CN111164557B - 电容检测电路、触控芯片及电子设备 - Google Patents

电容检测电路、触控芯片及电子设备 Download PDF

Info

Publication number
CN111164557B
CN111164557B CN201880001528.7A CN201880001528A CN111164557B CN 111164557 B CN111164557 B CN 111164557B CN 201880001528 A CN201880001528 A CN 201880001528A CN 111164557 B CN111164557 B CN 111164557B
Authority
CN
China
Prior art keywords
capacitor
capacitance
module
cancellation
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880001528.7A
Other languages
English (en)
Other versions
CN111164557A (zh
Inventor
蒋宏
唐智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Goodix Technology Co Ltd
Original Assignee
Shenzhen Goodix Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Goodix Technology Co Ltd filed Critical Shenzhen Goodix Technology Co Ltd
Publication of CN111164557A publication Critical patent/CN111164557A/zh
Application granted granted Critical
Publication of CN111164557B publication Critical patent/CN111164557B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种电容检测电路、触控芯片及电子设备,该电容检测电路包括:控制模块(112)、电荷转移模块(142)、处理模块(152)、驱动模块(122)以及抵消模块(132),所述控制模块(112)用于通过控制所述驱动模块(122)对待测电容进行充电处理、所述抵消模块(132)对抵消电容进行充电处理,以及控制所述抵消电容对所述待测电容进行电荷抵消处理;所述电荷转移模块(142)用于对所述抵消处理后所述待测电容的电荷进行转化处理生成输出电压;所述处理模块(152)用于根据所述输出电压确定所述待测电容被外加电场影响前后的电容变化量。当应用于自电容检测时,由于通过电荷抵消可消除或者减小检测到的待测电容的基础电容量,在电容变化量不变的情况下,增加了电容的变化率,提高了自电容检测的灵敏度,最终提高了自电容检测的准确度。

Description

电容检测电路、触控芯片及电子设备
技术领域
本申请实施例涉及触控技术领域,尤其涉及一种电容检测电路、触控芯片及电子设备。
背景技术
对自电容检测来说,其原理是检测电极与系统地之间会形成电容,称之为自电容检测,当没有手指等导致出现外加电场时,检测电极与系统地之间形成的电容具有基础电容量或初始电容量。当手指靠近或触摸检测电极时,检测电极和系统地之间的电容量会变大,通过检测该电容的变化量,可以判断用户的相关触控操作。
在电容触控领域,柔性屏是一个重要的发展方向。当利用上述自电容原理实现电容触控检测时,由于柔性屏往往比传统电容触控屏更薄,导致检测电极相对于系统地距离更近,因而该电容的基础电容量显著高于传统电容触控屏的该电容的基础电容量。另外,由于使用细金属线网格(metal-mesh)作为检测电极,感应面积相对较小,当有手指触控时,导致该电容变化量较小。较小的电容变化量意味着需要较高的电路增益,以使检测电路能够检测到触摸时电容变化量产生的电信号,但是由于基础电容量远高于电容变化量,如果采用较高的电路增益又容易导致检测电路饱和。
另外,电容的变化量较小由此导致产生的电信号也很小,容易被电路噪声淹没而无法检测到。由此可见,现有技术存在自电容检测灵敏度低,最终导致自电容检测的准确度较低的缺陷。
发明内容
有鉴于此,本申请实施例所解决的技术问题之一在于提供一种电容检测电路、触控芯片及电子设备,用以克服现有技术中上述缺陷。
本申请实施例提供了一种电容检测电路,其包括:控制模块、电荷转移模块、处理模块、驱动模块以及抵消模块,所述控制模块用于通过控制所述驱动模块对待测电容进行充电处理、所述抵消模块对抵消电容进行充电处理,以及控制所述抵消电容对所述待测电容进行电荷抵消处理;所述电荷转移模块用于对所述抵消处理后所述待测电容的电荷进行转化处理生成输出电压;所述处理模块用于根据所述输出电压确定所述待测电容被外加电场影响前后的电容变化量。
本申请实施例提供了一种触控芯片,包括:本申请任一实施例所述的电容检测电路。
本申请实施例提供了一种电子设备,其包括本申请任一实施例所述的触控芯片。
本申请实施例提供的技术方案中,由于电容检测电路包括:控制模块、电荷转移模块、处理模块、驱动模块以及抵消模块,所述控制模块用于通过控制所述驱动模块对待测电容进行充电处理、所述抵消模块对抵消电容进行充电处理,以及控制所述抵消电容对所述待测电容进行电荷抵消处理;所述电荷转移模块用于对所述抵消处理后所述待测电容的电荷进行转化处理生成输出电压;所述处理模块用于根据所述输出电压确定所述待测电容被外加电场影响前后的电容变化量,当应用于自电容检测时,由于通过电荷抵消可消除或者减小检测到的待测电容的基础电容量,在电容变化量不变的情况下,增加了电容的变化率,提高了自电容检测的灵敏度,最终提高了自电容检测的准确度。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本申请实施例的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1为本申请实施例一电容触控系统结构示意图;
图2本申请实施例二电容检测电路结构示意图;
图3为本申请实施例三针对图2中电容量检测电路工作时的时序图;
图4本申请实施例四电容检测电路结构示意图;
图5本申请实施例三针对图4电容量检测电路工作时的时序图;
图6本申请实施例六电容检测电路结构示意图;
图7本申请实施例七针对图6电容检测电路工作时的时序图;
图8为本申请实施例八电容检测电路的示意图;
图9本申请实施例七针对图8电容检测电路工作时的时序图。
具体实施方式
实施本申请实施例的任一技术方案必不一定需要同时达到以上的所有优点。
本申请实施例提供的技术方案中,由于电容检测电路包括:控制模块、电荷转移模块、处理模块、驱动模块以及抵消模块,所述控制模块用于通过控制所述驱动模块对待测电容进行充电处理、所述抵消模块对抵消电容进行充电处理,以及控制所述抵消电容对所述待测电容进行电荷抵消处理;所述电荷转移模块用于对所述抵消处理后所述待测电容的电荷进行转化处理生成输出电压;所述处理模块用于根据所述输出电压确定所述待测电容被外加电场影响前后的电容变化量,当应用于自电容检测时,由于通过电荷抵消可消除或者减小检测到的待测电容的基础电容量,在电容变化量不变的情况下,增加了电容的变化率,提高了自电容检测的灵敏度,最终提高了自电容检测的准确度。
下面结合本申请实施例附图进一步说明本申请实施例具体实现。
下述图2到图7,以实现对一个待测电容进行自电容检测为例进行说明,因此,下述实施例中,对应地,驱动模块和抵消模块的数量各为一个。实际上,推而广之,从技术思想来看,若有多个待测电容,则可对应配置多个驱动模块和抵消模块,或者又称为对于一个待测电容来说,配置一个驱动模块和抵消模块。
图1为本申请实施例一电容触控系统结构示意图;如图1所示,其包含触控传感器101、触控芯片102和主机103。触控传感器101为双层结构,包括驱动通道Tx和感应通道Rx,它们对系统地的基础电容量记为C1~C5和C6~C10。在进行自电容检测时,触控芯片102会扫描每一根通道(驱动通道、感应通道)对系统地的电容量,并计算每一根通道对系统地的电容变化量。当手指靠近或触摸触控屏时,手指靠近或触摸位置的通道对系统地的电容量会变大。如图1所示,假如手指与驱动通道Tx之间的电容量为Cd,手指与感应通道Rx之间的电容量为Cs。例如,当手指靠近驱动通道Tx2和感应通道Rx3时,由于人体作为导体是与系统地相连的,驱动通道Tx2对系统地的电容量会变为C2+Cd,感应通道Rx3对系统地的电容量会变成C8+Cs。触控芯片102检测到驱动通道Tx2和感应通道Rx3对系统地的电容量都会变大,而其它通道对系统地的电容量不变或者近似不变或者较小,因此可计算出触摸位置在驱动通道Tx2和感应通道Rx3相交的位置,将该位置处的坐标发送主机103以实现各种功能的触控操作。
本实施例中,电容检测电路具体配置在上述图1的触控芯片102上,因此,可理解上述触控芯片102包括下述实施例中所述的电容检测电路。
图2本申请实施例二电容检测电路结构示意图;如图2所示,其包括:控制模块112、驱动模块122、抵消模块132、电荷转移模块142以及处理模块152,驱动模块122、抵消模块132、电荷转移模块142具体配置在前端电路中。所述控制模块112用于通过控制所述驱动模块122对所述待测电容进行充电处理,以及通过控制所述抵消模块132对抵消电容进行充电处理以使得抵消电容对待测电容进行电荷抵消;所述电荷转移模块142用于对所述抵消处理后所述待测电容的电荷进行转化处理生成输出电压;所述处理模块152用于根据所述输出电压(Vout)确定所述待测电容被外加电场影响前后的电容变化量。
如图2所示,所述驱动模块122包括第一开关单元K1(以一个单一的开关实现为例),所述控制模块112进一步用于控制第一开关单元K1处于闭合状态以使所述驱动模块122对所述待测电容Cx进行充电处理。进一步地,所述第一开关单元K1处于闭合状态时,所述待测电容Cx的第一端电连接第一电压(VCC),第二端电连接第二电压(GND),所述第一电压高于所述第二电压。本实施例中,VCC为正的供电电压。
如图2所示,所述抵消模块132包括第二开关单元K2(以一个单一的开关实现为例)以及第三开关单元K3(以一个单一的开关实现为例),第二开关单元K2和第三开关单元K3可以处于不同的闭合状态,以实现对抵消电容的充电,以及抵消电容对待测电容的电荷抵消。
具体地,当所述抵消模块132包括第二开关单元K2以及第三开关单元K3时,所述控制模块112控制所述第二开关单元K2和所述第三开关单元K3处于第一闭合状态并形成充电支路以使所述抵消模块132对所述抵消电容进行充电处理。具体地,所述第二开关单元K2、所述第三开关单元K3处于所述第一闭合状态时,所述抵消电容Cc的第一端通过所述第二开关单元K2电连接第三电压(-VCC),所述抵消电容Cc的第二端通过第三开关单元K3电连接第四电压(VCC),所述第四电压高于所述第三电压。
进一步地,所述控制模块112控制所述第二开关单元K2和所述第三开关单元K3处于第二闭合状态形成抵消支路,由于待测电容和抵消电容经过充电之后存储的电荷量不同,由此导致当从充电支路切换到抵消支路时抵消电容可对待测电容进行电荷抵消处理。具体地,控制模块112控制所述第二开关单元K2和所述第三开关单元K3处于第二闭合状态时,所述抵消电容Cc的第一端与所述待测电容Cx第一端电连接,所述抵消电容Cc的第二端与第五电压(-VCC)电连接,所述第五电压低于所述待测电容Cx的第二端电连接的第二电压(GND)。本实施例中,-VCC为负的供电电压。
如图2所示,在所述电荷转移模块142单元与所述抵消模块132之间设置有第四开关单元K4(以一个单一的开关实现为例),对应地,所述控制模块112进一步控制第四开关单元K4处于闭合状态以使所述电荷转移模块142与所述待测电容Cx电连接,以对所述抵消处理后所述待测电容Cx的电荷进行转化处理生成输出电压Vout。
本实施例中,电荷转移模块142具体为全差分放大电路,进一步地,该全差分放大电路的正相端可与所述第四开关K4电连接,该全差分放大电路的负相端与共模工作电压Vcm连接。在该全差分放大电路中,在其正相端与输出端之间、负相端与输出端之间均设置有反馈电阻Rf以及反馈电容Cf。
本实施例中,第一开关单元K1、第四开关单元K4为单刀单掷开关。第二开关单元K2、第三开关单元为单刀双掷开关,为此,为了在充电支路和抵消支路之间切换,配置了触点S1和触点S2,触点S1位于充电支路上,触点S2位于抵消支路上,详细参见下述图3的说明。
图3为本申请实施例三针对图2中电容检测电路工作时的时序图;如图3所示,t1-t4时段组成的一个检测周期,实际有手指触控期间,其可以覆盖多个检测周期。各个时段主要的技术处理简要说明如下:
t1时段:对待测电容Cx和抵消电容Cc进行充电;
t2时段:待测电容Cx和抵消电容Cc之间进行电荷抵消;
t3时段:进行电荷转移,将电荷转换为电压信号;
t4时段:全差分放大电路复位。
t1时段,第一开关单元K1导通(即处于闭合状态),第二开关单元K2、第三开关单元K3接到触点S1(即处于第一闭合状态),第四开关单元K4关断,待测电容Cx和抵消电容Cc同时被充电。t1时段结束时,待测电容Cx电压为Vcc,抵消电容Cc电压为-2Vcc。另外由于第四开关单元K4断开,因此,电荷转移模块的输出电压Vout为0。此时,待测电容Cx存储的电荷量Q1=Vcc*Cx,抵消电容Cc储存的电荷量Q2=-2Vcc*Cc。
t2时段,第一开关单元K1、第四开关单元K4关断,第二开关单元K2、第三开关单元K3接到触点S2(即处于第二闭合状态),待测电容Cx和抵消电容Cc所储存电荷中和抵消。达到稳态后,由电荷守恒定律,有VCCCX-2VCCCC=VXCX+(VX+VCC)CC成立,可得待测电容Cx的电压Vx:
t3时段,第一开关单元K1断开,第二开关单元K2和第三开关单元K3接到触点S2(即处于第二闭合状态),第四开关单元K4导通(即处于闭合状态),根据待测电容Cx的电压Vx大小,存在以下几种情况:
若Vx>Vcm,待测电容Cx与抵消电容Cc同时向电荷转移模块转移电荷,直至待测电容Cx的电压Vx达到Vcm。在这个过程中,电荷转移模块的输出电压电压Vout为负向的电压。
若Vx=Vcm,则不存在待测电容Cx与抵消电容Cc向电荷转移模块转移电荷的过程,电荷转移模块的输出电压Vout为0,此时电路达到完全抵消状态。通过合理设置电路的参数(如下详述),使得在无触摸时电路能够达到完全抵消状态,能够将待测电容Cx的基础电容量完全抵消,则在有触摸时,待测电容Cx的电容量在其基础电容量基础上变大,输出电压Vout的电压完全是由触摸导致的。因此,这种状态下检测灵敏度最高。
若Vx<Vcm,电荷转移模块会通过反馈网络(Rf和Cf组成)对待测电容Cx和抵消电容Cc充电,直至待测电容Cx和抵消电容Cc的电压都达到Vcm。在这个过程中,电荷转移模块的输出电压Vout为正向的电压。
t4时段,第一开关单元K1断开,第二开关单元K2、第三开关单元K3处于第二闭合状态,且第四开关单元K4断开,待测电容Cx和抵消电容Cc复位,输出电压Vout变为0。
由上述可见,在t2时段结束时:VCCCX-2VCCCC=VXCX+(VX+VCC)CC
由上述可见,t3时段结束时待测电容Cx和抵消电容Cc的电压一定为Vcm,则转移的电荷量为:
ΔQ=VXCX+(VX+VCC)CC-[VCMCX+(VCM+VCC)CC]
=VCCCX-2VCCCC-[VCMCX+(VCM+VCC)CC]
=(VCC-VCM)CX-(3VCC+VCM)CC
上述公式中,从代表的含义角度,当有手指触控时待测电容Cx的电容量可以更改为(CX0+ΔC),ΔC表示待测电容的电容变化量,CX0表示待测电容的基础电容量;对于自电容检测,没有手指触摸时ΔC=0,有触摸时,ΔC>0。
根据t1-t4的时序过程,可得转移的电荷量为ΔQ=(VCC-VCM)(CX0+ΔC)-(3VCC+VCM)CC。当完全抵消状态时,转移的电荷量ΔQ=(VCC-VCM)·ΔC,并且可得输出电压的平均值为VOUT=2ΔQ·f·Rf,f表示检测频率,其数值为t1-t4构成的一个检测周期的倒数。
在完全抵消状态时,Vx=Vcm,则有以下关系成立:
(VCC-VCM)CX0=(3VCC+VCM)CC
可得抵消电容Cc的电容量为按照该式子设置Cc、CX0、Vcc、Vcm可使电路达到完全抵消状态。特别地,当VCC=2VCM时,有/>因此,完全抵消时,抵消电容Cc的电容量为待测电容Cx的基础电容量的1/7。
由上述推理过程可见,抵消电容Cc在选择或者设计优选其电容量为待测电容Cx基础电容量的1/7。另外,为了避免由于触控屏被触控时抵消电容的电容量发生变化导致影响待测电容的电容变化量检测,抵消电容Cc优选不因触控而产生电容变化量的电容。
图4本申请实施例四电容检测电路结构示意图;如图4所示,与上述实施例相同,其包括:控制模块112、驱动模块122、抵消模块132、电荷转移模块142以及处理模块152,与上述实施例三不同的是,所述第二开关单元K2和所述第三开关单元K3处于第二闭合状态时,所述抵消电容Cc的第一端与所述待测电容Cx的第一端电连接,所述抵消电容Cc的第二端与第六电压(GND)电连接,所述第六电压等于所述待测电容Cx的第二端电连接的第二电压(GND)。即上述图2中充电支路和抵消支路中的负电压-Vcc被替换为系统地。第一开关单元K1-第四开关单元K4的设置与上述图2所示实施例相同,开关动作控制也相同。
图5本申请实施例三针对图4电容量检测电路工作时的时序图;如图5所示,一个检测周期仍然包括t1-t4时段,详细时序如下:
t1时段,第一开关单元K1导通,第二开关单元K2、第三开关单元K3接到触点S1,第四开关单元K4关断,待测电容Cx和抵消电容Cc同时充电。t1时段结束时,待测电容Cx电压为Vcc,抵消电容Cc电压为-Vcc,电荷转移模块的输出电压Vout为0。此时,待测电容Cx存储的电荷量Q1=Vcc*Cx,抵消电容Cc储存的电荷量Q2=-Vcc*Cc。
t2时段,第一开关单元K1、第四开关单元K4关断,第二开关单元K2、第三开关单元K3接到触点S2,待测电容Cx和抵消电容Cc所储存电荷中和抵消。达到稳态后,由电荷守恒定律,有VCCCX-VCCCC=VX(CX+CC)成立,可得待测电容Cx电压
t3时段,第一开关单元K1关断,第二开关单元K2、第三开关单元K3接到触点S2,第四开关单元K4导通,根据Vx电压大小,存在以下几种情况:
若Vx>Vcm,待测电容Cx与抵消电容Cc同时向电荷转移模块转移电荷,直至待测电容Cx电压达到Vcm。在这个过程中,电荷转移模块的输出电压Vout为负向的电压。
若Vx=Vcm,则不存在待测电容Cx与抵消电容Cc向电荷转移模块转移电荷的过程,电荷转移模块的输出电压Vout为0。此时电路达到完美抵消状态。通过合理设置电路的参数(如下详述),使得在无触摸时电路能够达到完全抵消状态,能够将待测电容Cx的基础电容量完全抵消,则在有触摸时,待测电容Cx的电容量变大,输出电压Vout完全是由触摸导致的。因此,这种状态下检测灵敏度最高。
若Vx<Vcm,电荷转移模块会通过反馈网络Rf和Cf对待测电容Cx和Cc充电,直至Cx和Cc电压达到Vcm。在这个过程中,电荷转移模块的输出电压Vout为正向的电压。
t4过程,第四开关单元K4断开,电荷转移模块复位,输出Vout变为0。
根据t1-t4的时序过程,可得转移的电荷量为ΔQ=(VCC-VCM)(CX0+ΔC)-(VCC+VCM)CC。当完全抵消状态时,转移的电荷量ΔQ=(VCC-VCM)·ΔC,在完全抵消状态时,Vx=Vcm,则有以下关系成立:
(VCC-VCM)CX0=(VCC+VCM)CC
可得抵消电容Cc的电容量大小为特别地,当VCC=2VCM时,有因此,完全抵消时,抵消电容Cc的电容量为待测电容Cx的基础电容量的1/3。由此可见,本实施例中的抵消电容Cc的电容量大小为图2实施例的7/3倍。
因此,从理论上,按照上述可完全能抵消的情形设计抵消电容的电容量。
图6本申请实施例六电容检测电路结构示意图;如图6所示,与上述实施例相同,其包括:控制模块112、驱动模块122、抵消模块132、电荷转移模块142以及处理模块152。
与上述实施例不同的是,所述抵消模块132包括第二开关单元(不包括第三开关单元K3),所述控制模块112进一步用于控制所述第二开关单元K2处于第一闭合状态并形成充电支路以使所述驱动模块122对所述抵消电容Cc进行充电处理。当所述第二开关单元K2处于所述第一闭合状态时,所述抵消电容Cc的第一端通过所述第二开关单元K2电连接第三电压(-VCC),所述抵消电容Cc的第二端电连接第六电压(GND),所述第六电压高于所述第三电压。
进一步地,本实施例中,所述控制模块112控制所述第二开关单元K2处于第二闭合状态形成抵消支路以使所述抵消电容Cc对所述待测电容Cx进行电荷抵消。当所述第二开关单元K2处于第二闭合状态时,所述抵消电容Cc的第一端与所述待测电容Cx的第一端电连接,所述抵消电容Cc的第二端与所述第六电压(GND)电连接,所述第六电压等于所述待测电容Cx的第二端电连接的第二电压(GND)。
即,抵消模块132只包括第二开关单元K2,相比于上述图2、图4,只保留了图4中的第六电压(GND)以及图2中的第三电压(-Vcc)。
图7本申请实施例七针对图6电容检测电路工作时的时序图;如图7所示,一个检测周期仍然包括t1-t4时段,详细时序如下:
t1时段,第一开关单元K1导通,第二开关单元K2接到触点S1,第四开关单元K4关断,待测电容Cx和抵消电容Cc同时充电,t1时段结束时,待测电容Cx电压为Vcc,抵消电容Cc电压为-Vcc,电荷转移模块的输出电压Vout为0。此时,待测电容Cx存储的电荷量Q1=Vcc*Cx,抵消电容Cc储存的电荷量Q2=-Vcc*Cc。
t2时段,第一开关单元K1、第四开关单元K4关断,第二开关单元K2接到触点S2,待测电容Cx和抵消电容Cc所储存电荷中和抵消。达到稳态后,由电荷守恒定律,有VCCCX-VCCCC=VX(CX+CC)成立,可得待测电容Cx电压
t3时段,第一开关单元K1关断,第二开关单元K2接到触点S2,第四开关单元K4导通,根据Vx电压大小,存在以下几种情况:
若Vx>Vcm,待测电容Cx与抵消电容Cc同时向电荷转移模块转移电荷,直至Cx电压达到Vcm。在这个过程中,电荷转移模块的输出电压Vout为负向的电压。
若Vx=Vcm,则不存在待测电容Cx与抵消电容Cc向电荷转移模块转移电荷的过程,电荷转移模块的输出电压Vout为0。此时电路达到完美抵消状态。通过合理设置电路的参数(如下详述),使得在无触摸时电路能够达到完全抵消状态,能够将待测电容Cx的基础电容量完全抵消,则在有触摸时,待测电容Cx的电容量在其基础电容量基础上变大,输出电压Vout的电压完全是由触摸导致的。因此,这种状态下检测灵敏度最高。
若Vx<Vcm,电荷转移模块会通过反馈网络Rf和Cf对待测电容Cx和Cc充电,直至Cx与Cc电压达到Vcm。在这个过程中,电荷转移模块的输出电压Vout为正向的电压。
t4过程,第四开关单元K4断开,电荷转移模块复位,输出Vout变为0。
根据t1-t4的时序过程,可得转移的电荷量为ΔQ=(VCC-VCM)(CX0+ΔC)-(VCC+VCM)CC。当完全抵消状态时,转移的电荷量ΔQ=(VCC-VCM)·ΔC,在完全抵消状态时,Vx=Vcm,则有以下关系成立:
(VCC-VCM)CX0=(VCC+VCM)CC
可得抵消电容Cc的电容量为特别地,当VCC=2VCM时,有/>因此,完全抵消时,抵消电容Cc的电容量为待测电容Cx的基础电容量的1/3。
本实施例的抵消电容Cc的电容量大小为图2实施例的7/3倍,与图4实施例相同。
下述图8所示实施例中,以待测电容有两个为例,对应地,对于每一个待测电容来说,对应有一个驱动模块和抵消模块,进一步地,如果采用图2的驱动模块和抵消模块结构,同样地,对于实现一个待测电容的电容变化量检测来说,分别配置有一个第一开关单元K1、第二开关单元K2、第三开关单元K3、第四开关单元K4,对于单个待测电容的电容变化量检测原理类似上述图2所示。以下结合图8和图9进行说明。
图8为本申请实施例八电容检测电路的示意图;本实施例基于相邻检测通道的全差分处理架构,对每个待测电容用相同的电路结构,从而整体上组成差分检测,进一步利于抑制共模干扰、温漂、形变等干扰。具体地,如图8所示,为了直观起见,两个待测电容分别命名为第一待测电容Cx1、第二待测电容Cx2,两个驱动模块命名为第一驱动模块122A、第二驱动模块122B,两个抵消模块分别命名为第一抵消模块132A、第二抵消模块132B,对于实现第一待测电容Cx1的电容变化量检测来说相关的开关单元命名保持不变,分别为第一开关单元K1、第二开关单元K2、第三开关单元K3、第四开关单元K4。而对于实现第二待测电容Cx2的电容变化量检测来说相关的开关单元命名修改为:第五开关单元K5(相当于图2中的K1)、第六开关单元K6(相当于图2中的K2)、第七开关单元K7(相当于图2中的K3)、第八开关单元K8(相当于图2中的K4)。
另外,与上述实施例不同的是,为实现第二待测电容Cx2的电容变化量检测的第八开关单元K8可以电荷转移模块142的负相端连接。
图9本申请实施例七针对图8电容检测电路工作时的时序图;如图9所示,对于每一个待测电容,一个检测周期仍然包括t1-t4时段,详细时序如下:
t1时刻,第一开关单元K1、第五开关单元K5导通,第二开关单元K2、第三开关单元K3、第六开关单元K6、第七开关单元K7接到触点S1,第四开关单元K4、第八开关单元K8关断,第一待测电容Cx1、第二待测电容Cx2和第一抵消电容Cc1、第二抵消电容Cc2同时充电。t1时刻结束时,第一待测电容Cx1、第二待测电容Cx2电压为Vcc,第一抵消电容Cc1、第二抵消电容Cc2电压为-2Vcc,电荷转移模块的输出电压Vout为0。此时,第一待测电容Cx1、第二待测电容Cx2存储的电荷量Q1=Vcc*Cx,第一抵消电容Cc1、第二抵消电容Cc2储存的电荷量Q2=-2Vcc*Cc。
t2时刻,第一开关单元K1、第四开关单元K4、第五开关单元K5、第八开关单元K8关断,第二开关单元K2、第三开关单元K3、第六开关单元K6、第七开关单元K7接到触点S2,第一待测电容Cx1、第二待测电容Cx2和第一抵消电容Cc1、第二抵消电容Cc2所储存电荷中和抵消。达到稳态后,第一待测电容Cx1的电压为第二待测电容Cx2的电压为/>
t3时刻,第四开关单元K4、第八开关单元K8导通,第一待测电容Cx1、第一抵消电容Cc1和第二待测电容Cx2、第二抵消电容Cc2同时与电荷转移模块之间转移电荷,达到稳态时,第一待测电容Cx1、第一抵消电容Cc1转移的电荷量为ΔQ1=(VX1-VCM)(CX1+CC1),第二待测电容Cx2、第二抵消电容Cc2转移的电荷量为ΔQ2=(VX2-VCM)(CX2+CC2),根据ΔQ1、ΔQ2的大小,存在以下几种情况:
若ΔQ1>ΔQ2,进一步存在Vx1>Vx2,电荷转移模块的输出电压Vout为负向的电压;
若ΔQ1=ΔQ2,进一步存在Vx1=Vx2,电荷转移模块的输出电压Vout为0;
若ΔQ1<ΔQ2,进一步存在Vx1<Vx2,电荷转移模块的输出电压Vout为正向的电压。
t4过程,第四开关单元K4、第八开关单元K8断开,电荷转移模块142复位,输出Vout变为0。
根据以上过程,可得第一待测电容Cx1、第二待测电容Cx2、第一抵消电容Cc1、第二抵消电容Cc2与电荷转移模块转移的电荷量为:
ΔQ=ΔQ1-ΔQ2=(VCC-VCM)(CX1-CX2)-(3VCC+VCM)(CC1-CC2),
又CX1=(CX10+ΔC1),CX2=(CX20+ΔC2),ΔC1表示待测电容的电容变化量,CX10表示第一待测电容的基础电容量;ΔC2表示待测电容的电容变化量,CX20表示第二待测电容的基础电容量。
完全抵消时,转移的电荷量为ΔQ=(VCC-VCM)(ΔC1-ΔC2),并且可得输出电压的平均值为VOUT=2ΔQ·f·Rf
与图2实施例相同,该实施例在完全抵消时,对于第一待测电容和第二待测电容分别存在:
(VCC-VCM)CX10=(3VCC+VCM)CC,(VCC-VCM)CX20=(3VCC+VCM)CC
因此,满足第一抵消电容的电容量和第二抵消电容的电容量满足如下关系:即完全抵消时,第一抵消电容的电容量大小为第一待测电容的基础电容量的1/7,第二抵消电容的电容量为第二待测电容的基础电容量的1/7。
这里,需要说明是,图8实施例中,给每一个待测电容配置的驱动模块、抵消模块也可以采用图4、图6中所示的结构。当对于第一待测电容和第二待测电容配置不同驱动模块和抵消模块时,设置的第一抵消电容和第二抵消电容的电容量数值上可能不同。
本申请实施例还提供一种电子设备,其包括本申请任一项实施例中所述的触控芯片。
在上述实施例中,考虑到抵消电容Cc是集成在触控芯片内,因此,抵消电容越小,触控芯片的面积以及成本也就随之越小。为此,在具体应用场景中,优选在可减小检测到的待测电容的基础电容量的前提下,选用具有最小电容量的抵消电容形成上述电容检测电路。
需要说明的是,上述实施例中,虽然以一个单一的开关各个开关单元为例进行说明,但是,实际上,也可以一电路组合结构的方式实现,其中组成的元件可以具有通断功能的任意电子元器件只要可以形成充电支路、抵消支路,且可实现从充电支路到抵消支路的切换,以及使得检测电路进入电荷转移状态即可。
另外,当基于互电容检测实现触控检测时,如果互电容的基础电容量比较大以至于可影响到互电容的变化率,则也可以应用本申请下述实施例的思想。
本申请实施例的电子设备以多种形式存在,包括但不限于:
(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机(例如iPhone)、多媒体手机、功能性手机,以及低端手机等。
(2)超移动个人计算机设备:这类设备属于个人计算机的范畴,有计算和处理功能,一般也具备移动上网特性。这类终端包括:PDA、MID和UMPC设备等,例如iPad。
(3)便携式娱乐设备:这类设备可以显示和播放多媒体内容。该类设备包括:音频、视频播放器(例如iPod),掌上游戏机,电子书,以及智能玩具和便携式车载导航设备。
(4)服务器:提供计算服务的设备,服务器的构成包括处理器、硬盘、内存、系统总线等,服务器和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。
(5)其他具有数据交互功能的电子装置。
至此,已经对本主题的特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作可以按照不同的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序,以实现期望的结果。在某些实施方式中,多任务处理和并行处理可以是有利的。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (14)

1.一种电容检测电路,其特征在于,包括:控制模块、电荷转移模块、处理模块、驱动模块以及抵消模块,所述控制模块用于:在同一时段内控制所述驱动模块对待测电容进行充电处理以将所述待测电容充电至正的供电电压,并且控制所述抵消模块对抵消电容进行充电处理以将所述抵消电容充电至负的供电电压或两倍负的供电电压,以及在所述待测电容和所述抵消电容充电之后,控制所述抵消电容对所述待测电容进行电荷抵消处理以抵消所述待测电容的基础电容;所述电荷转移模块用于对所述抵消处理后所述待测电容的电荷进行转化处理生成输出电压,并在电荷转化完成之后复位;所述处理模块用于根据所述输出电压确定所述待测电容被外加电场影响前后的电容变化量。
2.根据权利要求1所述的电路,其特征在于,所述驱动模块包括第一开关单元,所述控制模块进一步用于控制第一开关单元处于闭合状态以使所述驱动模块对所述待测电容进行充电处理。
3.根据权利要求2所述的电路,其特征在于,所述第一开关单元处于闭合状态时,所述待测电容的第一端电连接所述正的供电电压,第二端电连接接地电压。
4.根据权利要求1所述的电路,其特征在于,所述抵消模块包括第二开关单元以及第三开关单元,所述控制模块进一步用于控制所述第二开关单元和所述第三开关单元处于第一闭合状态并形成充电支路以使所述抵消模块对所述抵消电容进行充电处理;对应地,所述控制模块进一步用于控制所述第二开关单元和所述第三开关单元处于第二闭合状态形成抵消支路以使所述抵消电容对所述待测电容进行电荷抵消。
5.根据权利要求4所述的电路,其特征在于,所述第二开关单元、所述第三开关单元处于所述第一闭合状态时,所述抵消电容的第一端通过所述第二开关单元电连接所述负的供电电压,所述抵消电容的第二端通过第三开关单元电连接所述正的供电电压。
6.根据权利要求4所述的电路,其特征在于,所述第二开关单元和所述第三开关单元处于第二闭合状态时,所述抵消电容的第一端与所述待测电容的第一端电连接,所述抵消电容的第二端与所述负的供电电压电连接。
7.根据权利要求4所述的电路,其特征在于,所述第二开关单元和所述第三开关单元处于第二闭合状态时,所述抵消电容的第一端与所述待测电容的第一端电连接,所述抵消电容的第二端与接地电压电连接。
8.根据权利要求1所述的电路,其特征在于,所述抵消模块包括第二开关单元,所述控制模块进一步用于控制所述第二开关单元处于第一闭合状态并形成充电支路以使所述抵消模块对所述抵消电容进行充电处理;对应地,所述控制模块进一步用于控制所述第二开关单元处于第二闭合状态形成抵消支路以使所述抵消电容对所述待测电容进行电荷抵消。
9.根据权利要求8所述的电路,其特征在于,所述第二开关单元处于所述第一闭合状态时,所述抵消电容的第一端通过所述第二开关单元电连接所述负的供电电压,所述抵消电容的第二端电连接接地电压。
10.根据权利要求8所述的电路,其特征在于,所述第二开关单元处于第二闭合状态时,所述抵消电容的第一端与所述待测电容的第一端电连接,所述抵消电容的第二端与接地电压电连接。
11.根据权利要求1-10任一项所述的电路,其特征在于,还包括:第四开关单元,所述控制模块进一步用于控制所述第四开关单元处于闭合状态以使所述电荷转移模块与所述待测电容电连接,以对所述抵消处理后所述待测电容的电荷进行转化处理生成输出电压。
12.根据权利要求11所述的电路,其特征在于,若所述待测电容为至少两个,则每个所述待测电容配置一个所述驱动模块以及一个所述抵消模块。
13.一种触控芯片,包括:权利要求1-12任一项所述的电路。
14.一种电子设备,其特征在于,包括权利要求13所述的触控芯片。
CN201880001528.7A 2018-09-07 2018-09-07 电容检测电路、触控芯片及电子设备 Active CN111164557B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/104618 WO2020047844A1 (zh) 2018-09-07 2018-09-07 电容检测电路、触控芯片及电子设备

Publications (2)

Publication Number Publication Date
CN111164557A CN111164557A (zh) 2020-05-15
CN111164557B true CN111164557B (zh) 2023-10-20

Family

ID=69143369

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201880001528.7A Active CN111164557B (zh) 2018-09-07 2018-09-07 电容检测电路、触控芯片及电子设备
CN201880002537.8A Active CN111164558B (zh) 2018-09-07 2018-11-28 电容检测电路、触控芯片及电子设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201880002537.8A Active CN111164558B (zh) 2018-09-07 2018-11-28 电容检测电路、触控芯片及电子设备

Country Status (4)

Country Link
US (2) US10949032B2 (zh)
EP (2) EP3640779B1 (zh)
CN (2) CN111164557B (zh)
WO (2) WO2020047844A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111587415B (zh) 2018-12-17 2024-03-29 深圳市汇顶科技股份有限公司 触摸检测方法、触控芯片及电子设备
CN112602046B (zh) 2019-08-01 2022-06-07 深圳市汇顶科技股份有限公司 电容检测电路、触控芯片及电子设备
KR20210018723A (ko) * 2019-08-09 2021-02-18 삼성디스플레이 주식회사 터치 구동 회로 및 이를 포함하는 표시 장치
CN111309187B (zh) * 2020-03-17 2022-02-22 北京集创北方科技股份有限公司 检测电路、触控面板及电子设备
KR102375320B1 (ko) * 2020-04-24 2022-03-16 관악아날로그 주식회사 용량성 센서를 위한 읽기 회로
CN111880690A (zh) * 2020-08-06 2020-11-03 深圳市汇顶科技股份有限公司 噪声检测电路、自容检测方法、触控芯片及电子设备
EP3971694B1 (en) 2020-08-06 2023-05-31 Shenzhen Goodix Technology Co., Ltd. Noise measurement circuit, self-capacitance measurement method, touch chip and electronic device
KR20230044521A (ko) * 2020-09-03 2023-04-04 마이크로칩 테크놀로지 인코포레이티드 에너지 펄스를 사용한 전압 샘플링 및 관련 시스템, 방법 및 장치
WO2022140957A1 (zh) * 2020-12-28 2022-07-07 深圳市汇顶科技股份有限公司 一种nfc设备
CN112415604B (zh) * 2021-01-22 2021-06-18 深圳市汇顶科技股份有限公司 检测电路、芯片及相关电子装置
KR20220163758A (ko) 2021-06-03 2022-12-12 서울대학교산학협력단 용량성 센서를 위한 읽기 회로

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203117298U (zh) * 2013-01-30 2013-08-07 比亚迪股份有限公司 一种电容检测电路
CN106537106A (zh) * 2016-10-31 2017-03-22 深圳市汇顶科技股份有限公司 电容检测装置、方法和压力检测系统
CN107980115A (zh) * 2017-11-08 2018-05-01 深圳市汇顶科技股份有限公司 电容检测装置、触控装置和终端设备
KR20180049461A (ko) * 2016-11-02 2018-05-11 삼성전자주식회사 터치 패널 컨트롤러
CN108475155A (zh) * 2018-03-30 2018-08-31 深圳市为通博科技有限责任公司 电容检测电路、触摸检测装置和终端设备

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVE20040012U1 (it) * 2004-05-26 2004-08-26 Imarc Spa Staffa di sostegno per bracciolo o schienale di sedie, in particolare sedie da ufficio.
US7301350B2 (en) * 2005-06-03 2007-11-27 Synaptics Incorporated Methods and systems for detecting a capacitance using sigma-delta measurement techniques
TWI357501B (en) * 2008-03-25 2012-02-01 Raydium Semiconductor Corp Evaluation circuit for capacitance and method ther
US9395850B2 (en) * 2008-10-06 2016-07-19 Japan Display Inc. Coordinate input device and display device with the same
TWI388849B (zh) * 2009-04-07 2013-03-11 Ite Tech Inc 電容介面電路
CN102200869B (zh) * 2010-03-24 2013-05-08 盛群半导体股份有限公司 电容式触控装置及其感测装置
US8624870B2 (en) * 2010-04-22 2014-01-07 Maxim Integrated Products, Inc. System for and method of transferring charge to convert capacitance to voltage for touchscreen controllers
US8952927B2 (en) * 2012-05-18 2015-02-10 Atmel Corporation Self-capacitance measurement with compensated capacitance
CN102830882B (zh) * 2012-09-04 2015-05-13 北京集创北方科技有限公司 一种电容触摸屏触摸检测电路
CN103902114B (zh) * 2012-12-30 2017-03-15 比亚迪股份有限公司 电容检测电路
US10558302B2 (en) 2014-05-23 2020-02-11 Apple Inc. Coded integration of a self-capacitance array
CN104049822B (zh) * 2014-06-18 2017-02-15 深圳贝特莱电子科技股份有限公司 一种触摸屏控制电路的检测系统
KR102198854B1 (ko) * 2014-11-05 2021-01-05 삼성전자 주식회사 터치 아날로그 프론트 엔드 및 이를 포함하는 터치 센서 컨트롤러
CN104459400B (zh) * 2014-12-08 2018-07-17 深圳市华星光电技术有限公司 用于自容式触摸屏的检测电路和检测方法
US10345947B2 (en) * 2015-05-27 2019-07-09 Melfas Inc. Apparatus and method for detecting hovering object, switching matrix, apparatus for determining compensation capacitance, method of compensating for force sensing capacitance, and apparatus for detecting force input
CN106325632B (zh) * 2015-06-15 2020-12-15 恩智浦美国有限公司 具有噪声抑制的电容传感器
CN108431749B (zh) * 2016-10-26 2021-04-30 深圳市汇顶科技股份有限公司 一种电容变化量检测电路及触摸屏、触摸检测方法
CN106648268B (zh) * 2016-11-28 2020-03-20 上海磐启微电子有限公司 一种电容屏触摸检测电路和检测方法
TWI621984B (zh) * 2016-12-02 2018-04-21 瑞鼎科技股份有限公司 電容値量測電路及電容値量測方法
JP2018101281A (ja) * 2016-12-20 2018-06-28 株式会社東海理化電機製作所 タッチ検出装置
EP3379271B1 (en) * 2017-01-18 2020-03-11 Shenzhen Goodix Technology Co., Ltd. Capacitance detection apparatus, electronic device and force detection apparatus
CN106598370B (zh) * 2017-01-19 2024-03-15 北京集创北方科技股份有限公司 触摸检测电路及其触控装置
KR101908286B1 (ko) * 2017-02-23 2018-10-16 (주)멜파스 커패시턴스 검출 방법 및 이를 이용하는 커패시턴스 검출 장치
WO2019047214A1 (zh) * 2017-09-11 2019-03-14 深圳市汇顶科技股份有限公司 电容检测电路、电容检测的方法、触摸检测装置和终端设备
WO2019095377A1 (zh) * 2017-11-20 2019-05-23 深圳市汇顶科技股份有限公司 差分电路、电容检测电路、触摸检测装置和终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203117298U (zh) * 2013-01-30 2013-08-07 比亚迪股份有限公司 一种电容检测电路
CN106537106A (zh) * 2016-10-31 2017-03-22 深圳市汇顶科技股份有限公司 电容检测装置、方法和压力检测系统
KR20180049461A (ko) * 2016-11-02 2018-05-11 삼성전자주식회사 터치 패널 컨트롤러
CN107980115A (zh) * 2017-11-08 2018-05-01 深圳市汇顶科技股份有限公司 电容检测装置、触控装置和终端设备
CN108475155A (zh) * 2018-03-30 2018-08-31 深圳市为通博科技有限责任公司 电容检测电路、触摸检测装置和终端设备

Also Published As

Publication number Publication date
CN111164557A (zh) 2020-05-15
US20200081567A1 (en) 2020-03-12
US10990230B2 (en) 2021-04-27
WO2020047844A1 (zh) 2020-03-12
CN111164558B (zh) 2022-06-07
US10949032B2 (en) 2021-03-16
EP3640780B1 (en) 2021-10-27
EP3640779A4 (en) 2020-06-24
US20200110117A1 (en) 2020-04-09
EP3640779A1 (en) 2020-04-22
EP3640780A1 (en) 2020-04-22
CN111164558A (zh) 2020-05-15
EP3640780A4 (en) 2020-06-03
WO2020048023A1 (zh) 2020-03-12
EP3640779B1 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
CN111164557B (zh) 电容检测电路、触控芯片及电子设备
JP5411670B2 (ja) 静電容量型タッチパネルの信号処理回路
EP3971694B1 (en) Noise measurement circuit, self-capacitance measurement method, touch chip and electronic device
EP3798809B1 (en) Capacitance detection circuit, detection chip and electronic device
KR20150123488A (ko) 터치 감지 장치
CN112313611B (zh) 一种电容检测电路、电容检测方法、触控芯片以及电子设备
CN112965641B (zh) 一种电容检测电路、相关方法、模块、装置及设备
CN112689817B (zh) 电容检测方法
JP2011113186A (ja) 静電容量型タッチパネルの信号処理回路
CN101957698B (zh) 电容式触控板的对象定位检测器及方法
CN112602046B (zh) 电容检测电路、触控芯片及电子设备
CN114487784A (zh) 电容检测电路、触控芯片及电子设备
CN111880690A (zh) 噪声检测电路、自容检测方法、触控芯片及电子设备
JP2014013441A (ja) タッチパネルの制御回路、制御方法およびそれらを用いたタッチパネル入力装置、電子機器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant