甲醇清洗沉淀5次,每次转速3分钟,最后60℃真空烘箱中烘干得到ZIF-8。
实施例3:Au25@ZIF-8的制备
将2mg Au25和Zn(NO3)2溶于10mL去离子水中,超声分散30分钟,迅速将上述混合物倒入 2-甲基咪唑的水溶液中(Zn(NO3)2与2-甲基咪唑的摩尔比为1:70),在剧烈搅拌下反应10分钟后,将产生的沉淀物通过离心机10,000转3分钟离心收集沉淀,沉淀分别用10mL去离子水和10mL 甲醇各洗涤两次,然后将沉淀置于真空干燥箱中50℃,得到浅棕色粉末Au25@ZIF-8。
实施例4:Au25/ZIF-8的制备,具体步骤如下:
将2mg Au25溶于10毫升去离子水中,然后滴加10毫升ZIF-8(100毫克)的水溶液,剧烈搅拌 30分钟;随后,混合溶液通过离心机10,000转2分钟离心收集得到Au25/ZIF-8,得到的产物在 100℃真空烘箱烘干。图2为Au25/ZIF-8的TEM图,通过图2可以看出Au25均匀负载在ZIF-8上,颗粒大小不变,负载均匀。
实施例5:ZIF-8@Au25@ZIF-67的制备
将50mg Au25/ZIF-8分散于10mL甲醇中,置于50mL反应瓶中,然后缓慢搅拌,将10mL含 0.146g Cn(NO3)2·6H2O的甲醇溶液滴入反应瓶中,30分钟后将10mL含0.154g 2-甲基咪唑的甲醇溶液加入混合溶液中,混合溶液在室温下搅拌24小时后,用离心机离心收集沉淀,用30mL 甲醇洗涤五次,产物在真空烤箱中50℃干燥,所得到的复合材料即为ZIF-8@Au25@ZIF-67(外层厚度为12nm)。图3是ZIF-8@Au25@ZIF-67的TEM图,通过图3可以看出ZIF-8@Au25@ZIF-67 为三层夹心结构,颗粒大小不变,负载均匀。
实施例6:外层厚度为2nm的ZIF-8@Au25@ZIF-67催化苯乙炔羰基化合成苯丙炔酸。
向10mL的Schlenk反应瓶中依次加入苯乙炔、80mg外层厚度为2nm的 ZIF-8@Au25@ZIF-67,0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空、接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球,待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmol Cs2CO3,然后用30mL二氯甲烷分三次萃取,水层用盐酸酸化PH=1,再用40mL二氯甲烷分4次萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物,产率为65.0%。
实施例7:外层厚度为12nm的ZIF-8@Au25@ZIF-67催化苯乙炔羰基化合成苯丙炔酸。
向10mL的Schlenk反应瓶中依次加入苯乙炔、80mg外层厚度为12nm的 ZIF-8@Au25@ZIF-67,0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空、接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球,待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmol Cs2CO3,然后用30mL二氯甲烷分三次萃取,水层用盐酸酸化PH=1,再用40mL二氯甲烷分4次萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物,产率为99.0%。
实施例8:外层厚度为25nm的ZIF-8@Au25@ZIF-67催化苯乙炔羰基化合成苯丙炔酸。
向10mL的Schlenk反应瓶中依次加入苯乙炔、80mg外层厚度为25nm的 ZIF-8@Au25@ZIF-67,0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空、接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球,待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmol Cs2CO3,然后用30mL二氯甲烷分三次萃取,水层用盐酸酸化PH=1,再用40mL二氯甲烷分4次萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物,产率为70.0%。
实施例9:不同催化剂催化苯乙炔羰基化合成苯丙炔酸。
向10mL的Schlenk反应瓶中依次加入苯乙炔、80mg不同催化剂(分别为Au25,ZIF-8,Au25/ZIF-8,ZIF-8@ZIF-67,ZIF-8@Au25@ZIF-67(外层厚度为12nm)),0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空、接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球,待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmolCs2CO3,然后用30mL二氯甲烷分三次萃取,水层用盐酸酸化PH=1,再用40mL 二氯甲烷分4次萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物,产率如图4所示。从图4中可以看出,产率分别为 99.0%(ZIF-8@Au25@ZIF-67),40.5%(Au25/ZIF-8),38.0%(Au25@ZIF-8),11.0%(Au25),27.9% (ZIF-8)和52.0%(ZIF-8@ZIF-67)。由此可知,在不同催化剂中,外层厚度为12nm的 ZIF-8@Au25@ZIF-67的催化活性最高。
实施例10:外层厚度为12nm的ZIF-8@Au25@ZIF-67催化4-硝基苯乙炔羰基化合成4-硝基苯丙炔酸。
向10mL的Schlenk反应瓶中依次加入4-氯苯乙炔、80mg ZIF-8@Au25@ZIF-67催化剂, 0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空、接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球;待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmol Cs2CO3,然后用30mL二氯甲烷分三次萃取,水层用盐酸酸化 PH=1,再用40mL二氯甲烷分4次萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物,产率为84.5%。
实施例11:外层厚度为12nm的ZIF-8@Au25@ZIF-67催化4-氟苯乙炔羰基化合成4-氟苯丙炔酸。
向10mL的Schlenk反应瓶中依次加入4-硝基苯乙炔、80mgZIF-8@Au25@ZIF-67催化剂, 0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空、接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球,待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmol Cs2CO3,然后用30mL二氯甲烷分三次萃取,水层用盐酸酸化 PH=1,再用40mL二氯甲烷分4次萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物,产率为83.1%。
实施例12:外层厚度为12nm的ZIF-8@Au25@ZIF-67催化4-甲基苯乙炔羰基化合成4-甲基苯丙炔酸。
向10mL的Schlenk反应瓶中依次加入4-甲基苯乙炔、80mg ZIF-8@Au25@ZIF-6催化剂, 0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空、接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球,待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmol Cs2CO3,然后用30mL二氯甲烷分三次萃取,水层用盐酸酸化 PH=1,再用40mL二氯甲烷分4次萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物,产率为85.3%。
实施例13:外层厚度为12nm的ZIF-8@Au25@ZIF-67催化4-甲氧基苯乙炔羰基化合成4-甲氧基苯丙炔酸。
向10mL的Schlenk反应瓶中依次加入4-甲氧基苯乙炔、80mg ZIF-8@Au25@ZIF-67催化剂,0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空、接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球,待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmol Cs2CO3,然后用30mL二氯甲烷分三次萃取,水层用盐酸酸化PH=1,再用40mL二氯甲烷分4次萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物,产率为87.9%。
实施例14:外层厚度为12nm的ZIF-8@Au25@ZIF-67催化2-吡啶乙炔羰基化合成3-(2-吡啶基)丙炔酸。
向10mL的Schlenk反应瓶中依次加入2-吡啶乙炔、80mg ZIF-8@Au25@ZIF-67催化剂, 0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空、接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球,待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmol Cs2CO3,然后用30mL二氯甲烷分三次萃取,水层用盐酸酸化 PH=1,再用40mL二氯甲烷分4次萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物,产率为89.4%。
实施例15:外层厚度为12nm的ZIF-8@Au25@ZIF-67催化环丙炔羰基化合成环丙炔酸。
向10mL的Schlenk反应瓶中依次加入环丙炔、80mg ZIF-8@Au25@ZIF-67催化剂,0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空、接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球。待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmol Cs2CO3,然后用30mL二氯甲烷分三次萃取,水层用盐酸酸化 PH=1,再用40mL二氯甲烷分4次萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物,产率为84.4%。
实施例16:外层厚度为12nm的ZIF-8@Au25@ZIF-67催化炔丙胺羰基化合成炔丙胺酸。
向10mL的Schlenk反应瓶中依次加入2-氨基乙炔、80mg ZIF-8@Au25@ZIF-67催化剂, 0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空、接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球,待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmol Cs2CO3,然后用30mL二氯甲烷分三次萃取,水层用盐酸酸化 PH=1,再用40mL二氯甲烷分4次萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物,产率为82.9%。
实施例17:外层厚度为12nm的ZIF-8@Au25@ZIF-67催化三甲基硅炔羰基化合成3-(三甲基硅基)丙炔酸。
向10mL的Schlenk反应瓶中依次加入2-氨基乙炔、80mg ZIF-8@Au25@ZIF-67催化剂,0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空、接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球,待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmol Cs2CO3,然后用30mL二氯甲烷分三次萃取,水层用盐酸酸化 PH=1,再用40mL二氯甲烷分4次萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物,产率为88.8%。
实施例18:外层厚度为12nm的ZIF-8@Au25@ZIF-67催化苯乙炔羰基化合成苯丙炔酸的循环性能测试
向10mL的Schlenk反应瓶中依次加入苯乙炔、80mg循环后的ZIF-8@Au25@ZIF-67催化剂,0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空、接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球,待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmol Cs2CO3,然后用30mL二氯甲烷分三次萃取,水层用盐酸酸化PH=1,再用40mL二氯甲烷分4次萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物。得到的目标产物的产率与循环次数关系如图5所示,表明该催化剂循环5次之后稳定性依然保持良好。

Claims (7)

1.一种三明治纳米材料ZIF-8@Au25@ZIF-67的应用,其特征在于:在末端炔羰基化的反应中作为催化剂,实现CO2的固载及转化;
所述三明治纳米材料的分子式为ZIF-8@Au25@ZIF-67,是以金属有机框架ZIF-8为内核,中间层为Au25纳米团簇,最外层为金属有机框架ZIF-67;
所述三明治纳米材料中,Au25的负载量为1%,外层ZIF-67的厚度范围为2~25 nm。
2.根据权利要求1所述的应用,其特征在于:
外层ZIF-67的厚度为12nm。
3.根据权利要求1所述的应用,其特征在于包括如下步骤:
向10mL的Schlenk反应瓶中依次加入0.5mmol末端炔、80mg ZIF-8@Au25@ZIF-67,0.24mmol Cs2CO3和1mL二甲亚砜,密封、抽真空,接二氧化碳气球,在50℃条件下搅拌反应12h,反应结束,去掉二氧化碳气球,待反应液温度冷却至室温,加入5mL蒸馏水,离心使固液分离;溶液中加1mmol Cs2CO3,然后用二氯甲烷萃取,水层用盐酸酸化PH=1,再用二氯甲烷萃取,二氯甲烷层用饱和氯化钠洗涤,再用无水硫酸钠干燥,使用旋转蒸发仪除去溶剂得产物。
4.根据权利要求3所述的应用,其特征在于:
所述末端炔包括芳香族炔、N杂环炔、脂肪族炔。
5.根据权利要求1所述的应用,其特征在于所述三明治纳米材料ZIF-8@Au25@ZIF-67的制备方法包括如下步骤:
步骤1:按照常规方法分别合成ZIF-8以及水溶性Au25纳米团簇;
步骤2:将含有2mgAu25纳米团簇的水溶液10mL滴加至10mL含有50mgZIF-8的水相悬浊液中,室温剧烈搅拌30分钟,离心分离,收集得到前驱体Au25/ZIF-8沉淀;
步骤3:将步骤2获得的前驱体Au25/ZIF-8均匀分散至10mL甲醇溶液中,得到Au25/ZIF-8甲醇溶液;
步骤4:向步骤3获得的Au25/ZIF-8甲醇溶液中加入2-甲基咪唑和硝酸钴的甲醇溶液,室温下搅拌反应24小时,离心分离、洗涤并干燥,即可获得三明治纳米材料ZIF-8@Au25@ZIF-67。
6.根据权利要求5所述的应用,其特征在于:
步骤4中,调控外层ZIF-67厚度的硝酸钴和2-甲基咪唑的用量范围为:硝酸钴0.038~0.291g,2-甲基咪唑0.360~0.308g。
7.根据权利要求5或6所述的应用,其特征在于:
步骤4中,向步骤3获得的Au25/ZIF-8甲醇溶液中先滴加硝酸钴的甲醇溶液,间隔半个小时之后,再滴加2-甲基咪唑的甲醇溶液,温和搅拌24小时,离心分离、洗涤并干燥,即可获得三明治纳米材料ZIF-8@Au25@ZIF-67,外层ZIF-67的厚度为2-25nm。
CN202010081397.7A 2020-02-06 2020-02-06 一种三明治纳米材料ZIF-8@Au25@ZIF-67及其制备方法和应用 Active CN111203279B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010081397.7A CN111203279B (zh) 2020-02-06 2020-02-06 一种三明治纳米材料ZIF-8@Au25@ZIF-67及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010081397.7A CN111203279B (zh) 2020-02-06 2020-02-06 一种三明治纳米材料ZIF-8@Au25@ZIF-67及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111203279A CN111203279A (zh) 2020-05-29
CN111203279B true CN111203279B (zh) 2023-04-25

Family

ID=70782507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010081397.7A Active CN111203279B (zh) 2020-02-06 2020-02-06 一种三明治纳米材料ZIF-8@Au25@ZIF-67及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111203279B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113786809B (zh) * 2021-08-31 2022-06-17 重庆大学 纸上sers平台检测生活垃圾臭气含巯基因子的方法
CN114522733A (zh) * 2022-03-04 2022-05-24 安徽大学 一种利用断键策略制备纳米复合材料的方法及其在催化co2炔基化反应中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105413635A (zh) * 2015-11-02 2016-03-23 江苏省海洋资源开发研究院(连云港) 一种核-壳结构金属有机骨架材料的制备方法
CN108187745A (zh) * 2017-12-12 2018-06-22 宁波市河清源技术转移服务有限公司 一种合成气制甲烷催化剂的制备方法
CN109589890A (zh) * 2019-01-11 2019-04-09 北京机械设备研究所 一种过氧化氢合成装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105413635A (zh) * 2015-11-02 2016-03-23 江苏省海洋资源开发研究院(连云港) 一种核-壳结构金属有机骨架材料的制备方法
CN108187745A (zh) * 2017-12-12 2018-06-22 宁波市河清源技术转移服务有限公司 一种合成气制甲烷催化剂的制备方法
CN109589890A (zh) * 2019-01-11 2019-04-09 北京机械设备研究所 一种过氧化氢合成装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Rational encapsulation of atomically precise nanoclusters into metal-organic frameworks by electrostatic attraction for CO2 conversion";Lili Sun等;《Journal of Materials Chemistry A》;20181231(第6期);第15371-15376页 *
"负载型纳米金催化剂新结构的可控合成及性能研究";王祖民;《中国优秀博硕士学位论文全文数据库(博士) 工程科技Ⅰ辑》;20180815;B14-56 *

Also Published As

Publication number Publication date
CN111203279A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
CN108097316B (zh) 一种负载纳米金属颗粒的MOFs纳米材料的制备方法
Wang et al. Nanoparticles@ nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size-and shape-selective reactions
Baran et al. Production of magnetically recoverable, thermally stable, bio-based catalyst: remarkable turnover frequency and reusability in Suzuki coupling reaction
CN112495416B (zh) 一种MOFs衍生三维多级孔Co/NC复合材料及其制备方法
CN111215147B (zh) 一种负载型蛋黄-蛋壳结构纳米催化剂及其制备方法
CN111203279B (zh) 一种三明治纳米材料ZIF-8@Au25@ZIF-67及其制备方法和应用
CN114160196B (zh) 一种钯团簇催化剂的制备方法及其应用
CN112108175B (zh) 一种芳香族烯烃的制备方法
CN106861737A (zh) 一种合成甲酸催化剂及其制备和应用
CN107029796A (zh) 一种复合可见光催化剂的制备方法
CN111632626B (zh) 一种用于苯酚羧基化反应合成水杨酸的催化剂及制备方法
CN107670694A (zh) 一种金属负载型催化剂及其制备方法和应用
CN101875010A (zh) 一种钯纳米颗粒催化剂及其制备方法和用途
CN110124717A (zh) 一种用于苯甲醇转化为苯甲醛的催化剂及其制备方法
CN109622037B (zh) 一种Pd@Co4(tpt)2(btb)复合材料及其制备方法和应用
CN111589443A (zh) 一种石墨烯负载钯纳米颗粒复合材料催化剂的制备方法
Liu et al. Self-coupling reactions of terminal alkynes catalyzed by nanorod-like metalloporphyrin organic frameworks encapsulated with copper nanoparticles: Synergistic catalytic effects of dual copper structures
CN113546687A (zh) 一种超薄钛基MOFs纳米片的可见光催化剂的制备方法及应用
Denicourt-Nowicki et al. Noble metal nanoparticles stabilized by cyclodextrins: a pertinent partnership for catalytic applications
CN105964306A (zh) 一种基于聚离子液体磁性纳米粒子、制备方法及其在三组分反应中的应用
CN110975921B (zh) 具有磁性多孔结构的氮掺杂钴基碳材料的制备方法及应用
CN111151301A (zh) 一种双官能团非均相Pd@MIL-101@SGO复合材料及其制备方法和应用
CN114522733A (zh) 一种利用断键策略制备纳米复合材料的方法及其在催化co2炔基化反应中的应用
CN112675915B (zh) 一种Pd/ZIF-8立方体复合材料的制备方法及应用
CN107497490B (zh) 一种金属有机凝胶负载CdS的催化剂制备及其在光解水制氢方面的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant