CN111163879B - 制备具有含氮碱的含银分散体的方法 - Google Patents

制备具有含氮碱的含银分散体的方法 Download PDF

Info

Publication number
CN111163879B
CN111163879B CN201880062415.8A CN201880062415A CN111163879B CN 111163879 B CN111163879 B CN 111163879B CN 201880062415 A CN201880062415 A CN 201880062415A CN 111163879 B CN111163879 B CN 111163879B
Authority
CN
China
Prior art keywords
silver
cellulose acetate
containing dispersion
aqueous
aqueous silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880062415.8A
Other languages
English (en)
Other versions
CN111163879A (zh
Inventor
D.舒克拉
K.M.多诺文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/713,786 external-priority patent/US10246561B1/en
Priority claimed from US15/713,795 external-priority patent/US20190092647A1/en
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of CN111163879A publication Critical patent/CN111163879A/zh
Application granted granted Critical
Publication of CN111163879B publication Critical patent/CN111163879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1545Continuous processing, i.e. involving rolls moving a band-like or solid carrier along a continuous production path

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

用于制备银纳米颗粒纤维素聚合物复合材料的方法。将纤维素聚合物、与纤维素聚合物的重量比为5:1至50:1的量的可还原的银离子和有机溶剂混合。每种有机溶剂在大气压下具有100℃至500℃的沸点。纤维素聚合物的汉森参数(δT 聚合物)小于或等于有机溶剂的汉森参数(δT 溶剂)。将所得预混溶液加热到至少75℃,并添加(d)含氮碱,以提供相对于可还原的银离子的量为等摩尔量或摩尔过量的含氮碱浓度,由此形成银纳米颗粒纤维素聚合物复合材料。在冷却之后,将银纳米颗粒纤维素聚合物复合材料分离并再分散于有机溶剂中,以提供非水性含银分散体。

Description

制备具有含氮碱的含银分散体的方法
发明领域
本发明涉及通过以下方式形成银纳米颗粒复合材料的非水性分散体的方法:混合纤维素聚合物、羟基溶剂和可还原的银离子,向其中引入含氮碱,以形成银纳米颗粒复合材料。在冷却和分离之后,将银纳米颗粒复合材料再分散于一种或更多种有机溶剂中,以便将来使用,例如用作“油墨”以形成导电制品。本发明还涉及使用本发明方法获得的非水性含银分散体。
发明背景
众所周知,银具有合意的电导率和热导率、催化性质以及抗微生物特性。因此,银和含银化合物已广泛用于合金、金属电镀工艺、电子设备、成像科学、药品、服装或其它纤维材料,以及利用银的有益性质的其它商业和工业制品和工艺。
例如,已将银化合物或银金属描述为用作金属布线图案、印刷电路板(PCB)、柔性印刷电路板(FPC)、用于射频识别(RFID)标签的天线、等离子体显示板(PDP)、液晶显示器(LCD)、有机发光二极管(OLED)、柔性显示器和有机薄膜晶体管(OTFT)以及本领域中已知的其它电子设备中的金属图案或电极。
制备和使用用于通信、财务和档案目的的各种电子设备也在发生快速进展。
银是具有现今常用于许多设备中的氧化铟锡50至100倍大的电导率的理想导体。例如,本领域已描述了通过以下方式来制备导电膜:通过适当的掩模在“照相”卤化银乳液中形成并显影(还原)卤化银图像,以形成具有银线的导电栅格网络,所述银线具有小于10μm的平均尺寸(宽度和高度)并具有适当的长度。
虽然银作为电导体在印刷电子领域中具有宽范围的潜在用途,但是通过光刻和无电技术来微制造导电径迹(栅格、线或图案)耗时且昂贵,并存在对于用以简化工艺和降低制造成本的直接数字印刷的工业需要。
此外,合意的是,通过基于溶液的印刷工艺将含银电子设备制造到聚合物衬底或类似的温度敏感的衬底上。必须在足够低的温度下实现低电阻金属导电线或栅格,以便其与聚合物衬底上的有机电子设备相容。在用于制造导电银栅格或图案的各种已知方法之中,含银油墨的直接印刷为制备此类导电图案提供了有吸引力的前景。
还已提议了用于提供银或含银化合物的图案的喷墨印刷和柔性版印刷,其要求小心制造具有合意的表面张力、粘度、稳定性和此类施加工艺所要求的其它物理性质的含银糊状物或“油墨”。高电导率通常要求高银含量,且增加印刷的银油墨的电导率另外要求煅烧或烧结。
提供银金属的一些方法是采用化学油墨配制物,其中银源为分子前体或阳离子(例如银盐),其然后经化学反应(或还原)产生银金属。近年来,呈化学溶液形式而非作为金属颗粒的悬浮液或分散体的导电油墨已获得关注。这种类型的一种导电油墨被称为金属有机分解(MOD)变种油墨(variety ink),例如,如由使用含有水性过渡金属络合物[AgO2C(CH2OCH2)3H]的MOD油墨来调研银印刷的Jahn等人[Chem.Mater.22,3067–3071(2010)]所描述。他们报道了形成具有高达2.7×107S m-1的电导率(其对应于块状银的电导率的43%的电导率)的金属银特征,尽管需要250℃的烧结温度。尽管要求250℃的烧结温度。
美国专利申请公开2015/0004325(Walker等人)描述了一种化学反应性银油墨组合物,其包含羧酸银盐和烷基胺的络合物,其中该络合物用于在120℃或更低的温度下形成导电银结构。不幸的是,即使这些温度也致使油墨与柔性电子设备和生物医学设备中使用的许多聚合物衬底和纸衬底不相容。此外,由于已知烷基胺在室温下还原银,因此此类组合物的长期稳定性是不确定的。此外,该公开教导了需要长时间加热来获得所得制品的低电阻率。
制备导电膜或元件的其它工业方法涉及配制含有金属颗粒(例如银金属颗粒)的分散体的可光固化组合物以及将该可光固化组合物施加至衬底,然后使可光固化组合物中的可光固化组分固化。固化组合物中施加的银颗粒可充当用于无电镀导电金属的催化(晶种)颗粒。以这种方式制备的有用的导电栅格描述于例如美国专利9,188,861(Shukla等人)和9,207,533(Shukla等人)以及美国专利申请公开2014/0071356(Petcavich)和2015/0125596(Ramakrishnan等人)中。使用这些方法,可在合适的透明衬底(例如,透明聚酯膜的连续卷)上印刷并固化含有催化银颗粒的可光固化组合物,并然后可对催化银颗粒进行无电金属镀。但是,这些方法要求大量购买的银颗粒均匀分散在可光固化组合物内,以致涂层或印刷的图案具有足够高浓度的催化位点。在没有效分散的情况下,银颗粒容易聚集,导致较低效的无电镀和电导率。
另外,以这种方式形成稳定的银颗粒的图案要求存在光敏组分,例如必须暴露于合适的辐射的可聚合单体或可交联聚合物。将此类固化程序放大至大规模使用可能是困难的,并且难以在一致的规模上再生产,尤其对于细线导电网格或栅格的生产,其中细线的均匀性和尺寸都经受非常严格的标准。
业界正在努力避免对于光固化的需求。例如,美国专利申请公开2012/0225126(Geckeler等人)描述了使用银盐和充当银离子还原剂的水溶性聚合物(例如淀粉或纤维素衍生物)的混合物来制备银纳米颗粒的固态方法。通过高速振动研磨工艺来研磨混合物,以在水溶性淀粉或纤维素聚合物中形成银纳米颗粒,以致不需要溶剂来合成或运送银纳米颗粒。
在银纳米颗粒的生产中已采用各种方法,例如在水溶液中的共沉淀法、电化学法、气溶胶法、反相微乳液法、化学液相沉积法、电化学还原法、在溶液中的化学还原法以及UV照射法。但是,常规技术在控制颗粒的粒度和大规模生产方面具有难度。
存在着各种用于生产纳米尺寸的金属纳米颗粒的方法。例如,美国专利6,572,673(Lee等人)公开了用于制备金属纳米颗粒的方法,其包括使合适的金属盐与作为还原剂的含有阴离子基团(例如羧酸根、硫酸根或磺酸根)的阴离子表面活性剂于50-140℃的温度在回流下在水中反应。在水溶液中进行此类方法。
美国专利9,005,663(Raghuraman等人)公开了用于制备银纳米颗粒的方法,其包括使银盐与磷杂环戊二烯氨基酸反应。但是,该磷杂环戊二烯氨基酸反应物是一种昂贵的材料。
美国专利7,892,317(Nia)公开了用于合成银纳米颗粒的方法,其包括使银盐与阴离子表面活性剂或非离子表面活性剂和还原剂在室温下在水溶液中反应。
美国专利9,496,068(Kurihara等人)公开了经由草酸根离子-烷基胺-烷基二胺-银络合物的热分解来合成涂覆胺的银纳米颗粒的方法。
美国专利申请公开2010/0040863(Li)公开了通过加热银盐长烷基链羧酸和叔胺在甲醇中的混合物来生产羧酸稳定的银纳米颗粒的方法。
美国专利申请公开2014/0312284(Liu等人)公开了通过用肼在甲醇中还原银盐来生产有机胺稳定的银纳米颗粒的方法。但是,肼是一种有毒的材料,并且在制造工艺中包括肼将是不合意的。
纤维素是由区域选择性和对映选择性的β-1,4-糖苷键连接的D-葡萄糖单元组成的多分散性线形均聚物。该均聚物在C-2、C-3和C-6原子处含有三个反应性羟基,其一般而言可用于伯OH基团和仲OH基团的典型的化学转化。
纤维素以及其衍生物的使用具有广泛的应用,例如应用于纤维、膜、塑料、涂料、悬浮剂、复合材料中。随着合成聚合物的出现,一定程度上减少了它们的使用,但是纤维素衍生物仍是针对一些用途选择的原材料。另外,正在进行各种研究以寻找和扩展它们在现存技术和新技术中的用途。在一些情况下,纤维素聚合物可被认为是可再生资源。纤维素聚合物的使用者面临的一个固有问题是它们普遍不溶于大多数常用溶剂中。对纤维素聚合物的结构进行改性可改善它们的溶解性,导致合成各种纤维素衍生物(纤维素制品),取决于用于取代纤维素链上羟基的官能团,所述纤维素衍生物呈各种形式和结构。
例如,纤维素衍生化可牵涉通过与各种试剂反应使纤维素链上的羟基部分或完全酯化或醚化,以得到纤维素衍生物,如纤维素酯和纤维素醚。在所有纤维素衍生物之中,乙酸纤维素被公认为最重要的纤维素有机酯,这归因于其广泛的工业重要性和商业重要性。纤维素衍生物(酯和醚)的性质主要由官能团决定。但是,可通过调整官能化程度和聚合物主链的聚合度对其进行显著改性,以改变在各种溶剂中的溶解性。
乙酸纤维素的溶液性质已被很好地研究并已显示受到平均取代度和沿着链的取代基分布的影响。先前关于乙酸纤维素的胶凝机制的工作已显示关于溶胶-凝胶转变的有趣的行为。乙酸纤维素凝胶展现出取决于诸如浓度、乙酰基含量和溶剂类型之类因素的热可逆性质。通常难以预测纤维素是否会在给定的有机溶剂中胶凝,并且在大多数乙酸纤维素/溶剂体系中,在将溶液加热至特定温度并随后进行冷却之后发生胶凝。例如,Kwon等人,Bull.Korean Chem.Soc.26(5),837-840描述了对乙酸纤维素溶液中的银纳米颗粒的研究。
美国序列号15/456,686(上述)描述了使用银纳米颗粒来制备制品的方法,通过在某些纤维素聚合物的存在下将可还原的银离子热还原来获得该银纳米颗粒。
尽管存在用以在各种消费制品和工业制品中提供导电银的上述所有的各种方法和努力,但是对于以特别适合于在高速制造工艺中形成图案的方式来产生银纳米颗粒的更简单且更便宜的组合物和方法仍存在着需求。
虽然,如上所述,已知晓许多制备银纳米颗粒和含有它们的组合物的方法,但是仍存在着需要在此类组合物可用于印刷电子应用之前得到解决许多挑战。例如,对于以下项仍存在着需求:不需要毒性试剂和溶剂的制备银纳米颗粒的迅速而有效的方法;便宜且对环境温和的分散剂;大规模制造和储存银纳米颗粒的方法;以及在对环境友好的溶剂中将制造的银纳米颗粒再分散的有效方法。
发明概述
本发明提供一种方法,其依次包括:
A)混合:
(a)一种或更多种聚合物,其选自乙酸纤维素、乙酸邻苯二甲酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、乙酸偏苯三酸纤维素、羟丙基甲基纤维素邻苯二甲酸酯、甲基纤维素、乙基纤维素、羟乙基纤维素、羟丙基甲基纤维素和羧甲基纤维素中的一种或更多种;
(b)可还原的银离子,其按以下量存在:(b)可还原的银离子与一种或更多种(a)聚合物的重量比为至少5:1且至多并包括50:1;和
(c)一种或更多种有机溶剂,其各自在大气压下具有至少100℃且至多但小于500℃的沸点,其中一种或更多种聚合物中的每一种的汉森参数(δT 聚合物)小于或等于一种或更多种有机溶剂中的每一种的汉森参数(δT 溶剂),
以形成预混溶液;
B)将预混溶液加热至至少75℃的温度;
C)在将预混溶液保持在至少75℃的温度下的同时,添加在25℃下、在乙腈中具有至少15且至多并包括25的pKa的(d)含氮碱,以提供相对于(b)可还原的银离子的量为等摩尔量或摩尔过量的(d)含氮碱浓度,
以形成银纳米颗粒复合材料;
D)在冷却之后,分离银纳米颗粒复合材料;和
E)将银纳米颗粒复合材料再分散于A)中所使用的相同或不同的一种或更多种(c)有机溶剂中,以提供包含银纳米颗粒复合材料的非水性含银分散体。
在一些实施方案中,该方法可进一步包括:
将非水性含银分散体布置到衬底上,和
除去相同或不同的一种或更多种(c)有机溶剂。
本发明提供由本文中描述的方法制备的非水性含银分散体,该非水性含银分散体包含:
银纳米颗粒复合材料,其包含银和一种或更多种(a)聚合物,该聚合物选自乙酸纤维素、乙酸邻苯二甲酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、乙酸偏苯三酸纤维素、羟丙基甲基纤维素邻苯二甲酸酯、甲基纤维素、乙基纤维素、羟乙基纤维素、羟丙基甲基纤维素和羧甲基纤维素中的一种或更多种,其中银按以下量存在于银纳米颗粒复合材料中:与一种或更多种(a)聚合物的重量比为至少5:1且至多并包括50:1;
(c)一种或更多种有机溶剂,其各自在大气压下具有至少100℃且至多但小于500℃的沸点,其中一种或更多种聚合物中的每一种的汉森参数(δT 聚合物)小于或等于一种或更多种有机溶剂中的每一种的汉森参数(δT 溶剂);和
(d)含氮碱,其在25℃下、在乙腈中具有至少15且至多并包括25的pKa,相对于银的量计,该含氮碱以等摩尔量或摩尔过量存在。
本发明提供了用以由包含可还原的银离子、纤维素聚合物和含氮碱的非水性银前体组合物生成银纳米颗粒的独特的非水性分散体的简单、安全且便宜的方式。可容易且安全地进行根据本发明的方法,以用于制造具有长期稳定性的高重量分数、完全分散的银纳米颗粒,因为银纳米颗粒在相对温和的有机溶剂中不容易聚集。这些含有银纳米颗粒的组合物可以容易地沉积或形成为图案,以用于各种用途。
本发明借助使用含氮碱以在纤维素聚合物的存在下促进更快的银离子还原而提供了这些优点。非水性银前体组合物中使用的纤维素聚合物和有机溶剂还促进了银离子还原并且使用便宜且对环境安全的分散剂提供了所得银纳米颗粒的物理稳定性。因此,本发明的组合物和方法可用来提供可按各种方式使用(例如,以图案方式应用于衬底,用于进一步加工)的银纳米颗粒的组合物或分散体。
本发明的其它优点将鉴于本文中提供的教导而对本领域技术人员显而易见。
附图简述
图1是如下文在发明例1中所描述的粒度分布的图示。
图2是如下文在发明例2中所描述的粒度分布的图示。
图3是在下文发明例2中制备的银纳米颗粒-纤维素聚合物复合材料的化学分析的图示。
图4是如下文在发明例3中所描述的粒度分布的图示。
发明详述
以下讨论涉及本发明的各种实施方案,虽然一些实施方案对于具体用途可以是合意的,但是不应将所公开的实施方案解释或以其它方式认为是限制如下文所要求保护的本发明的范围。此外,本领域技术人员将理解,以下公开内容具有比在任何实施方案的讨论中所明确描述的更广泛的应用。
定义
除非另外指出,否则如本文中用于定义非水性银前体组合物的各种组分的单数形式“一种/个”和“所述/该”意欲包括一种或更多种组分(即,包括复数指代)。
在本申请中未明确定义的各术语应理解为具有本领域技术人员通常接受的含义。如果术语的结构将使得它在其上下文中无意义或基本无意义,则应从标准词典中获取该术语的定义。
除非另外明确地另外指出,否则本文指定的各种范围中的数值的使用是近似值,如同在所陈述的范围内的最小值和最大值之前均有词语“约”。以这种方式,高于和低于所陈述的范围的微小变化可用于实现与在该范围内的值基本相同的结果。此外,这些范围的公开意欲作为连续的范围,包括介于最小值和最大值之间的每个值。
除非另外指出,否则术语“重量%”指基于非水性银前体组合物或非水性分散体的总量计的组分或材料的量。在其它实施方案中,“重量%”可以指干燥的层、涂层、薄膜或含银图案的固体(或干重)%。
除非另外指出,否则应用于根据本发明的组合物和分散体的术语“非水性”表示用于形成此类组合物的溶剂介质主要是有机性质的,并且不故意添加水,但是水可凭借作为化学组分的一部分以组合物中所有溶剂的总重量的小于10重量%,或尤其小于5重量%,或甚至小于1重量%的量存在。
除非另外指出,否则术语“非水性银前体组合物”表示其中存在的银主要(大于总银的50重量%)呈可还原的银离子的形式。
本文中描述的含银纳米颗粒的线、栅格线或其它图案特征的平均干燥厚度可以是例如使用电子显微镜术、光学显微镜术或轮廓测定法获取的至少2次单独测量值的平均,所有这些方法对于同一测试样品应提供基本相同的结果。
关于线、图案或层的厚度和宽度使用的“干燥”指其中至少80重量%的初始存在的有机溶剂已被除去的实施方案。
如本文中用于定义银纳米颗粒的“平均粒度”使用动态光散射(DLS)来测量,动态光散射(DLS)有时称为准弹性光散射(QELS),并且是用于测量通常在亚微米区域中,且甚至低于1nm的分子和颗粒的尺寸和尺寸分布的充分确立的技术。商业DLS仪器可获自例如Malvern和Horiba,其也提供此类设备的使用说明书,并且此类设备和随附的说明书可用来表征和实施本发明。
可由已知的出版物确定或使用标准方法测量本文中描述的有机溶剂的沸点。
除非本文中另外指出,否则可使用任何标准的市售可得的粘度计在25℃下测定粘度。
除非另外指出,否则术语“基团”尤其在用于定义取代基或部分时,本身可通过用合适的取代基(如下所述)例如氟原子置换一个或更多个氢原子而呈取代的或未取代的(例如“烷基”指取代或未取代的烷基)。通常,除非另外具体陈述,否则本文中所提及的任何“基团”上的取代基或其中某物质被陈述为可能被取代的情况中取代基包括任何基团的可能性,不论是取代或未取代的,其不破坏组分或非水性银前体组合物的效用所必需的性质。还将理解,对于本公开和权利要求书而言,对通式结构的化合物或络合物的提及包括落入该通式结构定义中的其它更具体的化学式的那些化合物。在所提及的基团中的任何种上的取代基的实例可包括已知的取代基,例如卤素(例如氯和氟);烷氧基,尤其是具有1至5个碳原子的那些(例如甲氧基和乙氧基);取代或未取代的烷基,尤其是低级烷基(例如甲基和三氟甲基),尤其是具有1至6个碳原子的那些中的任一种(例如甲基、乙基和叔丁基);和本领域中将显而易见的其它取代基。
除非另外指出,否则术语“总汉森溶解度参数”和“总汉森参数”指同一事物。汉森溶解度参数(也称为逆向溶解力原理)由查尔斯汉森开发作为预测一种材料是否会在另一种材料中溶解并形成溶液的方法。它们基于“相似相溶”的概念,其中一个分子被定义为“像”另一个分子,若其以类似的方式与自身结合。对各化学分子给出三个汉森参数,各自通常以Mpa0.5度量:δd,来自分子间的色散键的能量;δp,来自分子间的极性键的能量;和δh,来自分子间的氢键的能量。“总汉森溶解度参数”定义为:
δ2=δd 2p 2h 2
这三个汉森参数可当作也称为汉森空间的三维中的点的坐标来看。两个分子在该三维空间中越接近,它们就越有可能相互溶解。为确定两个分子(通常是溶剂和聚合物)的总汉森参数是否在范围内,给予被溶解的物质以称为相互作用半径(R0)的值。该相互作用半径决定了汉森空间中球体的半径,其中心是三个汉森参数。为了计算汉森空间中的汉森参数之间的距离(Ra),使用以下公式:
Ra 2=4(δd1d2)2+(δp1p2)2+(δh1h2)2
任何本领域技术人员都充分理解总汉森参数的概念。起源和理论的详细描述在例如以下的各种参考文献中找到:(1)A.F.M.Barton,"Handbook of Polymer-LiquidInteraction Parameters and Solubility Parameters,"CRC Press Inc.(1990)和(2)Solubility Parameter Values,EricA.Grulke,PolymerHandbook,JohnWileyand Sons,Inc.(1989)。在许多情况下,各有用的聚合物的总汉森参数可获自可利用的产品资料;可由如在Allan F.M.Barton的Handbook of Polymer-Liquid Interaction Parameters andSolubility Parameters,CRC Press(1990)中公布的类似材料的研究进行估计;或者可由溶解度研究来确定。可使用预混溶液中单独的有机溶剂组分的体积分数的总和来计算有机溶剂混合物的总汉森参数。总汉森参数以及溶解度参数的色散分量、极性分量和氢键合分量的三分量汉森参数可容易地在文献获得。
用途
满足实际应用的导电性、加工和成本要求的功能电极、像素板和导电迹线、线和径迹的沉积或图案化已成为巨大的挑战。银金属在具有进一步无电镀或没有进一步无电镀的情况下制备用于电子设备的导电元件方面是令人感兴趣的。
本文中描述的非水性含银分散体可用于形成例如薄膜触摸开关(MTS)、电池测试器、生物医学电致发光灯、射频识别(RFID)天线、诸如等离子体显示板(PDP)和有机发光二极管(OLED)显示器之类的平板显示器、印刷晶体管和薄膜光伏中的金属银图案和电极,并由此减少用于在此类设备中形成图案的步骤数。
本文中描述的非水性银前体组合物在各种技术和工业中具有实际的和潜在的用途。最具体地,它们可用于提供银金属,用于各种目的,包括但不限于形成细线或其它几何形式的导电栅格或图案、形成用于使用其它导电金属进行无电镀的银晶种颗粒、以及在各种材料中为了抗菌活性形成银。
更具体地,根据本发明的非水性银前体组合物可用于在非水性分散体中提供银金属,其转而可用于提供导电金属图案。可将这些导电金属图案并入各种设备中,所述设备包括但不限于触摸屏或其它透明显示设备;和现代电子器件,例如太阳能电池电极、有机薄膜晶体管(OTFT)中的电极、柔性显示器、射频识别标签、光天线;以及对于本领域技术人员将容易显而易见的其它设备。
非水性银前体组合物
对于所有实施方案而言,根据本发明的非水性银前体组合物含有用于提供根据本发明的银纳米颗粒形式的银金属目的的四种必需组分:如下所述的一种或更多种(a)聚合物(例如一种或更多种纤维素聚合物);(b)如下所述的呈一种或更多种银盐或银络合物形式的可还原的银离子;如下所述的由(c)(一种)或更多种有机溶剂组成的有机溶剂介质,和(d)如下所述的一种或更多种含氮碱。未向根据本发明的非水性银前体组合物中故意添加其它组分以实现本发明优点或目的,并且如上所述,未故意包括水。如下所述,对于一些实施方案而言,(e)炭黑可作为第五种必需组分存在。
一经如下所述的热处理,根据本发明的非水性银前体组合物可转化成相应的非水性分散体或非水性含银分散体,其包含银纳米颗粒复合材料,所述银纳米颗粒复合材料包含银和如下所述的一种或更多种聚合物二者。合意的是,至少90mol%、至少95mol%、或甚至至少98mol%(其表示“基本上所有的”)的(b)可还原的银离子在该过程期间转化为银。
一般而言,可通过将一种或更多种(a)聚合物、(b)可还原的银离子、(c)有机溶剂和含氮碱在合适的环境条件下混合来将它们组合,以致热还原不会过早发生到任何明显的程度。在一些实施方案中,可将(a)、(c)和(d)组分配制或混合以形成预混溶液,并且在适当加热下,可以受控方式将(b)可还原的银离子添加到预混溶液中。或者,可将(a)、(b)和(c)组分配制或混合以形成预混溶液,并可以受控方式将(d)含氮碱添加到预混溶液中。在下文描述这些方法的细节。
最终,形成了非水性银前体组合物,并且其通常具有至少1%且至多并包括50%、或更通常至少5%且至多并包括20%的固体%。因此,可针对特定用途或银离子还原操作来调节固体和(c)有机溶剂的量以及粘度。
非水性银前体组合物通常呈液体形式,其具有至少1厘泊(0.001帕斯卡秒)且至多并包括5,000厘泊(5帕斯卡秒)的粘度,或更可能至少3厘泊(0.003帕斯卡秒)且至多并包括50厘泊(0.05帕斯卡秒)的粘度,所有粘度都在25℃下测量。
下文描述的非水性(含银)分散体可具有与相应的非水性银前体组合物相同或不同的粘度。在大多数实施方案中,该两种组合物具有基本相同的粘度,即,差异不超过10%。
(a)聚合物:
可用于本发明实践的聚合物是有机性质的,并且可单独使用或以两种或更多种不同材料的混合物使用。当以混合物使用时,两种或更多种不同的材料可按相同或不同的量存在于总聚合物量中。纤维素酯和纤维素醚二者均可用于本发明。
用于本发明实践的代表性的有用聚合物选自乙酸纤维素、乙酸邻苯二甲酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、乙酸偏苯三酸纤维素、羟丙基甲基纤维素邻苯二甲酸酯、甲基纤维素、乙基纤维素、羟乙基纤维素、羟丙基甲基纤维素、羧甲基纤维素、以及此类材料中的两种或更多种的混合物。
根据本发明的特别有用的聚合物包括单独或混合物形式的羧甲基纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、乙基纤维素和乙酸纤维素。
还可有用的是,使用诸如纤维素酯之类的纤维素聚合物,其包含直接与聚合物主链连接以提供以下量的游离羟基含量的游离羟基:基于可潜在存在于聚合物中的总羟基计,至少1%或至少2%,且至多并包括5%。分子中其余的羟基将被酯化,以致游离羟基含量相对低。
基于非水性银前体组合物中银的总重量计,一种或更多种(a)聚合物可按以下的总量存在:至少1重量%且至多并包括25重量%,或更可能至少3重量%且至多并包括10重量%。
有用的聚合物中的每一种可容易地获自各种商业来源,或者在一些情况下,可使用已知的原材料、反应条件和已知的合成程序来制备它们。
(b)可还原的银离子:
可从许多来源在非水性银前体组合物中提供可还原的银离子,只要其中提供它们的银盐或银络合物各自可按20℃下至少1g/L的量溶于一种或更多种(c)羟基有机溶剂中。
一般而言,本发明实践中可使用由可还原的银离子和任何合适的有机或无机阴离子或络合部分(或阴离子和络合部分的组合)组成的银盐或银络合物,以提供用于本发明的(b)可还原的银离子。此类银络合物可以是单核、双核、三核或更多核的,并且各化合物通常具有净中性电荷。将以下类别的有用的含有可还原的银离子的盐和含有可还原的银离子的络合物描述为代表性材料,但是不应将本发明解释为限于它们。除非另外指出,否则此类含有可还原的银离子的材料可容易地从各种商业来源购买,或可使用已知的程序、原材料和反应条件进行制备。
(i)第一类含有可还原的银离子的化合物是具有有机或无机阴离子的银盐。一些代表性的银盐包括但不限于硝酸银、乙酸银、苯甲酸银、亚硝酸银、硫氰酸银、肉豆蔻酸银、柠檬酸银、苯乙酸银、丙二酸银、琥珀酸银、己二酸银、磷酸银、高氯酸银、乙酰丙酮酸银、乳酸银、水杨酸银、草酸银、2-苯基吡啶银、三氟乙酸银;氟化银和氟化银络合物,例如氟硫酸银(I)、三氟甲烷硫酸银(I)、五氟丙酸银(I)和七氟丁酸银(I);β-羰基酮银(I)络合物;银蛋白;和这些材料中的任何种的衍生物。
(ii)本发明实践中可使用受阻芳族N-杂环与(b)可还原的银离子的络合物。如用于定义受阻芳族N-杂环的术语“受阻”表示该部分具有位于芳环中氮原子的α位上的“大体积的”基团。可使用已知的“A-值”参数来定义此类大体积的基团,该参数是用于确定分子中原子的最稳定的取向的数值(使用构象分析)以及是位阻效应的一般表示。A-值获得自单取代环己烷环的能量测量值。环己烷环上的取代基优选存在于轴的平伏位置。在本发明中,受阻芳族N-杂环中有用的“大体积的”基团具有至少0.05的A-值。该类型的有用的含有可还原的银离子的络合物描述于美国专利9,377,688(Shukla)中,该专利描述了性质、代表性化合物以及制备它们的方法。
(iii)其它有用的包含(b)可还原的银离子的络合物是羧酸银-三烷基亚磷酸酯、羧酸银-三芳基亚磷酸酯和羧酸银-烷基芳基亚磷酸酯络合物,以及这些化合物的混合物。术语“羧酸盐-三烷基亚磷酸酯”和“羧酸盐-三芳基亚磷酸酯”在本文中应解释为表明其作为一部分的络合物分别可具有三个相同或不同的烷基,或三个相同或不同的芳基。术语“羧酸盐-烷基芳基亚磷酸酯”指具有任意组合的总共三个烷基和芳基的混合物的化合物。该类型的有用的含有可还原的银离子的络合物描述于美国专利9,375,704(Shukla)中,该专利描述了性质、代表性化合物以及制备它们的方法。
(iv)可使用银-肟络合物来提供(b)可还原的银离子,并且这些材料通常是非聚合物性质的(表示该银络合物的分子量小于3,000)。该类型的有用的非聚合物银-肟络合物描述于美国专利9,387,460(Shukla)中,该专利描述了性质、代表性化合物以及制备它们的方法。
(v)其它有用的包含(b)可还原的银离子的银络合物可由以下结构(V)代表:
(Ag+)a(L)b(P)c
(V)
其中L代表α-氧基羧酸根;P代表5元N-杂芳族化合物或6元N-杂芳族化合物;a是1或2;b是1或2;且c是1、2、3或4,条件是,当a是1时,b是1,且当是a是2时,b是2。
结构(V)的络合物中的每一种包含一个或两个可还原的银离子。各个可还原的银离子可与一个或两个α-氧基羧酸根化合物经由从α-氧基羧酸根化合物的同一分子提供的两个氧原子,或从相同或不同的α-氧基羧酸根化合物的两个分子提供的氧原子进行络合。
α-氧基羧酸根(部分或组分)可定义为其中与羧基[-C(=O)O-]直接相连的α-碳原子具有羟基、氧基或氧基烷基取代基。因此,α-氧基羧酸根可为α-羟基羧酸根、α-烷氧基羧酸根或α-氧基羧酸根。对于α-羟基羧酸根和α-烷氧基羧酸根,如下文所更详细地描述的,该α-碳原子的其余化合价可用氢或者支链或直链烷基(取代或未取代的)填充。另外,α-氧基羧酸根(L)通常具有250或更小、或150或更小的分子量。
在上文所示的结构(V)中,b为1或2,并且在其中b为2的实施方案中,单一络合物分子内的两种α-氧基羧酸根化合物可为相同或不同的化合物。在本发明的一些实施方案中,上文描述的结构(V)的L可由以下结构(VI)代表:
Figure GDA0003527889050000121
其中R1、R2和R3独立地为氢或者支链或直链烷基。在大部分实施方案中,R1到R3中的至少一个为具有1至8个碳原子的支链或直链烷基,且此类支链或直链烷基中的氢原子中的任一意个可被杂原子(例如氟原子取代基)置换。
结构(VI)的α-氧基羧酸根(L)来自于其中的一些特别有用的共轭酸可选自:乳酸、2-羟基丁酸、2-羟基-3-甲基丁酸、2-羟基-3,3-二甲基丁酸、2-羟基-异丁酸、2-羟基-2-甲基丁酸、2-乙基-2-羟基丁酸、2-羟基-2,3-二甲基丁酸、2-乙基-2-甲氧基丁酸、2-甲氧基-2-甲基丙酸、1-羟基环戊烷-1-甲酸、2,3-二羟基-2,3-二甲基琥珀酸和2,4-二羟基-2,4-二甲基戊二酸。如上所指出的,这些材料的混合物可视需要用于特定的络合物中。
在其它实施方案中,在结构(V)中,L由以下结构(VII)代表:
Figure GDA0003527889050000122
其中,R4为具有1至8个碳原子的支链或直链烷基,包括具有3至8个碳原子的支链异烷基和叔烷基。另外,支链或直链烷基中的任意个中的氢原子中的任意个可任选地被氟原子置换;例如,R4支链或直链烷基的末端碳原子可具有1至3个氟原子。
由结构(VII)代表的α-氧基羧酸根(L)来自于其中的一些有用的共轭酸可选自丙酮酸、3-甲基丙酮酸、3,3-二甲基丙酮酸、3,3-二甲基-2-氧代丁酸、3,3-二甲基-2-氧代戊酸和2,3-二氧代琥珀酸。
结构(V)的“P”化合物是5元N-杂芳族化合物或6元N-杂芳族化合物,例如6-元N-杂芳族化合物。此类5元N-杂芳族化合物或6元N-杂芳族化合物可具有至少10且至多并包括22的pKa。用于测量pKa的实验方法和一些N-杂芳族碱的pKa值是已知的(例如参见Kalijurand等人的J.Org.Chem.2005,70,1019)。
一般而言,各5元N-杂芳族化合物或6元N-杂芳族化合物是非聚合物性质的,并且具有200或更小的分子量。“5元或6元”表示N-杂芳族化合物在杂环芳环中具有5个原子或6个原子,所述原子中的至少一个是氮原子。一般而言,此类杂环芳环通常在环中具有至少一个碳原子和至少一个氮原子。
在上文所示的结构(V)中,c为1、2、3或4,并且在其中c为2、3或4的实施方案中,单个络合物分子内的多个5元N-杂芳族化合物或6元N-杂芳族化合物分子可以相同或不同。例如,5元N-杂芳族化合物或6元N-杂芳族化合物可选自吡啶、2-甲基吡啶、4-甲基吡啶、2,6-二甲基吡啶、2,3-二甲基吡啶、3,4-二甲基吡啶、4-吡啶基丙酮、3-氯吡啶、3-氟吡啶、噁唑、4-甲基噁唑、异噁唑、3-甲基异噁唑、嘧啶、吡嗪、哒嗪和噻唑。
代表性的5元N-杂芳族化合物或6元N-杂芳族化合物可容易地获得自位于各个国家中的各种商业化学供应商。
共同受让的美国专利第9,809,606号中提供了性质、代表性化合物和制备它们的方法的进一步细节,通过引用将该专利的公开内容并入本文。在这些类型的含有可还原的银离子的络合物中,吡啶α-氧基羧酸银络合物(例如吡啶乳酸银络合物)是特别有用的。
(vi)将仍然其它有用的银络合物设计为具有一个或两个如以上针对(iv)银络合物所描述的(b)可还原的银离子,其与一个或两个如以上针对(iv)银络合物所描述的α-氧基羧酸根分子以及一个、两个、三个或四个烷基伯胺分子络合。一般而言,此类有用的银络合物可由以下结构(VIII)代表:
(Ag+)a(L)b(P)c
(VIII)
其中L代表α-氧基羧酸根;P代表烷基伯胺;a是1或2;b是1或2;且c是1、2、3或4,条件是当a是1时,b是1,且当是a是2时,b是2。
在此类络合物中,P是在大气压下具有小于或等于175℃的沸点,或具有小于或等于125℃或甚至至少75℃且至多并包括125℃的沸点的烷基伯胺。有用的烷基伯胺通常具有小于500的分子量并因此如由分子量和沸点所限定的,被视为“非聚合的”。
术语“烷基伯胺”在本文中指非芳族且并非环状结构的化合物。它们通常具有一个或更多个氮原子,只要符合本文中所描述的所有其它特征(分子量、pKa、沸点和氧化电位)即可。在此类化合物中,氮原子中的每一个具有由氢原子填充的两个化合价,并且每个氮原子的剩余化合价被取代或未取代的烷基(不包括烷基芳基,例如苄基)填充,或对于本文中定义为可由以下结构(IX)例示的“烷基伯二胺”的化合物而言被取代或未取代的亚烷基填充:
H2N-R5-NH2
(IX)
其中R5代表具有1至5个碳原子的取代或未取代的、支链或直链二价亚烷基;且任选的取代基包括但不限于针对亚烷基中的氢原子中的任意个的氟原子。
在大多数有用的实施方案中,烷基伯胺包含单一氮原子和具有至少3个碳原子且通常为3至6个碳原子的单一取代或未取代的、支链或直链烷基,其中烷基的氢原子中的任意个可被氟原子置换。
代表性的有用的烷基伯胺可选自丙胺、正丁胺、叔丁胺、异丙胺、2,2,2-三氟乙胺、2,2,3,3,3-五氟丙胺、3,3,3-三氟丙胺、1,2-二甲基丙胺、叔戊胺和异戊胺。其它有用的烷基伯胺对于本领域技术人员将容易显而易见的。在一些实施方案中,伯胺在烷基链上具有不对称碳中心。此类胺的一些实例包括但不限于2-氨基-3-甲基丁烷、3,3-二甲基-2-丁胺、2-氨基己烷、仲丁胺和先前述描述中对于本领域技术人员将容易显而易见的其它胺。此类烷基伯胺可被对于本领域技术人员将容易显而易见的其它基团取代。
有用的烷基伯胺可容易地获得自各种世界范围内的商业化学品来源。
共同受让的美国专利第9,718,842号中提供了性质、代表性化合物和制备它们的方法的进一步细节。
(vii)将再其它有用的含有可还原的银离子的络合物设计为具有一个或两个如以上针对(iv)银络合物所描述的(b)可还原的银离子,其与一个或两个如以上针对(iv)银络合物所描述的α-氧基羧酸根分子以及一个、两个、三个或四个肟化合物分子络合。一般而言,每一有用的银络合物可由以下结构(X)代表:
(Ag+)a(L)b(P)c
(X)
其中L代表α-氧基羧酸根;P代表肟化合物;a是1或2;b是1或2;且c是1、2、3或4,条件是当a是1时,b是1,且当是a是2时,b是2。
在所指出的结构(X)中,“P”化合物是肟化合物(或两种或更多种不同的肟化合物的混合物)。传统上,“肟”具有通式>C=N-OH。在本发明中,术语“肟化合物”表示包括此类化合物以及其中氢被合适的一价基团置换的化合物。一般而言,本文中有用的肟化合物不是聚合物性质的,并且各自具有200或更小,或150或更小的分子量。
在以上所显示的结构(X)中,c是1、2、3或4,并且在其中c为2、3或4的实施方案中,单一络合物分子内的P分子可为相同或不同的肟化合物。
对于许多实施方案,P可以是可由以下结构(XI)代表的肟化合物:
Figure GDA0003527889050000141
其中R5和R6独立地为氢或具有1至6个碳原子的取代或未取代的烷基(直链或支链的),条件是,R5和R6中的至少一个是此类烷基中的一个。或者,R5和R6可以一起代表碳原子,其足以提供取代或未取代的5元饱和碳环或6元饱和碳环,例如取代或未取代的戊烷环或取代或未取代的环己烷环。
R7是氢、具有1至6个碳原子的取代或未取代的烷基(直链或支链的)、具有1至6个碳原子的取代或未取代的酰基(直链或支链的)、-C(=O)R8基团、或羰基氧基烷基[-C(=O)OR8],其中R8是氢或具有1至6个碳原子的取代或未取代的烷基(直链或支链的)。
有用于本发明实践的代表性的肟化合物包括但不限于丙酮肟(acetoxime)(丙酮肟(acetone oxime))、乙醛肟、涕灭威(Aldicarb)、丁二酮肟、甲基乙基酮肟、丙醛肟、环己酮肟、环戊酮肟、庚醛肟、丙酮-O-甲基肟、乙醛-O-甲基肟、丙醛-O-甲基肟、丁醛-O-甲基肟、2-丁酮-O-甲基肟、环戊酮-O-甲基肟和2-丁酮-O-乙基肟。
一些代表性的肟化合物可容易地获得自各种商业化学品供应商,例如SigmaAldrich。共同受让的美国专利第9,783,553号中提供了性质、代表性实例和制备它们的方法的进一步细节。
根据本发明,在非水性银前体组合物中,(b)可还原的银离子的量可依据其中使用组合物的特定方式而变化。
一般而言,(b)可还原的银离子按以下量存在:与一种或更多种(a)聚合物的重量比为至少5:1且至多并包括50:1,或甚至至少5:1且至多并包括20:1,如上所描述。
(c)用于制备银纳米颗粒的有机溶剂
本发明实践中使用的有机溶剂不受特别限制,只要含氮碱和含有(b)可还原的银离子的化合物可以容易地溶解或分散在其中即可。有用的是,非水性银前体组合物或非水性含银分散体(下文描述)中使用的每种(c)有机溶剂具有大于或等于90℃、或至少100℃、至少150℃及至少>200℃,但通常小于500℃的沸点。如果使用两种或更多种不同的有机溶剂,则任意两种有机溶剂的沸点的差异可大于>10℃。
在本发明实践中,可将有用于本发明实践中的(c)有机溶剂选择为具有与待并入银纳米颗粒复合材料中的一种或更多种(a)聚合物(例如一种或更多种纤维素聚合物)的总汉森参数相容的总汉森参数。合意的是,一种或更多种(a)聚合物和一种或更多种(c)有机溶剂的总汉森参数位于某一范围内,并且特别合意的是,当有机溶剂特性在沉积过程期间变化时,维持所需的总汉森参数。通常,(c)有机溶剂具有等于或大于一种或更多种(a)聚合物(例如一种或更多种纤维素聚合物)的总汉森参数的总汉森参数。因此,如果使用(c)有机溶剂的混合物,则合意的是,有机溶剂混合物的总汉森参数等于或大于待并入银纳米颗粒复合材料中的一种或更多种(a)聚合物(例如一种或更多种纤维素聚合物)的总汉森参数。一些有用的分散体包含有机溶剂共混物,其即使在沉积过程(下文描述)期间和之后去除(c)有机溶剂时也维持合意的总汉森参数。
因此,在非水性银前体组合物的所有实施方案中,(a)、(b)和(d)组分分散或溶解在(c)有机溶剂介质中,该(c)有机溶剂介质由以下物质组成:一种或更多种本文中所描述的有机溶剂,且尤其是一种或更多种羟基有机溶剂,其各自具有α-氢原子和下文定义的性质。特别有用的是,(a)聚合物可溶于一种或更多种(c)有机溶剂中。
有用的羟基溶剂可以是具有α-氢原子的醇。因此,伯醇和仲醇是有用的,并且它们可以是单羟基或多羟基的。虽然可以使用饱和醇或不饱和醇,但是合意的是,所使用的醇不含烯属不饱和度。合适的醇可以具有直链构型或支链构型,并且可在其结构中含有脂环族碳-碳部分或芳族碳-碳部分中的任一者或两者。合适的直链伯醇的代表性实例包括但不限于乙醇、正丙醇、正丁醇、正戊醇、正己醇、1-辛醇、2-乙基-1-己醇、正癸醇、乙二醇、丙二醇和苄醇。支链醇的代表性实例包括异丁醇、异戊醇和仲丁基甲醇。仲醇具有更高的反应性。仲醇的代表性实例包括但不限于异丙醇、仲丁醇、仲戊醇、二乙基甲醇、甲基异丁基甲醇、甲基-3-庚醇、二异丁基甲醇、十二烷醇-Z、甲基烯丙基甲醇、环己醇、甲基环己基甲醇、苯基甲基甲醇和类似材料。如果需要,可使用这些醇中的任意种的组合。此类材料可容易地购自各种商业来源或容易地使用已知的原材料、条件和反应方案进行制备。
在同一分子中具有醚官能团和醇官能团二者的二醇醚尤其有用于本发明实践。此类二醇醚的代表性实例包括但不限于2-甲氧基乙醇、2-乙氧基乙醇、二甘醇单乙基醚(卡必醇)和甲氧基异丙醇。如果需要,可使用这些化合物的混合物。此类二醇醚是可商购的。
可存在少量的水,但是水在非水性银前体组合物中的总重量%通常小于10%。
(d)含氮碱:
根据本发明的非水性银前体组合物的另一种必需组分是含氮碱,其在25℃下、在乙腈中具有至少15且至多并包括25的pKa。相对于以上描述的(b)可还原的银离子的量计,此类一种或更多种含氮碱通常以等摩尔量或摩尔过量存在。
一般而言,含氮碱可以是环状烷基胺或无环烷基胺。所有的伯胺、仲胺或叔胺都有用于本发明。一些特别有用的胺是1,4-二氮杂双环[2.2.2]辛烷(DABCO)、环己胺、哌啶、N-甲基哌啶、N-甲基-3-哌啶醇、以及对于本领域技术人员将容易显而易见的其它胺。如果需要,可使用这些化合物中的两种或更多种的组合。
含氮碱可以是烷醇胺,其包括但不限于乙醇胺、2-(乙氨基)乙醇、2-(甲氨基)乙醇、2-(丁氨基)乙醇、甲基二乙醇胺(MDEA)、二乙醇胺(DEA)、二甘醇胺(DGA)、二乙氨基乙醇(DEAE)、以及对于本领域技术人员将容易显而易见的其它烷醇胺。如果需要,可使用这些化合物中的两种或更多种的组合。
含氮杂环化合物也可用作本发明中的含氮碱。此类化合物可以是芳族和杂环性质的,并且在芳族杂环中包含至少一个氮原子。此类化合物也可以根据需要为取代或未取代的。本发明中有用的代表性含氮芳族杂环碱包括但不限于取代或未取代的非聚合吡啶、甲基吡啶、二甲基吡啶、喹啉、嘌呤、异喹啉、咪唑、苯并咪唑、苯并噻唑、噻唑、噁唑、苯并噁唑、4,4'-联吡啶、吡嗪、三嗪、嘧啶、烟酸、和异烟酸化合物。如果需要,可按任何有用的比例使用两种或更多种这些化合物或其它未提及的化合物的混合物。取代或未取代的吡啶是特别有用的。
其它有用的含氮碱包括脒,例如1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)。
必要的是,如在乙腈中所测量的,含氮碱具有至少15且至多并包括20,或更通常至少18且至多并包括25的pKa。用于测量pKa的实验方法以及一些芳族杂环含氮碱和胺含氮碱的pKa值是已知的(例如参见Kalijurand等人,J.Org.Chem.2005,70,1019;和Cantu等人,JournalofChromatographyA,2005,1068,99)。
一般而言,本发明中使用的每一含氮碱呈液体形式,并具有等于或高于一种或更多种(c)有机溶剂中的每一种(例如一种或更多种羟基溶剂中的每一种)的沸点。因此,含氮碱在大气压下的沸点为至少100℃且至多但小于500℃,或至少120℃且至多并包括350℃,或至多并包括250℃。
有用的含氮碱可容易地获得自商业来源。
非水性含银分散体
可使用下文针对根据本发明的方法所描述的操作,使根据本发明的非水性银前体组合物中的可还原的银离子转化成银纳米颗粒复合材料中的银纳米颗粒,以提供相应的非水性含银分散体。
此类非水性含银分散体包含一种或更多种银纳米颗粒复合材料,其各自包含银和一种或更多种以上所描述的(a)聚合物。非水性含银分散体中此类银纳米颗粒复合材料的量将通常为非水性含银分散体中的银和(a)聚合物的总重量,但其可能更小,这取决于有多少(b)可还原的银离子被还原以及在银离子还原、银纳米颗粒复合材料分离和再分散(下文描述)之后有多少游离的银、(b)可还原的银离子和游离的(a)聚合物存在于非水性含银分散体中。
如上所指出的,希望将大量的可还原的银离子转化成银金属,并因此,非水性含银分散体将含有以下量的银:至多并包括100mol%的在非水性银前体组合物中的初始(b)可还原的银离子。
非水性含银分散体含有如上所描述的一种或更多种(c)有机溶剂(例如羟基有机溶剂)。此类有机溶剂可以与用于制备非水性银前体组合物的那些相同或不同。这些(c)有机溶剂可以是初始在非水性银前体组合物中(即,在分离和再分散银纳米颗粒复合材料之前)的那些,或者可以在再分散银纳米颗粒复合材料期间添加它们。
(d)含氮碱也通常存在于非水性含银分散体中,尽管存在于非水性银前体组合物中的很多的初始量可能在分离银纳米颗粒复合材料期间被洗掉。但是显然,一些(d)含氮碱在银纳米颗粒复合材料再分散在一种或更多种(c)有机溶剂中时仍与银纳米颗粒复合材料一起保留。基于银金属(不包括任何剩余的可还原的银离子)的总重量计,非水性含银分散体中此类含氮碱的量通常为至多并包括10重量%。
(e)炭黑:
在一些实施方案中,可在合适的时间将(e)炭黑并入非水性含银分散体中。可在商业上获得各种形式的炭黑。可添加(e)炭黑,以致基于(或相对于)一种或更多种(a)聚合物的总重量计,(e)炭黑以至少5重量%的量存在。通常,基于(或相对于)一种或更多种(a)聚合物的总重量计,(e)炭黑的量为至少5重量%且至多并包括50重量%,或更通常地,其量为至少5重量%且至多并包括25重量%。
制品
根据本发明制备的非水性含银分散体可用于提供制品,该制品随后可用于各种操作或设备。
制品(或元件)通常设计为具有衬底,在该衬底上具有包含银纳米颗粒复合材料组合物的干燥层或干燥图案。该制品具有银纳米颗粒并且不具有明显量的(b)可还原的银离子。即,基于干燥层或干燥图案中的银的总量计,(b)可还原的银离子通常以小于5mol%的量存在。
因此,每一制品包含衬底(下文描述),并且在其至少一个支撑表面(或侧)上可布置有干燥银纳米颗粒复合材料组合物的干燥层或干燥图案,所述组合物包含:
银纳米颗粒复合材料,其由银和一种或更多种(a)聚合物以及一种或更多种如上所描述的含氮碱组成,该聚合物选自乙酸纤维素、乙酸邻苯二甲酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、乙酸偏苯三酸纤维素、羟丙基甲基纤维素邻苯二甲酸酯、甲基纤维素、乙基纤维素、羟乙基纤维素、羟丙基甲基纤维素、羧甲基纤维素中的一种或更多种,及其组合。
这些银纳米颗粒复合材料通常具有至少10nm且至多并包括1500nm,或至少20nm且至多并包括500nm,或甚至至少50nm且至多并包括350nm的平均粒度(d50)。
炭黑也可按以下量存在于干燥的银纳米颗粒复合材料组合物中:至多并包括50重量%,或至少5重量%且至多并包括50重量%,或甚至至少5重量%且至多并包括25重量%,全部基于(或相对于)一种或更多种(a)聚合物的总重量计。
此类干燥层或干燥图案通常含有小于5mol%,或小于2mol%,或甚至小于1mol%的(b)可还原的银离子,全部基于干燥图案或干燥层中的银的总摩尔量计。
当在衬底上形成银纳米颗粒复合材料组合物的一种或更多种干燥图案时,所述图案中的至少一种可包含细线的组合,每一细线具有至少1μm且至多并包括20μm的平均干燥宽度,所述细线的组合可平行排列、以任何所需的角度交叉排列、其组合、或者随机排列。可将每一干燥图案设计为具有本领域可实现的任何预定的栅格图案。
在衬底(下文详细描述)为透明时,例如为透明的连续聚合物膜(例如透明的连续聚碳酸酯膜、聚苯乙烯膜或聚酯膜)时,在干燥图案中存在(e)炭黑是特别有利的。
在制品的许多实施方案中,衬底具有第一支撑表面(或侧)和第二相对支撑表面(或侧),并且将银纳米颗粒复合材料组合物的一种或更多种干燥图案布置在第一支撑表面上,以及任选地,将相同或不同的银纳米颗粒复合材料组合物的一种或更多种干燥图案布置在第二相对支撑表面上。可按任何相对排列(即,直接彼此相对或以某些所需排列抵消)将干燥图案布置在衬底的两个相对支撑表面上。
例如,在制品的一些实施方案中,衬底是具有第一支撑表面和第二相对支撑表面的透明的连续聚合物(例如聚酯)膜(或卷材),该制品进一步包含在第一支撑表面上形成的多种(两种或更多种)单独的干燥图案,该干燥图案包含相同或不同的银纳米颗粒复合材料组合物;且进一步包含在第二相对支撑表面上形成的多种(两种或更多种)单独的干燥图案,该相对的多种干燥图案包含相同或不同的银纳米颗粒复合材料组合物。
例如,在此类实施方案中,在第一支撑表面和第二相对支撑表面二者上的所有的多种单独的干燥图案可以包含相同的银纳米颗粒复合材料组合物,在每一种单独的干燥图案中的银纳米颗粒复合材料组合物包含具有至少50nm且至多并包括300nm的平均粒度(d50)的银纳米颗粒复合材料,并且多种单独的干燥图案中的每一种包含具有至少1μm且至多并包括20μm的平均干燥宽度的细线。
本文中描述的制品包含合适的衬底,其通常具有两个平表面:第一支撑侧(或表面)和第二相对支撑侧(或表面)。此类衬底可具有任何合适的形式,例如任何合意的尺寸和形状的片材、金属卷材、膜和细长纤维或编织纤维(例如呈纺织品卷材形式)或其它多孔材料,且尤其是可作为卷供应、使用或储存的各种透明、半透明或不透明的聚合物材料(例如聚碳酸酯和聚酯)的连续卷材。此类连续的卷材或膜可在连续的卷对卷制造操作中使用,其中将连续卷材从供应辊上展开并使用卷取辊进行卷取。
更具体地,如根据下文描述的方法所描述的,以合适的方式在合适的衬底的一个或更多个支撑侧上提供银纳米颗粒复合材料组合物的均匀薄膜或一种或更多种薄膜图案,以提供制品。通常,此类制品在施加至衬底期间和紧接其后具有初始“湿的”非水性含银分散体层或图案,但是可如下文所描述除去羟基有机溶剂,以提供所需的均匀薄膜层或一种或更多种薄膜图案。
合适的衬底可由不遏制本发明的目的和制品的最终用途的任何合适的材料组成。例如,衬底可形成自包括但不限于以下的材料:聚合物膜、金属、玻璃(未经处理或例如经四氟碳等离子体、疏水性氟或硅氧烷斥水性材料处理)、硅或陶瓷材料(例如陶瓷晶片)、织物、纸及其组合(例如各种膜的层压件,或纸和膜的层压件),条件是,可按合适的方式在其上形成均匀薄膜或薄膜图案,且随后在其至少一个支撑表面上进行热处理(加热)。衬底可以是透明、半透明或不透明的,以及刚性或柔性的。在根据本发明施加非水性分散体之前,衬底可包括一个或更多个辅助的聚合物层或非聚合物层,或一种或更多种其它材料的图案。
更具体地,用于形成根据本发明的前体和产品制品的合适的衬底材料包括但不限于金属膜或箔、聚合物载金属膜、玻璃载金属膜或陶瓷材料载金属膜、导电膜支撑体载金属膜、半导体有机膜或无机膜、有机介电膜或无机介电膜、或此类材料的两个或更多个层的层压件。有用的衬底可包括透明的聚合物膜,例如聚对苯二甲酸乙二醇酯膜、聚萘二甲酸乙二醇酯膜、聚酰亚胺膜、聚碳酸酯膜、聚丙烯酸酯膜、聚苯乙烯膜、聚烯烃膜和聚酰胺膜、硅和其它陶瓷材料、金属箔例如铝箔、纤维素纸或者经树脂涂布的纸或经玻璃涂布的纸、玻璃或含有玻璃的复合材料、金属例如铝、锡和铜,以及金属化膜。还可使用多孔织物、玻璃和聚合物卷材。
特别有用的衬底包括连续柔性聚合物膜、金属箔和纺织品卷材。有用的连续柔性聚合物膜包括透明的连续聚合物膜,例如透明的连续聚酯膜,例如聚对苯二甲酸乙二醇酯膜、聚碳酸酯膜、或聚偏二氯乙烯膜,具有或不具有如下文所指出的表面处理或涂层。
例如,衬底的任一个或两个支撑表面可经底漆层或接受层、或者经电或机械处理(例如磨版)处理,以改善银纳米颗粒复合材料组合物的粘合。可将粘合层热活化、溶剂活化或化学活化。当在25℃下测量时,单独的接受层可具有至少0.05μm的任何合适的干燥厚度。
衬底(尤其聚合物衬底)的两个支撑表面可通过暴露于电晕放电、机械磨损、火焰处理或氧等离子体进行处理,或者用诸如聚偏二氯乙烯或芳族聚硅氧烷之类的各种聚合物膜进行涂布。
取决于制品的最终用途,有用的衬底可具有所需的干燥厚度。例如,衬底干燥厚度(包括所有的处理和辅助层)可为至少0.001mm且至多并包括10mm,且尤其对于透明聚合物膜而言,衬底干燥厚度可为至少0.008mm且至多并包括0.2mm。
可提供呈各种形式的本文中描述的制品中所使用的衬底,例如任何尺寸或形状的单独的片材和连续卷材,例如透明衬底的连续卷材(包括透明的连续聚酯膜)。可将此类连续卷材分成或形成为在第一支撑表面和第二相对支撑表面上的单独的第一、第二和额外的部分,在其上可形成在支撑侧(例如第一支撑侧)的不同(或单独)部分中的相同或不同的相应的银纳米颗粒复合材料组合物图案。
形成含银分散体的方法
可使用根据本发明的两种方法(方法I和II)中的任一种来提供包含以上所描述的银纳米颗粒复合材料的根据本发明的非水性含银分散体。在这两种方法中,使用合适的搅拌和混合条件将一种或更多种(a)聚合物(如上所描述)混合(或溶解)在一种或更多种(c)有机溶剂(以上所描述)中。
方法I:
在第一种方法中,将一种或更多种(d)含氮碱(如上所描述)与一种或更多种(a)聚合物(如上所描述)一起混合在一种或更多种(c)有机溶剂(如上所描述)中,以形成预混溶液。可使用任何合适的加热手段将该预混溶液加热到至少75℃的温度且更可能加热到至少75℃且至多并包括125℃的温度。在该加热操作期间,可使用合适的搅拌机构或装置连续搅拌预混溶液。
在所指出的至少75℃的温度下保持搅拌该预混溶液的同时,可向预混溶液中添加(b)可还原的银离子(以任何如上所描述的含有银离子的形式)在一种或更多种(c)有机溶剂(与已经在预混溶液中的那些相同或不同)中的的溶液。可例如通过使用蠕动泵来改变(b)可还原的银离子的添加速率。通常,该添加过程的速率足以在所指出的温度下促进(b)可还原的银离子的大量还原,例如,基于(b)可还原的银离子的初始量计,至少90mol%还原。一般而言,相对于预混溶液中存在的(d)含氮碱计,预混溶液中添加的(b)可还原的银离子的最终量为等摩尔或更少。另外,(b)可还原的银离子与一种或更多种(a)聚合物的最终重量比为至少5:1且至多并包括50:1,或至少60:1且至多并包括75:1。
该添加操作的结果是在反应混合物中相对迅速地形成一种或更多种银纳米颗粒复合材料。
方法II:
在第二种方法中,将(b)可还原的银离子(以任何如上所描述的含有银离子的形式)与一种或更多种(a)聚合物(如上所描述)一起混合在一种或更多种(c)有机溶剂(如上所描述)中,以形成预混溶液。可使用任何合适的加热手段将该预混溶液加热到至少75℃的温度且更可能加热到至少75℃且至多并包括125℃的温度。还可使用任何合适的搅拌机构或装置在该加热操作期间和在以下(d)含氮碱的添加期间进行搅拌。
在将该预混物保持在所指出的至少75℃的温度下的同时,向预混溶液中添加一种或更多种(d)含氮碱(如上所描述)可能在一种或更多种(c)有机溶剂(与已经在预混溶液中的那些相同或不同)中的溶液。通常,该添加过程的速率足以在所指出的温度下促进(b)可还原的银离子的大量还原,例如,基于(b)可还原的银离子的初始量计,至少80mol%还原。一般而言,相对于预混溶液中存在的(b)可还原的银离子计,预混溶液中添加的(d)含氮碱的最终量为等摩尔或摩尔过量。
该添加操作的结果是在反应混合物中相对迅速地形成一种或更多种银纳米颗粒复合材料。
如果欲在非水性含银分散体包括(e)炭黑,则可使用合适的混合手段(例如剪切混合器)按以上所描述的适当量在方法I或方法II期间的任何合适的(时间)点将其并入且分散。合适的剪切混合器可商购自各种来源,例如Silverson、Admix和Ross。
在方法I和II两者中,通常可将反应混合物中的所得银纳米颗粒复合材料冷却至室温。随后通过以下两种方法中的任一种将冷却的银纳米颗粒复合材料从反应混合物中分离:
1)重力沉淀,然后过滤沉淀物;或
2)将冷却的反应混合物倒入水中,随后过滤出沉淀物。
如果需要,可将分离的银纳米颗粒复合材料干燥,并储存用于后续使用。或者,可立即将银纳米颗粒复合材料再分散于一种或更多种合适的(c)有机溶剂(与以上使用的那些相同或不同)中,以提供含有至多80重量%的银纳米颗粒复合材料的非水性含银分散体。
用于这种分散操作的特别有用的(c)有机溶剂具有与已并入银纳米颗粒复合材料中的一种或更多种(a)聚合物(例如一种或更多种纤维素聚合物)的总汉森参数相容的总汉森参数。通常,这些(c)有机溶剂具有等于或大于一种或更多种(a)聚合物(例如一种或更多种纤维素聚合物)的总汉森参数的总汉森参数。因此,如果(c)有机溶剂的混合物用于分散体,则合意的是,有机溶剂混合物的总汉森参数等于或大于已并入银纳米颗粒复合材料中的一种或更多种(a)聚合物(例如一种或更多种纤维素聚合物)的总汉森参数。
由本文中描述的方法获得的非水性含银分散体可储存用于后续使用,或立即在各种额外的操作中采用,例如,以提供如上所描述的制品。
例如,可使用如下文所描述的任何合适的设备和方法将非水性含银分散体布置到衬底(如上所描述)上,并且可按合适的方式除去一种或更多种(c)有机溶剂。因此,非水性含银分散体布置到衬底的一个或更多个支撑侧上,以一经干燥提供银纳米颗粒复合材料组合物的干燥均匀膜(通常是薄膜)或一种或更多种干燥图案。可按本领域已知的用于将溶液或分散体施加至固体衬底上的各种各样的手段来实现非水性含银分散体的布置。
例如,在一些实施方案中,可利用各种各样的膜,包括由聚乙烯、聚丙烯、双轴取向聚丙烯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯和聚酰胺组成的聚合物膜作为合适的透明衬底。但是,衬底结构的选择不限于膜,而是包括可形成为袋、收缩包裹、盘、纸箱、盒、瓶、板条箱和其它容器的任何材料。可例如使用均匀的喷墨印刷、凹版印刷、丝网印刷、柔性版印刷,或通过使用刮涂、缝隙涂布(gap coating)、狭缝模头式涂布(slot diecoating)、X-滑动料斗涂布(X-slide hopper coating)或辊衬刮刀式(knife on roll)操作来进行在衬底上的布置或向衬底的施加。
例如,可使用下文描述的技术(例如柔性版印刷、丝网印刷、凹版印刷或喷墨印刷)以依图案方式将非水性含银分散体布置在衬底(一个或两个支撑表面)上,以在衬底上提供一种或多种(两种或更多种)银纳米颗粒复合材料组合物图案。
例如,在衬底具有第一支撑侧和第二相对支撑侧的情况下,根据本发明的方法还可包括以依图案方式将含有银纳米颗粒复合材料的非水性含银分散体布置到衬底上,以在至少第一支撑侧上形成非水性含银分散体的至少一种图案(或多种图案)。
还有可能使用根据本发明的方法来进一步将相同或不同的非水性含银分散体以依图案方式布置到衬底上,以在第二相对支撑侧上形成非水性含银分散体的多种图案,或者使用一种或更多种柔性版印刷构件以在第一支撑侧和第二相对支撑侧二者上形成非水性含银分散体的多种图案的方式将相同或不同的非水性含银分散体布置到衬底上。
本发明适用于以经济的方式使(b)可还原的银离子快速转化成导电银金属,从而该过程可并入含有导电银图案的各种设备的制造中。通常可使用作为连续卷材(将其从供应辊上展开并使用卷取辊进行卷取)的衬底来实现此类操作,并且可按连续的卷对卷方式进行该方法。
现在提供关于可用本发明实现的有用的导电银图案的更多细节。
任何施加的银纳米颗粒复合材料组合物的图案可包含如上所描述的导电细线的栅格(或其它形状,包括圆形或不规则网络),并且可为预期用途定制最佳的干燥厚度(或宽度)。
在一些实施方案中,可按合适的方式在衬底的第一支撑侧和第二相对支撑侧二者上的不同部分中提供相同或不同的银纳米颗粒复合材料图案(在干燥后),以形成“双重结构(duplex)”或双面制品(dual-sided article),并且可使用相同或不同的非水性含银分散体来提供此类图案。
在许多实施方案中,可使用带有一个或更多个弹性体凸版元件(例如得自柔性版印版前体的那些,其中的许多为本领域已知)的柔性版印刷将非水性含银分散体施加到衬底(例如作为卷对卷卷材)的一个或两个支撑表面上。一些此类前体是可商购的,例如作为来自DuPont的
Figure GDA0003527889050000231
Flexographic Photopolymer Plates(感光聚合物柔性版印版)和来自Eastman Kodak Company的Flexcel SR和NX Flexographic plates(柔性版印版)。
有用的弹性体凸版元件得自柔性版印版前体和柔性版印刷套筒前体,其各自可适当地成像(并在需要时被冲洗)以提供弹性体凸版元件,用于“印刷”合适的导电银纳米颗粒复合材料图案。这种类型的有用的前体例如描述于美国专利7,799,504(Zwadlo等人)和8,142,987(Ali等人)以及美国专利申请公开2012/0237871(Zwadlo)中。此类柔性版印刷前体可包含弹性体可光聚合层,其可通过合适的掩模图像进行成像,以提供弹性体凸版元件(柔性版印版或柔性版印刷套筒)。取决于欲在衬底的一个或两个支撑侧上形成相同的图案还是不同的图案,所得凸版层可以相同或不同。
在其它实施方案中,可以由可直接(或烧蚀)激光雕刻的弹性体凸版元件前体在具有或不具有整体掩模的情况下提供弹性体凸版元件,如例如描述于美国专利5,719,009(Fan)、5,798,202(Cushner等人)、5,804,353(Cushner等人)、6,090,529(Gelbart)、6,159,659(Gelbart)、6,511,784(Hiller等人)、7,811,744(Figov)、7,947,426(Figov等人)、8,114,572(Landry-Coltrain等人)、8,153,347(Veres等人)、8,187,793(Regan等人)以及美国专利申请公开2002/0136969(Hiller等人)、2003/0129530(Leinenback等人)、2003/0136285(Telser等人)、2003/0180636(Kanga等人)和2012/0240802(Landry-Coltrain等人)中。
当使用所指出的弹性体凸版元件来提供图案时,可按合适的方式将非水性含银分散体施加至弹性体凸版元件中的最上面凸版表面(凸起表面)。然后,可按合适的程序完成向衬底的施加,同时尽可能少地从凸版凹部(relief depressions)的侧面(斜坡)或凹处涂布。可使用网纹辊系统或其它辊施加系统,尤其低于25亿立方微米/平方英寸(63.5亿立方微米/平方厘米)的低体积网纹辊、和相关的切片刀。在此类实施方案中,可将非水性含银分散体设计为具有用于柔性版印刷的最佳粘度。当将衬底从柔性版印版滚筒移动通过卷对卷处理系统至压印滚筒时,压印滚筒向柔性版印版滚筒施加压力,柔性版印版滚筒将图像从弹性体凸版元件转移至衬底。
可使用喷墨印刷、凹版印刷、丝网印刷或柔性版印刷沿着卷材(例如卷对卷连续卷材)“印刷”衬底一次或更多次,其可在穿过各个工位的连续卷材的多个部分中含有多种图案(或切割之后的单独的前体制品)。可在连续的卷对卷生产操作中在衬底的一个或两个支撑侧上施加(例如印刷)相同或不同的非水性含银分散体。
在将非水性含银分散体例如使用柔性版印刷以依图案方式沉积到衬底上之后,可按任何合适的方式除去至少75重量%且至多并包括100重量%的(c)有机溶剂(以上描述),以形成制品。例如,可在开放环境中进行环境(条件下)干燥,或者可对制品施以“主动”干燥操作和装置(例如,经加热的干燥腔室)。取决于制造方法,有用的干燥条件可低达室温,持续短达5秒且至多并包括数小时。在许多方法(例如卷对卷制造操作)中,可在任何合适的温度(例如大于50℃)下采用干燥条件,以在至少1秒且至多并包括10秒内或甚至在5秒内除去至少75重量%且至多100重量%的所有剩余的有机溶剂。
本发明提供至少以下实施方案及其组合,但是如本领域技术人员将从本公开的教导中意识到的,其它的特征组合被认为在本发明内:
1.一种方法,其依次包括:
A)混合:
(a)一种或更多种聚合物,其选自乙酸纤维素、乙酸邻苯二甲酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、乙酸偏苯三酸纤维素、羟丙基甲基纤维素邻苯二甲酸酯、甲基纤维素、乙基纤维素、羟乙基纤维素、羟丙基甲基纤维素和羧甲基纤维素中的一种或更多种;
(b)可还原的银离子,其按以下量存在:(b)可还原的银离子与一种或更多种(a)聚合物的重量比为至少5:1且至多并包括50:1;和
(c)一种或更多种有机溶剂,其各自在大气压下具有至少100℃且至多但小于500℃的沸点,其中一种或更多种聚合物中的每一种的汉森参数(δT 聚合物)小于或等于一种或更多种有机溶剂中的每一种的汉森参数(δT 溶剂),
以形成预混溶液;
B)将预混溶液加热至至少75℃的温度;
C)在将预混溶液保持在至少75℃的温度下的同时,添加在25℃下、在乙腈中具有至少15且至多并包括25的pKa的(d)含氮碱,以提供相对于(b)可还原的银离子的量为等摩尔量或摩尔过量的(d)含氮碱浓度,
以形成银纳米颗粒复合材料;
D)在冷却之后,分离银纳米颗粒复合材料;和
E)将银纳米颗粒复合材料再分散于A)中所使用的相同或不同的一种或更多种(c)有机溶剂中,以提供包含银纳米颗粒复合材料的非水性含银分散体。
2.实施方案1的方法,其进一步包括:
将非水性含银分散体布置到衬底上,和
除去相同或不同的一种或更多种(c)有机溶剂。
3.实施方案2的方法,其包括以依图案方式将非水性含银分散体布置到衬底上。
4.实施方案2或3的方法,其包括使用喷墨印刷、丝网印刷、柔性版印刷或凹版印刷将非水性含银分散体布置到衬底上。
5.实施方案2至4中任意种的方法,其中衬底具有第一支撑侧和第二相对支撑侧,并且该方法包括以依图案方式将非水性含银分散体布置到衬底上,以在至少第一支撑侧上形成非水性含银分散体的至少一种图案。
6.实施方案5的方法,其中衬底是连续聚合物膜,并且该方法包括以在至少第一支撑侧上形成非水性含银分散体的多种图案的方式将非水性含银分散体布置到衬底上。
7.实施方案6的方法,其进一步包括以在第二相对支撑侧上形成非水性含银分散体的多种图案的方式将非水性含银分散体布置到衬底上。
8.实施方案6的方法,其包括使用一种或更多种柔性版印刷构件将非水性含银分散体布置到衬底上,以在第一支撑侧和第二相对支撑侧二者上形成非水性含银组合物的多种图案。
9.实施方案1至8中任意种的方法,其中衬底是从供应辊上展开并使用卷取辊进行卷取的连续卷材,并且以连续的卷对卷方式进行该方法。
10.实施方案1至9中任意种的方法,其中银按以下量存在于非水性含银分散体中:与一种或更多种(a)聚合物的重量比为至少5:1且至多并包括20:1。
11.实施方案1至10中任意种的方法,其中一种或更多种(c)有机溶剂是一种或更多种各自具有α-氢原子的羟基有机溶剂,并选自乙醇、正丙醇、正丁醇、正戊醇、正己醇、正辛醇、2-乙基-1-己醇、正癸醇、乙二醇、丙二醇、苄醇、异丁醇、异戊醇、仲丁基甲醇、异丙醇、仲丁醇、仲戊醇、二乙基甲醇、甲基异丁基甲醇、甲基-3-庚醇、二异丁基甲醇、十二烷醇-Z、甲基烯丙基甲醇、环己醇、甲基环己基甲醇、苯基甲基甲醇、2-甲氧基乙醇、2-乙氧基乙醇、二甘醇单乙基醚、甲氧基异丙醇、及其组合。
12.实施方案1至11中任意种的方法,其中含氮碱是芳族环状化合物。
13.实施方案1至12中任意种的方法,其中含氮碱选自1,4-二氮杂双环[2.2.2]辛烷(DABCO)、环己胺、哌啶、N-甲基哌啶、N-甲基-3-哌啶醇、乙醇胺、2-(乙氨基)乙醇、2-(甲氨基)乙醇、2-(丁氨基)乙醇、甲基二乙醇胺(MDEA)、二乙醇胺(DEA)、二甘醇胺(DGA)、二乙氨基乙醇(DEAE)、取代或未取代的非聚合吡啶、甲基吡啶、二甲基吡啶、喹啉、嘌呤、异喹啉、咪唑、苯并咪唑、苯并噻唑、噻唑、噁唑、苯并噁唑、4,4'-联吡啶、吡嗪、三嗪、嘧啶、烟酸、异烟酸化合物、1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)、及其组合。
14.实施方案1至13中任意种的方法,其中(a)一种或更多种聚合物是羧甲基纤维素、乙酸丁酸纤维素、乙基纤维素、乙酸纤维素和乙酸丙酸纤维素中的一种或更多种。
15.实施方案1至14中任意种的方法,其中非水性含银分散体进一步含有(e)炭黑。
16.实施方案1至15中任意种的方法,其中非水性含银分散体在25℃下具有至少1厘泊(0.001帕斯卡秒)且至多并包括5000厘泊(5帕斯卡秒)的粘度。
17.实施方案1至16中任意种的方法,其中非水性含银分散体在25℃下具有至少3厘泊(0.003帕斯卡秒)且至多并包括10厘泊(0.01帕斯卡秒)的粘度。
18.使用实施方案1至17中任意种的方法制备的非水性含银分散体,该非水性含银分散体包含:
银纳米颗粒复合材料,其包含银和一种或更多种(a)聚合物,该聚合物选自乙酸纤维素、乙酸邻苯二甲酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、乙酸偏苯三酸纤维素、羟丙基甲基纤维素邻苯二甲酸酯、甲基纤维素、乙基纤维素、羟乙基纤维素、羟丙基甲基纤维素和羧甲基纤维素中的一种或更多种,其中银按以下量存在于银纳米颗粒复合材料中:与一种或更多种(a)聚合物的重量比为至少5:1且至多并包括50:1;
(c)一种或更多种有机溶剂,其各自在大气压下具有至少100℃且至多但小于500℃的沸点,其中一种或更多种聚合物中的每一种的汉森参数(δT 聚合物)小于或等于一种或更多种有机溶剂中的每一种的汉森参数(δT 溶剂);和
(d)含氮碱,其在25℃下、在乙腈中具有至少15且至多并包括25的pKa,相对于银的量计,该含氮碱以等摩尔量或摩尔过量存在。
19.实施方案18的非水性含银分散体,其中银纳米颗粒复合材料具有至少10nm且至多并包括1500nm的平均粒度(d50)。
20.实施方案18或19的非水性含银分散体,其中银纳米颗粒复合材料具有至少20nm且至多并包括500nm的平均粒度(d50)。
提供以下实施例来例示本发明的实践,并且以下实施例不意在以任何方式进行限制。
发明例1:使用2-丁氨基乙醇作为含氮碱来制备含有银纳米颗粒-乙酸纤维素复合 材料的非水性分散体
在二颈圆底烧瓶中,在搅拌下将乙酸纤维素(0.375g;Aldrich,摩尔重量50,000,乙酰基含量39%)和2-丁氨基乙醇(0.9g)在2-甲氧基乙醇(8ml)中的混合物在95℃下加热直至所有的乙酸纤维素溶解,以形成预混溶液。经20分钟的时段缓慢添加硝酸银(5g)溶解在2-甲氧基乙醇(15ml)中的溶液,以形成反应混合物。在该添加期间,反应混合物的颜色变成深灰色。将该混合物在95℃下再搅拌30分钟,冷却,并倒入甲醇(500ml)中。将所得沉淀物(银纳米颗粒-乙酸纤维素复合材料)过滤并用甲醇洗涤,以产生灰色固体(基于理论银计,产率为98%)。
使用动态光散射方法(Malvern Instruments Ltd.Zetasizer Nano-ZS(ZEN)动态光散射或QELS:准弹性光散射)测量粒度分布。银纳米颗粒复合材料的中值粒径[Dv(50%)]为90nm(见图1)。使用热重分析(TGA)测量银纳米颗粒-乙酸纤维素复合材料的银含量,该分析使用少量所获得的灰色固体,在空气中,在室温至700℃的温度下对该灰色固体进行扫描。在TGA扫描期间,燃烧并除去有机材料。700℃下的残余重量对应于固体中银的量。与起始重量比一致,灰色固体包含89重量%的银和11重量%的乙酸纤维素和含氮碱总和。
将如此获得的经冷却的灰色银纳米颗粒复合材料(4g)添加到1-甲氨基乙醇(10ml)中,并通过使用高剪切混合器(Silverson L4R)进行再分散,以提供含有40重量%银纳米颗粒复合材料的非水性含银分散体。
使用柔性版测试印刷机IGT F1和从市售可得的Kodak Flexcel NX感光聚合物印版获得的柔性版印刷构件,由这种非水性含银分散体在聚对苯二甲酸乙二醇酯膜衬底上成功地形成了标称宽度为7-10μm的细线图案,该感光聚合物印版已使用掩模进行成像,使用Kodak Square Spot激光技术以12,800dpi的分辨率书写该掩模。
发明例2:使用2-甲氨基乙醇作为含氮碱来制备含有银纳米颗粒-乙酸丙酸纤维素 复合材料的非水性分散体
在二颈圆底烧瓶中,在搅拌下将乙酸丙酸纤维素(0.18g;Eastman CAP 482-0.5,丙酰基含量43%,乙酰基含量0.6%,摩尔重量25,000)和2-甲氨基乙醇(1.5g,mmol)在2-甲氧基乙醇(7ml)中的混合物在95℃下加热直至所有的乙酸丙酸纤维素溶解,以形成预混溶液。经35分钟的时段将硝酸银(5g)溶解在2-甲氧基乙醇(15ml)中的溶液添加到预混溶液中。将所得反应混合物在95℃下再搅拌45分钟,冷却,并倒入水(400ml)中。将所得沉淀物过滤并用甲醇洗涤。获得灰色固体(基于银计,产率为97%)。使用动态光散射方法(MalvernInstruments Ltd.Zetasizer Nano-ZS(ZEN)动态光散射或QELS:准弹性光散射)测量粒度分布。确定中值粒径[Dv(50%)]为340nm(见图2)。
使用10度/分钟至150℃(恒温15分钟)、10度/分钟至250℃(恒温15分钟)和20度/分钟至700℃的斜坡(ramp)规程,在室温至700℃的温度范围内,通过TGA-FTIR(热重分析-傅里叶变换红外)对95.1mg样品进行所得固体的化学分析。使用速率为10cm3/min的氮气吹扫来将逸出气体吹扫通过传输线和红外(IR)气体池,两者均在240℃的恒定温度下加热。逸出气体的16个分辨率为4cm-1的红外光谱(干涉图)以大约10秒的间隔叠加。使用TE-TGS检测器用于红外检测。数据显示,当最初加热样品时,归因于水的初始重量损失为约0.24%。从约105℃进入到150℃的等温线中,见到归因于含氮碱的重量损失为0.21%。当将分散体加热到250℃时,见到归因于二氧化碳和丙酸(可能与酯混合)的重量损失为约0.7%。在超过250℃,见到归因于二氧化碳、一氧化碳、水和可能为乙酸丙酸纤维素的物质的混合物的>5%的大幅重量损失。总体上,确定所得固体(银纳米颗粒复合材料)含有94.7重量%的银、约0.3重量%的含氮碱和5重量%的乙酸丙酸纤维素(参见图3)。
发明例3:使用1,8-二氮杂双环[5.4.0]十一碳-7-烯作为含氮碱来制备银纳米颗 粒-乙酸丙酸纤维素复合材料的非水性分散体
在二颈圆底烧瓶中,在搅拌下,将乙酸丙酸纤维素(0.4g;Eastman CAP 482-20,丙酰基含量48%,乙酰基含量1.3%,摩尔重量75,000)和1,8-二氮杂双环[5.4.0]十一碳-7-烯(16g,mmol)在2-甲氧基乙醇(28ml)中的混合物在95℃下加热直至所有的乙酸丙酸纤维素溶解,以形成预混溶液。经80分钟的时段将硝酸银(8.8g)溶解在2-甲氧基乙醇(100ml)中的溶液添加到预混溶液中。将所得反应混合物在95℃下再搅拌20分钟,冷却,并倒入水(800ml)中。将所得沉淀物过滤并用甲醇洗涤。获得灰颜色固体(基于银计,产率为98%)。使用动态光散射方法(Malvern Instruments Ltd.Zetasizer Nano-ZS(ZEN)动态光散射或QELS:准弹性光散射)测量粒度分布。确定中值粒径[Dv(50%)]为350nm(见图4)。
将如此获得的经冷却的灰颜色银纳米颗粒复合材料(6g)添加到1-甲氧基-2-丙醇(10ml)中,并使用高剪切混合器(Silverson L4R)进行再分散,以获得含有60重量%银纳米颗粒复合材料的非水性含银分散体。
使用柔性版测试印刷机IGT F1和从市售可得的Kodak Flexcel NX感光聚合物印版获得的柔性版印刷构件,由这种非水性含银分散体在聚对苯二甲酸乙二醇酯膜衬底上成功地形成了标称宽度为2-20mm的线图案,该感光聚合物印版已使用掩模进行成像,使用Kodak Square Spot激光技术以12,800dpi的分辨率书写该掩模。
发明例4:使用4-甲基吡啶作为含氮碱来制备银纳米颗粒-乙酸丙酸纤维素复合材 料的非水性分散体
在二颈圆底烧瓶中,在搅拌下,将乙酸丙酸纤维素(0.375g;Aldrich,摩尔重量50,000,乙酰基含量39%)和2-甲氧基乙醇(7ml)的混合物在85℃下加热直至所有的乙酸丙酸纤维素溶解。将硝酸银(5g)溶解于2-甲氧基乙醇(15ml)中的溶液添加到反应容器中,并搅拌所得预混溶液,同时在85℃下加热。分批添加含氮碱4-甲基吡啶(1.5g,mmol),并继续加热所得反应混合物,该混合物的颜色缓慢变为黄色,随后变为褐色。在85℃下加热使反应持续20小时,随后将加热的反应混合物倒入甲醇(100ml)中。将所得沉淀物过滤并用甲醇洗涤,以提供灰颜色固体(基于银计,产率为97%)。
使用动态光散射方法(Malvern Instruments Ltd.Zetasizer Nano-ZS(ZEN)动态光散射或QELS:准弹性光散射)测量粒度分布。确定中值粒径[Dv(50%)]为270nm。
发明例5:使用乙酸银制备银纳米颗粒-乙酸丙酸纤维素复合材料的非水性分散体
在二颈圆底烧瓶中,在搅拌下,于95℃将乙酸丙酸纤维素(0.36g,摩尔重量15,000)溶解在1-甲氧基-2-丙醇(19.0g)中。随后将乙酸银(11.0g)添加到烧瓶中,以形成浆液或预混溶液。将2-(甲氨基)乙醇(3.0g)在1-甲氧基-2-丙醇(4.5ml)中的溶液快速添加到预混溶液中,并继续再加热60分钟。将所得灰色浆液倒入300ml水中,并将所得沉淀物过滤并干燥。
使用动态光散射方法(Malvern Instruments Ltd.Zetasizer Nano-ZS(ZEN)动态光散射或QELS:准弹性光散射)测量粒度分布。中值颗粒
发明例6:制备银纳米颗粒-乙基纤维素复合材料的非水性分散体
在二颈圆底烧瓶中,通过在80℃下搅拌30分钟使乙基纤维素[0.42g,ScientificPolymer Products Cat#463乙基纤维素(10cps),乙氧基含量48%]溶解在2-甲氧基乙醇(36.24g)中。向该溶液中添加2-甲氨基乙醇(7.79g)作为含氮碱,以形成预混溶液。随后经两小时向预混溶液中添加硝酸银在2-甲氧基乙醇中的溶液(105g,8重量%银盐)。继续再加热和搅拌30分钟。将所得浆液倒入800ml水中,以形成沉淀物,将该沉淀物过滤并干燥。
在沉淀之前预混溶液的另一等分试样的ZEN粒度测量确定了平均尺寸为1200nm的银纳米颗粒复合材料粒度分布。使用高剪切混合器(Silverson L4R)将所得沉淀物再分散于1-甲氧基-2-丙醇中(50%固体),以获得可印刷的非水性含银分散体。

Claims (20)

1.一种方法,其依次包括:
A) 混合:
(a) 一种或更多种聚合物,其选自乙酸纤维素、乙酸邻苯二甲酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、乙酸偏苯三酸纤维素、羟丙基甲基纤维素邻苯二甲酸酯、甲基纤维素、乙基纤维素、羟乙基纤维素、羟丙基甲基纤维素和羧甲基纤维素中的一种或更多种;
(b) 可还原的银离子,其按以下量存在:(b)可还原的银离子与所述一种或更多种(a)聚合物的重量比为至少5:1且至多并包括50:1;和
(c) 一种或更多种有机溶剂,其各自在大气压下具有至少100°C且至多但小于500°C的沸点,其中所述一种或更多种聚合物中的每一种的汉森参数(δT 聚合物)小于或等于所述一种或更多种有机溶剂中的每一种的汉森参数(δT 溶剂),
以形成预混溶液;
B) 将所述预混溶液加热到至少75°C的温度;
C) 在将所述预混溶液保持在至少75°C的温度下的同时,添加在25°C下、在乙腈中具有至少15且至多并包括25的pKa的(d)含氮碱,以提供相对于(b)可还原的银离子的量为等摩尔量或摩尔过量的(d)含氮碱浓度,
以形成银纳米颗粒复合材料;
D) 在冷却之后,分离所述银纳米颗粒复合材料;和
E) 将所述银纳米颗粒复合材料再分散于A)中所使用的相同或不同的一种或更多种(c)有机溶剂中,以提供包含所述银纳米颗粒复合材料的非水性含银分散体。
2. 权利要求1所述的方法,其进一步包括:
将所述非水性含银分散体布置到衬底上,和
除去所述相同或不同的一种或更多种(c)有机溶剂。
3. 权利要求 2所述的方法,其包括以依图案方式将所述非水性含银分散体布置到所述衬底上。
4.权利要求2所述的方法,其包括使用喷墨印刷、丝网印刷、柔性版印刷或凹版印刷将所述非水性含银分散体布置到所述衬底上。
5.权利要求2所述的方法,其中所述衬底具有第一支撑侧和第二相对支撑侧,并且所述方法包括以依图案方式将所述非水性含银分散体布置到所述衬底上,以在至少所述第一支撑侧上形成所述非水性含银分散体的至少一种图案。
6.权利要求5所述的方法,其中所述衬底是连续聚合物膜,并且所述方法包括以在至少所述第一支撑侧上形成所述非水性含银分散体的多种图案的方式将所述非水性含银分散体布置到所述衬底上。
7.权利要求6所述的方法,其进一步包括以在所述第二相对支撑侧上形成所述非水性含银分散体的多种图案的方式将所述非水性含银分散体布置到所述衬底上。
8.权利要求6所述的方法,其包括使用一种或更多种柔性版印刷构件将所述非水性含银分散体布置到所述衬底上,以在所述第一支撑侧和所述第二相对支撑侧二者上形成非水性含银组合物的多种图案。
9.权利要求2所述的方法,其中所述衬底是从供应辊上展开并使用卷取辊进行卷取的连续卷材,并且以连续的卷对卷方式进行所述方法。
10.权利要求1所述的方法,其中银按以下量存在于所述非水性含银分散体中:与所述一种或更多种(a)聚合物的重量比为至少5:1且至多并包括20:1。
11.权利要求1所述的方法,其中所述一种或更多种(c)有机溶剂是一种或更多种各自具有α-氢原子的羟基有机溶剂,并选自正丁醇、正戊醇、正己醇、正辛醇、2-乙基-1-己醇、正癸醇、乙二醇、丙二醇、苄醇、异丁醇、异戊醇、仲丁基甲醇、仲戊醇、二乙基甲醇、甲基异丁基甲醇、甲基-3-庚醇、二异丁基甲醇、十二烷醇-Z、甲基烯丙基甲醇、环己醇、甲基环己基甲醇、苯基甲基甲醇、2-甲氧基乙醇、2-乙氧基乙醇、二甘醇单乙基醚、甲氧基异丙醇、及其组合。
12.权利要求1所述的方法,其中所述含氮碱是芳族环状化合物。
13.权利要求1所述的方法,其中所述含氮碱选自1,4-二氮杂双环[2.2.2]辛烷(DABCO)、环己胺、哌啶、N-甲基哌啶、N-甲基-3-哌啶醇、乙醇胺、2-(乙氨基)乙醇、2-(甲氨基)乙醇、2-(丁氨基)乙醇、甲基二乙醇胺(MDEA)、二乙醇胺(DEA)、二甘醇胺(DGA)、二乙氨基乙醇(DEAE)、取代或未取代的非聚合吡啶、甲基吡啶、二甲基吡啶、喹啉、嘌呤、异喹啉、咪唑、苯并咪唑、苯并噻唑、噻唑、噁唑、苯并噁唑、4,4′-联吡啶、吡嗪、三嗪、嘧啶、烟酸、和异烟酸化合物、1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)、及其组合。
14.权利要求1所述的方法,其中所述(a)一种或更多种聚合物是羧甲基纤维素、乙酸丁酸纤维素、乙基纤维素、乙酸纤维素和乙酸丙酸纤维素中的一种或更多种。
15.权利要求1所述的方法,其中所述非水性含银分散体进一步含有(e)炭黑。
16. 权利要求1所述的方法,其中所述非水性含银分散体在25°C下具有至少1厘泊(0.001帕斯卡秒)且至多并包括5000厘泊(5 帕斯卡秒)的粘度。
17.权利要求1所述的方法,其中所述非水性含银分散体在25°C下具有至少3厘泊(0.003帕斯卡秒)且至多并包括10厘泊(0.01帕斯卡秒)的粘度。
18.使用权利要求1所述的方法制备的非水性含银分散体,所述非水性含银分散体包含:
银纳米颗粒复合材料,其包含银和一种或更多种(a)聚合物,所述聚合物选自乙酸纤维素、乙酸邻苯二甲酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、乙酸偏苯三酸纤维素、羟丙基甲基纤维素邻苯二甲酸酯、甲基纤维素、乙基纤维素、羟乙基纤维素、羟丙基甲基纤维素和羧甲基纤维素中的一种或更多种,其中银按以下量存在于所述银纳米颗粒复合材料中:与所述一种或更多种(a)聚合物的重量比为至少5:1且至多并包括50:1;
(c) 一种或更多种有机溶剂,其各自在大气压下具有至少100°C且至多但小于500°C的沸点,其中所述一种或更多种聚合物中的每一种的汉森参数(δT 聚合物)小于或等于所述一种或更多种有机溶剂中的每一种的汉森参数(δT 溶剂);和
(d) 含氮碱,其在25°C下、在乙腈中具有至少15且至多并包括25的pKa,相对于银的量计,所述含氮碱以等摩尔量或摩尔过量存在。
19. 权利要求18所述的非水性含银分散体,其中所述银纳米颗粒复合材料具有至少10nm且至多并包括1500 nm的平均粒度(d50)。
20. 权利要求18所述的非水性含银分散体,其中所述银纳米颗粒复合材料具有至少20nm且至多并包括500 nm的平均粒度(d50)。
CN201880062415.8A 2017-09-25 2018-09-11 制备具有含氮碱的含银分散体的方法 Active CN111163879B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15/713786 2017-09-25
US15/713795 2017-09-25
US15/713,786 US10246561B1 (en) 2017-09-25 2017-09-25 Method of making silver-containing dispersions with nitrogenous bases
US15/713,795 US20190092647A1 (en) 2017-09-25 2017-09-25 Non-aqueous silver-containing dispersions
PCT/US2018/050353 WO2019060166A1 (en) 2017-09-25 2018-09-11 PROCESS FOR PRODUCING DISPERSIONS CONTAINING SILVER WITH NITROGEN BASES

Publications (2)

Publication Number Publication Date
CN111163879A CN111163879A (zh) 2020-05-15
CN111163879B true CN111163879B (zh) 2022-05-06

Family

ID=63714064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880062415.8A Active CN111163879B (zh) 2017-09-25 2018-09-11 制备具有含氮碱的含银分散体的方法

Country Status (3)

Country Link
EP (1) EP3687716A1 (zh)
CN (1) CN111163879B (zh)
WO (1) WO2019060166A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026569B (zh) * 2019-04-30 2022-04-15 长沙新材料产业研究院有限公司 一种纳米银的制备方法
CN114939669B (zh) * 2022-05-24 2024-03-22 天津宝兴威科技股份有限公司 一种新型高长径比纳米银线的制备方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811664A (zh) * 2010-04-15 2010-08-25 北京林业大学 一种纤维素/银纳米复合材料及其制备方法
CN102036773A (zh) * 2008-03-19 2011-04-27 巴斯夫欧洲公司 经衍生的聚乙烯亚胺或聚乙烯胺稳定的金属纳米颗粒
CN104907582A (zh) * 2015-06-23 2015-09-16 南开大学 一种羟丙基甲基纤维素包覆纳米银材料的合成方法
CN105658358A (zh) * 2013-10-24 2016-06-08 株式会社大赛璐 含有银纳米粒子的分散液的制造方法及含有银纳米粒子的分散液
CN105670384A (zh) * 2016-03-31 2016-06-15 广东南海启明光大科技有限公司 一种纳米银凹印油墨及其制备方法
CN106062630A (zh) * 2014-03-05 2016-10-26 伊斯曼柯达公司 用于无电镀方法的光致聚合组合物
CN106795384A (zh) * 2014-10-15 2017-05-31 柯达公司 经分散的经碳涂覆的金属颗粒、物品和用途

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804353A (en) 1992-05-11 1998-09-08 E. I. Dupont De Nemours And Company Lasers engravable multilayer flexographic printing element
US5798202A (en) 1992-05-11 1998-08-25 E. I. Dupont De Nemours And Company Laser engravable single-layer flexographic printing element
US5719009A (en) 1992-08-07 1998-02-17 E. I. Du Pont De Nemours And Company Laser ablatable photosensitive elements utilized to make flexographic printing plates
US6159659A (en) 1999-04-26 2000-12-12 Creo Srl Method for processless flexographic printing and flexographic printing plate
US6090529A (en) 1999-06-23 2000-07-18 Creo Srl Method for processless flexographic printing
DE19942216C2 (de) 1999-09-03 2003-04-24 Basf Drucksysteme Gmbh Siliconkautschuk und eisenhaltige, anorganische Feststoffe und/oder Ruß enthaltendes Aufzeichnungsmaterial zur Herstellung von Reliefdruckplatten mittels Lasergravur, Verfahren zur Herstellung von Reliefdruckplatten sowie damit hergestellte Reliefdruckplatte
DE10040928A1 (de) 2000-08-18 2002-02-28 Basf Drucksysteme Gmbh Verfahren zur Herstellung lasergravierbarer Flexodruckelemente auf flexiblen metallischen Trägern
EP1343632B1 (de) 2000-12-19 2004-06-30 BASF Drucksysteme GmbH Verfahren zur herstellung von flexodruckformen mittels lasergravur
US6572673B2 (en) 2001-06-08 2003-06-03 Chang Chun Petrochemical Co., Ltd. Process for preparing noble metal nanoparticles
US6806018B2 (en) 2002-03-25 2004-10-19 Macdermid Graphic Arts, Inc. Processless digitally imaged printing plate using microspheres
EP1778498B1 (en) 2004-03-03 2008-06-18 Kodak IL Ltd. Novel material for infrared laser ablated engraved flexographic printing plates
US8142987B2 (en) 2004-04-10 2012-03-27 Eastman Kodak Company Method of producing a relief image for printing
US9005663B2 (en) 2004-08-31 2015-04-14 The Curators Of The University Of Missouri Methods for producing silver nanoparticles
US8187793B2 (en) 2007-04-23 2012-05-29 Eastman Kodak Company Ablatable elements for making flexographic printing plates
US7799504B2 (en) 2007-06-05 2010-09-21 Eastman Kodak Company Mask film to form relief images and method of use
US7892317B2 (en) 2007-07-11 2011-02-22 Jafar Rahman Nia Preparation of colloidal nanosilver
US7947426B2 (en) 2008-02-25 2011-05-24 Eastman Kodak Company Laser-engraveable flexographic printing plate precursors
US8419822B2 (en) 2008-08-18 2013-04-16 Xerox Corporation Methods for producing carboxylic acid stabilized silver nanoparticles
US8153347B2 (en) 2008-12-04 2012-04-10 Eastman Kodak Company Flexographic element and method of imaging
JP5574761B2 (ja) 2009-04-17 2014-08-20 国立大学法人山形大学 被覆銀超微粒子とその製造方法
US8114572B2 (en) 2009-10-20 2012-02-14 Eastman Kodak Company Laser-ablatable elements and methods of use
KR101117177B1 (ko) 2009-11-11 2012-03-07 광주과학기술원 은 나노입자의 고상 합성방법 및 이에 의해 합성된 은 나노입자
US20110256383A1 (en) * 2010-04-01 2011-10-20 Bayer Materialscience Ag Polymer material comprising a polymer and silver nanoparticles dispersed herein
EP2645408B1 (en) * 2010-11-22 2019-02-27 DOWA Electronics Materials Co., Ltd. Method of bonding a plurality of bonded members
US8530142B2 (en) 2011-03-15 2013-09-10 Eastman Kodak Company Flexographic printing plate precursor, imaging assembly, and use
US20120240802A1 (en) 2011-03-22 2012-09-27 Landry-Coltrain Christine J Laser-engraveable flexographic printing precursors
EP2696352B1 (en) * 2011-04-07 2015-12-09 Lg Chem, Ltd. Silver paste composition for forming an electrode, and method for preparing same
TW201332783A (zh) 2011-10-25 2013-08-16 Unipixel Displays Inc 偏光器電容式觸控螢幕
CN103945967B (zh) * 2011-11-21 2017-04-05 韩华化学株式会社 用于太阳能电池的前电极的糊剂组合物及使用该糊剂组合物的太阳能电池
KR102109390B1 (ko) 2011-12-23 2020-05-12 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 전도성 은 구조체 제조용 잉크 조성물
CN104412451A (zh) 2012-05-11 2015-03-11 尤尼皮克塞尔显示器有限公司 用于制造高分辨率导电图案的墨合成物
US9725614B2 (en) 2013-04-19 2017-08-08 Xerox Corporation Conductive ink compositions and methods for preparation of stabilized metal-containing nanoparticles
US9207533B2 (en) 2014-02-07 2015-12-08 Eastman Kodak Company Photopolymerizable compositions for electroless plating methods
WO2015163076A1 (ja) * 2014-04-25 2015-10-29 株式会社ダイセル 銀粒子塗料組成物
EP2942129B1 (de) * 2014-05-05 2017-07-05 Heraeus Deutschland GmbH & Co. KG Metallpaste und deren Verwendung zum Verbinden von Bauelementen
US9803098B2 (en) * 2014-07-30 2017-10-31 Pesolve Co., Ltd. Conductive ink
US9377688B1 (en) 2014-12-16 2016-06-28 Eastman Kodak Company Metal catalytic composition with silver N-heterocycle complex
US9375704B1 (en) 2014-12-16 2016-06-28 Eastman Kodak Company Metal catalytic composition with silver carboxylate-trialkyl(triaryl)phosphite complex
US9387460B2 (en) 2014-12-16 2016-07-12 Eastman Kodak Company Metal catalytic composition with silver-oxime complex
JP2016219202A (ja) * 2015-05-19 2016-12-22 アルプス電気株式会社 導電性液状組成物、導電部材、導電部材の製造方法、電気・電子部品および電気・電子機器
CN107683532A (zh) * 2015-06-19 2018-02-09 太阳化学公司 银糊及其在半导体器件中的应用
US9809606B1 (en) 2016-08-09 2017-11-07 Eastman Kodak Company Silver ion carboxylate N-heteroaromatic complexes
US9718842B1 (en) 2016-08-09 2017-08-01 Eastman Kodak Company Silver ion carboxylate primary alkylamine complexes
US9783553B1 (en) 2016-11-29 2017-10-10 Eastman Kodak Company Silver ion α-oxy carboxylate-oxime complexes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036773A (zh) * 2008-03-19 2011-04-27 巴斯夫欧洲公司 经衍生的聚乙烯亚胺或聚乙烯胺稳定的金属纳米颗粒
CN101811664A (zh) * 2010-04-15 2010-08-25 北京林业大学 一种纤维素/银纳米复合材料及其制备方法
CN105658358A (zh) * 2013-10-24 2016-06-08 株式会社大赛璐 含有银纳米粒子的分散液的制造方法及含有银纳米粒子的分散液
CN106062630A (zh) * 2014-03-05 2016-10-26 伊斯曼柯达公司 用于无电镀方法的光致聚合组合物
CN106795384A (zh) * 2014-10-15 2017-05-31 柯达公司 经分散的经碳涂覆的金属颗粒、物品和用途
CN104907582A (zh) * 2015-06-23 2015-09-16 南开大学 一种羟丙基甲基纤维素包覆纳米银材料的合成方法
CN105670384A (zh) * 2016-03-31 2016-06-15 广东南海启明光大科技有限公司 一种纳米银凹印油墨及其制备方法

Also Published As

Publication number Publication date
WO2019060166A1 (en) 2019-03-28
EP3687716A1 (en) 2020-08-05
CN111163879A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2019060167A1 (en) NONAQUEOUS SILVER-BASED COMPOSITION CONTAINING CELLULOSIC POLYMERS
JP5914565B2 (ja) 金属薄片の製造方法
TWI691975B (zh) 金屬奈米粒子分散液
KR101802458B1 (ko) 금속 나노입자 분산액
US10214657B2 (en) Silver-containing compositions containing cellulosic polymers
CN111163879B (zh) 制备具有含氮碱的含银分散体的方法
US9809606B1 (en) Silver ion carboxylate N-heteroaromatic complexes
EP3596545B1 (en) Silver-containing compositions containing cellulosic polymers and uses
US10087331B2 (en) Methods for forming and using silver metal
US10870774B2 (en) Silver-containing precursor and product articles containing cellulosic polymers
US10444618B2 (en) Method of making silver-containing dispersions
US10472528B2 (en) Method of making silver-containing dispersions
US10851257B2 (en) Silver and copper nanoparticle composites
US20180258305A1 (en) Method of forming silver nanoparticles using cellulosic polymers
EP3389896B1 (en) A metallic nanoparticle dispersion
US10246561B1 (en) Method of making silver-containing dispersions with nitrogenous bases
US10370515B2 (en) Silver-containing non-aqueous composition containing cellulosic polymers
TWI671286B (zh) 銀離子之羧酸根n-雜芳族錯合物及用途
US20190092647A1 (en) Non-aqueous silver-containing dispersions
CN113728062A (zh) 制造导电图案的方法
US10356899B2 (en) Articles having reducible silver ion complexes or silver metal
US20190043635A1 (en) Photosensitive reducible silver ion-containing compositions
EP3548498B1 (en) Silver ion alpha-oxy carboxylate-oxime complexes for photolithographic processes to generate electrically conducting metallic structures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant