CN111167480A - 一种新型析氧电催化剂及其制备方法和应用 - Google Patents

一种新型析氧电催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN111167480A
CN111167480A CN202010092361.9A CN202010092361A CN111167480A CN 111167480 A CN111167480 A CN 111167480A CN 202010092361 A CN202010092361 A CN 202010092361A CN 111167480 A CN111167480 A CN 111167480A
Authority
CN
China
Prior art keywords
oxygen evolution
heterojunction
novel oxygen
evolution electrocatalyst
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010092361.9A
Other languages
English (en)
Other versions
CN111167480B (zh
Inventor
薛卫东
王帅
卢正
赵睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202010092361.9A priority Critical patent/CN111167480B/zh
Publication of CN111167480A publication Critical patent/CN111167480A/zh
Application granted granted Critical
Publication of CN111167480B publication Critical patent/CN111167480B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种新型析氧电催化剂及其制备方法和应用,(1)将P区金属元素的硝酸盐溶于溶剂,得到溶液A;将硫脲溶于溶剂,得到溶液B;将溶液B逐滴加入溶液A中,充分搅拌混合均匀,转移至反应釜中;(2)取清洁干燥的金属Ni泡沫垂直放入反应釜中,溶剂热反应后,得到异质结用去离子水和乙醇反复清洗几次,真空箱中干燥,即得到新型析氧电催化剂。本发明提供以P区元素非对称SP3杂化诱导电子效应显著提高电催化性能,采用简便温和的溶剂热法,以Ni泡沫网为基底和Ni源,P区元素Bi或Sb诱导制备柔性自组装的多肉状Bi2S3/Ni3S2/NF或Sb2S3/Ni3S2/NF异质结工作电极用于电催化析氧反应。Bi2S3或Sb2S3独特的非对称SP3杂化调制异质结电子结构,从而提升电催化性能。

Description

一种新型析氧电催化剂及其制备方法和应用
技术领域
本发明涉及电催化剂领域,具体涉及一种新型的、高效催化析氧电极材料的制备方法以及应用。
背景技术
能源短缺与环境污染是当今世界亟待解决的问题。电催化水裂解技术因其制备方法简单、水资源丰富、产物清洁,被认为是获取新能源的有效途径之一。然而,其阳极OER动力学过程缓慢,只有在较高的电位下才能发生水的分解反应,极大的制约了电解水制氢的大规模发展。故开发丰富、高效、环境友好的析氧催化剂是解决电解水制氢的核心步骤,对能源的储存和转化具有重要意义。
目前活性最高的OER电催化剂是贵金属基催化剂IrO2和RuO2,但由于贵金属材料资源稀缺、成本高、稳定性较差,不利于大规模生产[ACS Catal.2019,9(10)]。硫化镍(Ni3S2)因其固有的金属特性、较高的导电性和丰富的储量,在众多材料中脱颖而出,被广泛研究多种电化学领域。但是相对于贵金属催化剂,Ni3S2的电活性仍然有待提高[J.Am.Chem.Soc.2015,137(44)]。中国专利文献[201810212195.4]公开了一种3D自组装花球状钒修饰的Ni3S2的组合方法,将洁净的金属镍浸入钒源,进行微波溶剂热反应得到一种自组装花球状钒修饰的电催化剂材料;但该方法操作步骤复杂,条件要求苛刻且技术难度大。硫化铋(Bi2S3)是一种典型的层状结构半导体材料,由于其环境友好、生物相容性、电子转移快、吸收效率高、光电性能好等优点,已广泛应用于锂/钠电池、太阳能电池、光催化和电化学传感器等领域[J.Mater.Chem.A 2019,7(18);Chem.Eng.J.354 2018,354;Electrochim.Acta 2012,74]。中国专利文献[201310349113.8]公开了一种空心树状氧化铋-硫化铋复合物的制备与光催化降解污水中的污染物应用。相对于过渡金属基硫化物,硫化铋是一种污水处理的光催化剂,它对水体系绿色友好,并且Bi2S3这种P区元素硫化物在电催化领域少见报告。
常规的电极制备通常采用聚合物粘合剂将活性物质负载在平面电极上,这种方式将导致活性物质聚集,对O2吸附和解吸过程不利。相反,在3D衬底(如Ni网,Cu箔等)上原位生长催化剂不仅可以缓解上述问题,而且提供反应所需的表面积和暴露更多的活性位点。中国专利文献[201810393638.4]公开了一种析氧电催化剂及其制备方法和应用,通过水热法和化学气相沉积法,合成了包覆泡沫石墨烯的海绵镍骨架,但是该方法操作步骤复杂,且反应周期较长,技术难度大,催化剂结构易坍塌。
发明内容
本发明的目的在于:针对上述提到的问题,本发明提供以P区元素非对称SP3杂化诱导电子效应显著提高电催化性能,采用简便温和的溶剂热法,以Ni泡沫网为基底和Ni源,P区元素Bi或Sb诱导制备柔性自组装的多肉状Bi2S3/Ni3S2/NF或Sb2S3/Ni3S2/NF异质结工作电极用于电催化析氧反应。Bi2S3或Sb2S3独特的非对称SP3杂化调制异质结电子结构,从而提升电催化性能。
本发明采用的技术方案如下:
一种新型析氧电催化剂的制备方法,包括以下步骤:
(1)将P区金属元素的硝酸盐溶于溶剂,得到溶液A;将硫脲溶于溶剂,得到溶液B;将溶液B逐滴加入溶液A中,充分搅拌混合均匀,转移至反应釜中;
(2)取清洁干燥的金属Ni泡沫(NF)垂直放入反应釜中,溶剂热反应后,得到异质结用去离子水和乙醇反复清洗几次,真空箱中干燥,即得到新型析氧电催化剂。
优选地,所述P区金属元素的硝酸盐为硝酸铋或硝酸锑。
Bi2S3或Sb2S3独特的非对称SP3杂化调制异质结电子结构,从而提升电催化性能。
优选地,所述的步骤(1)中硝酸盐与硫脲的物质的量为(0.5-2.0):(0.75-3.0)。
优选地,所述的步骤(1)中硝酸盐与溶剂的物质的量的浓度为0.0125-0.05mol/L,硫脲与溶剂的物质的量的浓度为0.0375-0.15mol/L。
优选地,所述的步骤(1)中溶剂为水、乙醇、乙二醇、N,N-二甲基甲酰胺中的一种或多种。
优选地,步骤(2)中溶剂热反应的温度为120-160℃,时间为4-16h。
优选地,步骤(2)中置于60℃真空箱中干燥12h。
一种基于权利要求1~7任一所述方法制备的新型析氧电催化剂。
基于权利要求1~7任一所述方法制备的新型析氧电催化剂在电催化水裂解中的应用。
相较于现有技术,本发明的有益效果是:
1)本发明方法制备的Bi2S3/Ni3S2/NF或Sb2S3/Ni3S2/NF能对Ni3S2产生电子诱导效应,从而有效地提高异质结的电催化析氧性能;
2)相对于过渡金属硫化物,Bi是一种P区金属元素且对水体系不构成中毒的环境友好型硫化物;Bi2S3本身电催化性能不佳,但其孤对电子的不对称SP3杂化模式对Ni3S2产生电子诱导效应,从而形成Bi2S3-Ni3S2异质结协同催化电解水裂解。该异质结催化剂的环境友好及较好的催化活性使其在电催化方面有着重要的作用。
附图说明
图1为本发明的Bi2S3/Ni3S2/NF异质结的扫描电子显微镜图;
图2本发明的Bi2S3/Ni3S2/NF异质结的XRD图;
图3为本发明的不同物质的电化学析氧极化曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
将裁剪好的金属Ni泡沫(2cm×4cm)分别用3M HCl、丙酮、水和乙醇超声清洗10min,60℃下真空干燥6h,待用。称取1.0mmoL Bi(NO3)3·5H2O溶于40mL乙二醇中,得到溶液A。将1.5mmoL硫脲溶于20mL乙二醇溶剂,得到溶液B。将溶液B逐滴加入溶液A中,充分搅拌混合均匀。再将所述混合溶液转移至高压反应釜中,同时取1片上述清洁干燥的金属Ni泡沫垂直放入密封的高温反应釜中。最后将反应釜放入烘箱中,控制反应温度为160℃,溶剂热反应16h后,取出反应釜,自然冷却。用去离子水和乙醇反复清洗产物,置于60℃真空箱中干燥12h,得到Bi2S3/Ni3S2/NF异质结。如图1所示,该异质结呈多肉状结构,其X射线衍射谱图见图2所示。将所得Bi2S3/Ni3S2/NF为工作电极,Hg/HgO和铂片分别作为参比电极和对电极,组装成电催化三电极系统,进行电催化测试。见图3所示,10mA cm-2的基准电流密度下,Bi2S3/Ni3S2/NF只需要268mV的过电位。
实施例2
实施例2与实施例1类似,实施例2中溶剂为去离子水。所得Bi2S3/Ni3S2/NF为工作电极,Hg/HgO和铂片分别作为参比电极和对电极,组装成电催化三电极系统,进行电催化测试。在去离子水中所制备的电极不符合柔性工作电极的要求。
实施例3
实施例3与实施例1类似,实施例3中溶剂为乙醇。所得Bi2S3/Ni3S2/NF为工作电极,Hg/HgO和铂片分别作为参比电极和对电极,组装成电催化三电极系统,进行电催化测试。在10mA cm-2的基准电流密度下,乙醇中制备的Bi2S3/Ni3S2/NF,只需要310mV的过电位。
实施例4
实施例4与实施例1类似,实施例4中溶剂为N,N-二甲基甲酰胺。所得Bi2S3/Ni3S2/NF为工作电极,Hg/HgO和铂片分别作为参比电极和对电极,组装成电催化三电极系统,进行电催化测试。在10mA cm-2的基准电流密度下,N,N-二甲基甲酰胺中制备的Bi2S3/Ni3S2/NF,只需要360mV的过电位。
实施例5
实施例5与实施例1类似,实施例5中基底为清洁干燥的碳布(CC),所得Bi2S3/CC为工作电极,Hg/HgO和铂片分别作为参比电极和对电极,组装成电催化三电极系统,进行电催化测试。在10mA cm-2的基准电流密度下,Bi2S3/CC几乎无电流响应。
实施例6
实施例6与实施例1相似,实施例6中未放入任何基底,所得Bi2S3粉末涂覆在金属Ni泡沫上,得到的Bi2S3/NF作为工作电极,Hg/HgO和铂片分别作为参比电极和对电极,组装成电催化三电极系统,进行电催化测试。见图3所示,10mA cm-2的基准电流密度下,Bi2S3/NF需要520mV的过电位。
实施例7
实施例7与实施例1相似,实施例7中反应温度为140℃,所得Bi2S3/Ni3S2/NF作为工作电极,Hg/HgO和铂片分别作为参比电极和对电极,组装成电催化三电极系统,进行电催化测试。在10mA cm-2的基准电流密度下,Bi2S3/Ni3S2/NF只需要293mV的过电位。
实施例8
实施8与实施例1相似,实施例8中反应时间为8h,所得Bi2S3/Ni3S2/NF作为工作电极,Hg/HgO和铂片分别作为参比电极和对电极,组装成电催化三电极系统,进行电催化测试。在10mA cm-2的基准电流密度下,Bi2S3/Ni3S2/NF只需要277mV的过电位。
实施例9
实施9与实施例1相似,实施例9中Bi(NO3)3·5H2O为0.5mmoL,硫脲为0.75mmoL。所得Bi2S3/Ni3S2/NF作为工作电极,Hg/HgO和铂片分别作为参比电极和对电极,组装成电催化三电极系统,进行电催化测试。见图3所示,在10mA cm-2的基准电流密度下,Bi2S3/Ni3S2/NF只需要353mV的过电位。
实施例10
实施10与实施例1相似,实施例10中Bi(NO3)3·5H2O为1.5mmoL,硫脲为3.0mmoL。所得Bi2S3/Ni3S2/NF作为工作电极,Hg/HgO和铂片分别作为参比电极和对电极,组装成电催化三电极系统,进行电催化测试。见图3所示,在10mA cm-2的基准电流密度下,Bi2S3/Ni3S2/NF只需要340mV的过电位。
以上所述实施例仅表达了本申请的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请技术方案构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。

Claims (9)

1.一种新型析氧电催化剂的制备方法,其特征在于,包括以下步骤:
(1)将P区金属元素的硝酸盐溶于溶剂,得到溶液A;将硫脲溶于溶剂,得到溶液B;将溶液B逐滴加入溶液A中,充分搅拌混合均匀,转移至反应釜中;
(2)取清洁干燥的金属Ni泡沫垂直放入反应釜中,溶剂热反应后,得到异质结用去离子水和乙醇反复清洗几次,真空箱中干燥,即得到新型析氧电催化剂。
2.根据权利要求1所述的一种新型析氧电催化剂的制备方法,其特征在于,所述P区金属元素的硝酸盐为硝酸铋或硝酸锑。
3.根据权利要求1所述的一种新型析氧电催化剂的制备方法,其特征在于,所述的步骤(1)中硝酸盐与硫脲的物质的量为(0.5-2.0):(0.75-3.0)。
4.根据权利要求1所述的一种新型析氧电催化剂的制备方法,其特征在于,所述的步骤(1)中硝酸盐与溶剂的物质的量的浓度为0.0125-0.05mol/L,硫脲与溶剂的物质的量的浓度为0.0375-0.15mol/L。
5.根据权利要求1所述的一种新型析氧电催化剂的制备方法,其特征在于,所述的步骤(1)中溶剂为水、乙醇、乙二醇、N,N-二甲基甲酰胺中的一种或多种。
6.根据权利要求1所述的一种新型析氧电催化剂的制备方法,其特征在于,步骤(2)中溶剂热反应的温度为120-160℃,时间为4-16h。
7.根据权利要求1所述的一种新型析氧电催化剂的制备方法,其特征在于,步骤(2)中置于60℃真空箱中干燥12h。
8.一种基于权利要求1~7任一所述方法制备的新型析氧电催化剂。
9.基于权利要求1~7任一所述方法制备的新型析氧电催化剂在电催化水裂解中的应用。
CN202010092361.9A 2020-02-14 2020-02-14 一种新型析氧电催化剂及其制备方法和应用 Active CN111167480B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010092361.9A CN111167480B (zh) 2020-02-14 2020-02-14 一种新型析氧电催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010092361.9A CN111167480B (zh) 2020-02-14 2020-02-14 一种新型析氧电催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111167480A true CN111167480A (zh) 2020-05-19
CN111167480B CN111167480B (zh) 2022-06-17

Family

ID=70654864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010092361.9A Active CN111167480B (zh) 2020-02-14 2020-02-14 一种新型析氧电催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111167480B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080759A (zh) * 2020-08-27 2020-12-15 浙江工业大学 一种用于电催化氧化尿素的铋掺杂双金属硫化物电极的制备方法
CN112403503A (zh) * 2020-11-27 2021-02-26 电子科技大学 一种氮掺杂类mof结构修饰的两相硫化物材料制备方法
CN113903928A (zh) * 2021-09-01 2022-01-07 三峡大学 一种Sb/NC电催化剂的制备方法及应用
CN114717592A (zh) * 2022-04-18 2022-07-08 电子科技大学成都学院 一种电催化剂及其制备方法
CN115404509A (zh) * 2022-08-09 2022-11-29 电子科技大学 一种自修复型析氧催化剂及其制备方法与应用
CN115928117A (zh) * 2022-06-06 2023-04-07 吉林大学 一种铁掺杂的珊瑚状异质结构催化剂的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017844A (en) * 1998-12-11 2000-01-25 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
CN106693996A (zh) * 2016-11-30 2017-05-24 辽宁科技大学 硫化铋‑铁酸铋复合可见光催化剂的制备方法及其应用
CN107311229A (zh) * 2017-07-27 2017-11-03 成都理工大学 一种海胆状空气电极材料及其制备方法
CN107983272A (zh) * 2016-10-26 2018-05-04 中国科学院化学研究所 硫化物包覆型颗粒及其制备方法与应用
CN108283926A (zh) * 2018-01-10 2018-07-17 青岛大学 一种原位生长在泡沫镍上具有片状结构的镍铁双金属氢氧化物制备方法
CN108855142A (zh) * 2018-08-01 2018-11-23 辽宁大学 3D菊花状Z型Bi2S3@CoO异质结复合催化剂及其制备方法和应用
CN108987121A (zh) * 2018-07-26 2018-12-11 电子科技大学 一种快速制备NiCo-LDH超级电容器电极材料的方法
CN109235024A (zh) * 2018-09-04 2019-01-18 北京邮电大学 一种碳布负载的硫化镍-硫化钼异质纳米片阵列结构及其制备方法
CN109817475A (zh) * 2019-01-18 2019-05-28 三峡大学 硫化铋镍正极材料的制备方法及其应用
US20190283007A1 (en) * 2016-10-31 2019-09-19 Sabic Global Technologies B.V. Catalysts for soft oxidation coupling of methane to ethylene and ethane
CN111330622A (zh) * 2020-03-25 2020-06-26 北京科技大学 一种氮掺杂的电解水制氧异质催化剂的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017844A (en) * 1998-12-11 2000-01-25 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
CN107983272A (zh) * 2016-10-26 2018-05-04 中国科学院化学研究所 硫化物包覆型颗粒及其制备方法与应用
US20190283007A1 (en) * 2016-10-31 2019-09-19 Sabic Global Technologies B.V. Catalysts for soft oxidation coupling of methane to ethylene and ethane
CN106693996A (zh) * 2016-11-30 2017-05-24 辽宁科技大学 硫化铋‑铁酸铋复合可见光催化剂的制备方法及其应用
CN107311229A (zh) * 2017-07-27 2017-11-03 成都理工大学 一种海胆状空气电极材料及其制备方法
CN108283926A (zh) * 2018-01-10 2018-07-17 青岛大学 一种原位生长在泡沫镍上具有片状结构的镍铁双金属氢氧化物制备方法
CN108987121A (zh) * 2018-07-26 2018-12-11 电子科技大学 一种快速制备NiCo-LDH超级电容器电极材料的方法
CN108855142A (zh) * 2018-08-01 2018-11-23 辽宁大学 3D菊花状Z型Bi2S3@CoO异质结复合催化剂及其制备方法和应用
CN109235024A (zh) * 2018-09-04 2019-01-18 北京邮电大学 一种碳布负载的硫化镍-硫化钼异质纳米片阵列结构及其制备方法
CN109817475A (zh) * 2019-01-18 2019-05-28 三峡大学 硫化铋镍正极材料的制备方法及其应用
CN111330622A (zh) * 2020-03-25 2020-06-26 北京科技大学 一种氮掺杂的电解水制氧异质催化剂的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHAOZHU SHU ET AL.: "3D Array of Bi2S3 Nanorods Supported on Ni Foam as a Highly Efficient Integrated Oxygen Electrode for the Lithium-Oxygen Battery", 《PART. PART. SYST. CHARACT.》 *
CHUANG YU ET AL.: "Formation of SnS2/Ni2S3 heterojunction on three-dimensional nickel framework for treating chromium(VI)-containing wastewater", 《MATERIALS RESEARCH EXPRESS》 *
SHUAI WANG ET AL.: "Bismuth activated succulent-like binary metal sulfide heterostructure as a binder-free electrocatalyst for enhanced oxygen evolution reaction", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
TING XIAO ET AL.: "Ni-Bi-S nanosheets/Ni foam as a binder-free high-performance electrode for asymmetric supercapacitors", 《CHEMICAL ENGINEERING JOURNAL》 *
刘云菡等: "纳米花状Bi2S3复合泡沫镍电极的制备及电化学性能表征", 《功能材料》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080759A (zh) * 2020-08-27 2020-12-15 浙江工业大学 一种用于电催化氧化尿素的铋掺杂双金属硫化物电极的制备方法
CN112080759B (zh) * 2020-08-27 2022-01-11 浙江工业大学 一种用于电催化氧化尿素的铋掺杂双金属硫化物电极的制备方法
CN112403503A (zh) * 2020-11-27 2021-02-26 电子科技大学 一种氮掺杂类mof结构修饰的两相硫化物材料制备方法
CN112403503B (zh) * 2020-11-27 2021-08-03 电子科技大学 一种氮掺杂类mof结构修饰的两相硫化物材料制备方法
CN113903928A (zh) * 2021-09-01 2022-01-07 三峡大学 一种Sb/NC电催化剂的制备方法及应用
CN113903928B (zh) * 2021-09-01 2022-12-20 三峡大学 一种Sb/NC电催化剂的制备方法及应用
CN114717592A (zh) * 2022-04-18 2022-07-08 电子科技大学成都学院 一种电催化剂及其制备方法
CN114717592B (zh) * 2022-04-18 2023-08-29 电子科技大学成都学院 一种电催化剂及其制备方法
CN115928117A (zh) * 2022-06-06 2023-04-07 吉林大学 一种铁掺杂的珊瑚状异质结构催化剂的制备方法
CN115404509A (zh) * 2022-08-09 2022-11-29 电子科技大学 一种自修复型析氧催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN111167480B (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
CN111167480B (zh) 一种新型析氧电催化剂及其制备方法和应用
Ye et al. 2D cocrystallized metal–organic nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting
Huang et al. Active site and intermediate modulation of 3D CoSe2 nanosheet array on Ni foam by Mo doping for high-efficiency overall water splitting in alkaline media
Du et al. Metal–organic framework-derived Cu-doped Co9S8 nanorod array with less low-valence Co sites as highly efficient bifunctional electrodes for overall water splitting
Yang et al. Metal–Organic-Framework-Derived Hollow CoS x@ MoS2 Microcubes as Superior Bifunctional Electrocatalysts for Hydrogen Evolution and Oxygen Evolution Reactions
Li et al. Boosting hydrogen production by electrooxidation of urea over 3D hierarchical Ni4N/Cu3N nanotube arrays
Tang et al. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting
Zhuo et al. Ni3S2/Ni heterostructure nanobelt arrays as bifunctional catalysts for urea-rich wastewater degradation
Chen et al. Constructing hierarchical fluffy CoO–Co4N@ NiFe-LDH nanorod arrays for highly effective overall water splitting and urea electrolysis
Qiu et al. Cobalt phosphide nanowire arrays on conductive substrate as an efficient bifunctional catalyst for overall water splitting
Li et al. Self-ZIF template-directed synthesis of a CoS nanoflake array as a Janus electrocatalyst for overall water splitting
CN110735147B (zh) 一种普鲁士蓝类似物纳米片阵列材料及其电解水应用
Wang et al. Multimetal-based nitrogen doped carbon nanotubes bifunctional electrocatalysts for triiodide reduction and water-splitting synthesized from polyoxometalate-intercalated layered double hydroxide pyrolysis strategy
Muthurasu et al. Vertically aligned metal–organic framework derived from sacrificial cobalt nanowire template interconnected with nickel foam supported selenite network as an integrated 3D electrode for overall water splitting
CN111672514A (zh) 一种双功能电催化材料及其制备方法与应用
CN113105645B (zh) 一种镍基金属有机框架化合物制备方法、产品和应用
Chang et al. Fabrication of bimetallic Co/Zn leaf blade structure template derived Co3O4-ZIF/Zn and its ORR catalytic performance for MFC
CN112680741B (zh) 一种钌掺杂磷化钴电催化剂的制备方法与应用
Zhao et al. Rapid synthesis of efficient Mo-based electrocatalyst for the hydrogen evolution reaction in alkaline seawater with 11.28% solar-to-hydrogen efficiency
CN111778517A (zh) 一种电极材料及其制备方法和应用
Zhang et al. 0 D/2D Co3O4/Ti3C2 MXene Composite: A Dual-Functional Electrocatalyst for Energy-Saving Hydrogen Production and Urea Oxidation
CN114808011B (zh) CoNC/NiS电催化剂的制备方法及其在电催化析氧中的应用
CN112403503B (zh) 一种氮掺杂类mof结构修饰的两相硫化物材料制备方法
CN114959785A (zh) 一种磷-氮共掺杂的碳凝胶电催化剂及其制备方法和应用
CN113789545A (zh) 一种电解水催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant