CN111145179A - 一种基于水平集的灰度不均图像分割方法 - Google Patents

一种基于水平集的灰度不均图像分割方法 Download PDF

Info

Publication number
CN111145179A
CN111145179A CN201911145061.6A CN201911145061A CN111145179A CN 111145179 A CN111145179 A CN 111145179A CN 201911145061 A CN201911145061 A CN 201911145061A CN 111145179 A CN111145179 A CN 111145179A
Authority
CN
China
Prior art keywords
image
pixel point
value
level set
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911145061.6A
Other languages
English (en)
Other versions
CN111145179B (zh
Inventor
房巾莉
吕毅斌
王樱子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201911145061.6A priority Critical patent/CN111145179B/zh
Publication of CN111145179A publication Critical patent/CN111145179A/zh
Application granted granted Critical
Publication of CN111145179B publication Critical patent/CN111145179B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于水平集的灰度不均图像分割方法,本发明在保留C‑V模型的全局方差信息的同时,在能量泛函中引入局部信息,使之与全局灰度均值叠加使算法对灰度不均图像的边缘具有全局和局域化效果,避免灰度不均效应使轮廓曲线的膨胀力和收缩力在非边缘处就制约从而导致分割失败。提出一个新的速度停止算子并引入驱动力项中,在迭代过程调节水平集曲线演化速度,避免演化陷入局部极小值,从而得到更光滑的演化曲线,通过在驱动力项引入速度停止算子,可以得到更光滑准确的分割结果。

Description

一种基于水平集的灰度不均图像分割方法
技术领域
本发明涉及一种基于水平集的灰度不均图像分割方法,属于图像处理领域。
背景技术
目前,数字图像处理技术广泛应用于工程学、计算机科学、统计学、物理、化学、医学、遥感等领域,而图像分割是图像处理过渡到图像分析的关键步骤,因此研究图像分割尤为重要。经过多年的研究,国内外研究者提出大量的图像分割方法,活动轮廓模型是一种有良好性能的分割算法,得到了广泛应用,也是计算机视觉和图像处理领域的研究热点,它包括以Snake模型为代表的参数活动轮廓模型和基于水平集的几何活动轮廓模型。
1988年Kass等人提出原始的参数化活动轮廓模型并应用于图像分割,但不易处理分割目标的拓扑结构,如单位法矢和曲率等曲线参数的计算比较费力。1988年Sethian和Osher等人首次提出依赖时间的运动界面的水平集描述,可以很自然地处理目标对象拓扑结构的改变,并构造了水平集方程的高精度稳定数值解法。1993、1995年Caselles等人将水平集理论和主动轮廓模型结合提出几何活动轮廓模型,也被称为水平集方法,就是将轮廓曲线在分割过程中作为零水平集被隐式地包含在水平集函数中,从而很自然地处理演化曲线的拓扑结构变化,并且由于水平集函数演化过程中始终保持为函数,很容易实现其数值近似算法。
早期的水平集方法主要是边缘型(edge-based)方法,依赖于图像的局部边缘信息,因此对于没有明显梯度变化或者梯度无意义的弱边缘的逼近效果不理想。对此,提出了区域型(region-based)方法,即利用区域信息来引导曲线向目标轮廓进行逼近,不依赖于梯度信息,可以分割出没有明显边缘的目标。其中,Chan和Vese在2001年提出的Chan-Vese(C-V)模型最具有代表性,对噪声有一定的鲁棒性,但仍然存在缺点:水平集对初始轮廓敏感,不能分割一些灰度不均图像,复杂的重新初始化数值步骤。为了解决这些问题,结合区域与边界信息的改进的水平集方法被提出,成为图像分割的研究热点。
而灰度不均图像的分割,还要求分割方法对灰度不均效应具有鲁棒性。图像中出现灰度不均现象有两方面原因,一是硬件干扰因素,如不均匀光照;二是成像物体本身因素,如物体的形状和位置。而医学图像由于存在局部体积效应、人体组织器官相互重叠和其成像过程带来的噪声等,灰度不均现象更加常见。虽然学者们已经提出了很多灰度不均匀校正算法,但实际上消除灰度不均匀效应至今仍然是一个难以解决的问题,因此直接在灰度不均图像中研究水平集演化以逼近真实边缘尤为重要。
发明内容
本发明提供了一种基于水平集的灰度不均图像分割方法。
本发明的技术方案是:一种基于水平集的灰度不均图像分割方法,所述方法步骤如下:
S1、读取原始灰度不均图像的各像素值I(x),对原始灰度不均图像的各像素值进行高斯平滑,计算平滑后的图像各像素点的梯度值,并根据梯度值计算各像素点x的速度停止算子值g(x);
S2、在原始灰度不均图像中设置圆形初始演化曲线的位置,定义水平集函数
Figure BDA0002280931830000021
的形式为符号距离函数;其中,图像各像素点的初始水平集函数值
Figure BDA0002280931830000022
为:计算各像素点到初始演化曲线的最短距离;初始演化曲线上的各像素点到自身的最短距离为0,称作零水平集;n表示迭代次数;
S3、利用原始灰度不均图像的各像素值、各像素点的水平集函数值,计算图像各像素点的全局像素灰度均值c1、c2和局部区域拟合均值a1、a2
S4、利用原始灰度不均图像的各像素值、各像素点的全局像素灰度均值和全局像素灰度均值,计算图像各像素点的全局拟合方差
Figure BDA0002280931830000023
和局部拟合方差
Figure BDA0002280931830000024
Figure BDA0002280931830000025
S5、利用图像各像素的水平集函数值,计算长度项Length;计算惩罚项
Figure BDA0002280931830000026
S6、利用速度停止算子、全局拟合方差、局部拟合方差、长度项和惩罚项,构造能量泛函,得到水平集函数迭代公式,计算迭代公式得到更新的水平集函数;
S7、检查是否满足迭代停止准则,若满足,则迭代停止,输出分割结果图像;若不满足,则返回步骤S3。
所述步骤S1中,各像素点的速度停止算子值,公式为:
Figure BDA0002280931830000027
式中,|▽Gσ*I(x)|是高斯平滑后图像Gσ*I(x)各像素点的梯度值,Gσ代表均值为0且方差为σ的高斯核,*代表卷积算子,▽代表梯度算子;e是自然底数;0<q≤1。
所述步骤S2,具体为:在原始灰度不均图像中设置圆心为x0、半径为r的圆形初始演化曲线C的位置,定义水平集函数
Figure BDA0002280931830000031
为符号距离函数;其中图像各像素点的初始水平集函数值
Figure BDA0002280931830000032
为:计算各像素点到初始演化曲线的最短距离;初始演化曲线上的各像素点到自身的最短距离为0,称作零水平集;
其中,演化曲线C与水平集函数
Figure BDA0002280931830000033
的关系表达为:
Figure BDA0002280931830000034
式中,Ω表示图像区域;inside(C)表示演化曲线C的内部区域;outside(C)表示演化曲线C的外部区域;
Figure BDA0002280931830000035
|dist(x,x0)|表示任意像素点x到圆心像素x0的距离。
所述步骤S3,具体为:利用原始灰度不均图像的各像素值、各像素点的水平集函数值,计算图像各像素点的全局算术均值的公式为:
Figure BDA0002280931830000036
局部拟合均值的公式为:
Figure BDA0002280931830000037
式中,c1、c2分别表示演化曲线内部和外部的全局像素灰度均值;a1、a2分别表示平均卷积算子后的图像演化曲线内部和外部的局部区域拟合均值;I(x)是原始灰度不均图像;KA表示均值核;ε=1为正规化参数,Hε(·)为阶跃函数:
Figure BDA0002280931830000038
Figure BDA0002280931830000039
Figure BDA00022809318300000310
所述步骤S4,具体为:利用原始灰度不均图像的各像素值、各像素点的全局算术均值和局部拟合均值,计算图像各像素点的全局拟合方差的公式为:
Figure BDA00022809318300000311
局部拟合方差的公式为:
Figure BDA0002280931830000041
式中,
Figure BDA0002280931830000042
分别表示像素点x在演化曲线内部和外部的全局拟合方差,
Figure BDA0002280931830000043
分别表示像素点x在演化曲线内部和外部的局部拟合方差。
所述步骤S5中:
长度项Length的公式为:
Figure BDA0002280931830000044
惩罚项
Figure BDA0002280931830000045
的公式为:
Figure BDA0002280931830000046
式中,μ为长度项的系数,取μ=τ×2552,τ∈[0,1];ε=1为正规化参数,δε(·)为狄克拉函数的近似表达;▽代表梯度算子。
所述步骤S6中,构造的能量泛函为:
Figure BDA0002280931830000047
对能量泛函利用变分法的梯度下降流,得到水平集函数的迭代演化的Euler-Lagrange方程:
Figure BDA0002280931830000048
计算水平集函数迭代演化公式:
Figure BDA0002280931830000049
得到更新的水平集函数值
Figure BDA00022809318300000410
式中,λ1、λ2是可变参数;div是散度算子,▽是梯度算子,Δ是Laplacian算子;n是迭代次数,Δt是步长。
所述步骤S7中,迭代停止准则包括:迭代次数n达到设置的最大迭代次数Numiter;或者在规定的连续迭代次数Num内,演化曲线内部在迭代更新前后的面积差均小于给定阈值ω。
本发明的有益效果是:本发明在保留C-V模型的全局方差信息的同时,在能量泛函中引入局部信息,使之与全局灰度均值叠加使算法对灰度不均图像的边缘具有全局和局域化效果,避免灰度不均效应使轮廓曲线的膨胀力和收缩力在非边缘处就制约从而导致分割失败。提出一个新的速度停止算子并引入驱动力项中,在迭代过程调节水平集曲线演化速度,避免演化陷入局部极小值,从而得到更光滑的演化曲线,通过在驱动力项引入速度停止算子,可以得到更光滑准确的分割结果。
附图说明
图1为本发明的流程图;
图2为实验1待分割的灰度不均图像的示意图;
图3为实验1待分割的灰度不均图像及其初始演化曲线的示意图;
图4为实验1灰度不均图像的分割结果及其最终演化曲线的示意图;
图5为实验1初始三维水平集函数的示意图;
图6为实验1最终的三维水平集函数的示意图;
图7为实验2待分割的灰度不均图像的示意图;
图8为实验2待分割的灰度不均图像及其初始演化曲线的示意图;
图9为实验2灰度不均图像的分割结果及其最终演化曲线的示意图;
图10为实验2初始三维水平集函数的示意图;
图11为实验2最终的三维水平集函数的示意图。
具体实施方式
实施例1:如图1-11所示,一种基于水平集的灰度不均图像分割方法,所述方法步骤如下:
S1、读取原始灰度不均图像的各像素值I(x),对原始灰度不均图像的各像素值进行高斯平滑,计算平滑后的图像各像素点的梯度值,并根据梯度值计算各像素点x的速度停止算子值g(x);
S2、在原始灰度不均图像中设置圆形初始演化曲线的位置,定义水平集函数
Figure BDA0002280931830000051
的形式为符号距离函数;其中,图像各像素点的初始水平集函数值
Figure BDA0002280931830000052
为:计算各像素点到初始演化曲线的最短距离;初始演化曲线上的各像素点到自身的最短距离为0,称作零水平集;n表示迭代次数;
S3、利用原始灰度不均图像的各像素值、各像素点的水平集函数值,计算图像各像素点的全局像素灰度均值c1、c2和局部区域拟合均值a1、a2
S4、利用原始灰度不均图像的各像素值、各像素点的全局像素灰度均值和全局像素灰度均值,计算图像各像素点的全局拟合方差
Figure BDA0002280931830000061
和局部拟合方差
Figure BDA0002280931830000062
Figure BDA0002280931830000063
S5、利用图像各像素的水平集函数值,计算长度项Length来惩罚零水平集的曲线弧长;计算惩罚项
Figure BDA0002280931830000064
使水平集函数始终近似符号距离函数,避免了水平集函数重新初始化的复杂过程;
S6、利用速度停止算子、全局拟合方差、局部拟合方差、长度项和惩罚项,构造能量泛函,得到水平集函数迭代公式,计算迭代公式得到更新的水平集函数;
S7、检查是否满足迭代停止准则,若满足,则迭代停止,输出分割结果图像;若不满足,则返回步骤S3。
进一步地,可以设置所述步骤S1中,各像素点的速度停止算子值,公式为:
Figure BDA0002280931830000065
式中,x代表图像的各像素点;|▽Gσ*I(x)|是高斯平滑后图像Gσ*I(x)各像素点的梯度值,Gσ代表均值为0且方差为σ的高斯核,*代表卷积算子,▽代表梯度算子;e是自然底数,e=2.718…;0<q≤1;0<q≤1主要调节g(x)曲线在边界区域的下降快慢,防止弱边缘区域出现边界泄露;速度停止算子的目的是:利用高斯平滑去除噪声的同时保留图像边缘信息,避免演化陷入局部极小值,从而得到更光滑的演化曲线;调节轮廓曲线演化速度,并使轮廓曲线在目标边缘演化停止。
进一步地,可以设置所述步骤S2,具体为:在原始灰度不均图像中设置圆心为x0、半径为r的圆形初始演化曲线C的位置,定义水平集函数
Figure BDA0002280931830000066
为符号距离函数;其中图像各像素点的初始水平集函数值
Figure BDA0002280931830000067
为:计算各像素点到初始演化曲线的最短距离;初始演化曲线上的各像素点到自身的最短距离为0,称作零水平集;
其中,演化曲线C与水平集函数
Figure BDA0002280931830000068
的关系表达为:
Figure BDA0002280931830000069
或者可以描述为:
对于演化曲线C对应的任意像素x:
Figure BDA0002280931830000071
对于演化曲线C内部区域inside(C)对应的任意像素x:
Figure BDA0002280931830000072
对于演化曲线C外部区域outside(C)对应的任意像素x:
Figure BDA0002280931830000073
式中,Ω表示图像区域;inside(C)表示演化曲线C的内部区域;outside(C)表示演化曲线C的外部区域;
Figure BDA0002280931830000074
|dist(x,x0)|表示任意像素点x到圆心像素x0的距离。
进一步地,可以设置所述步骤S3,具体为:利用原始灰度不均图像的各像素值、各像素点的水平集函数值,计算图像各像素点的全局算术均值的公式为:
Figure BDA0002280931830000075
局部拟合均值的公式为:
Figure BDA0002280931830000076
式中,c1、c2分别表示演化曲线内部和外部的全局像素灰度均值,考虑了水平集函数内外的平均像素,因此该模型对噪声有一定的鲁棒性;a1、a2分别表示平均卷积算子后的图像演化曲线内部和外部的局部区域拟合均值;I(x)是原始灰度不均图像;KA表示均值核;ε=1为正规化参数,Hε(·)为阶跃函数:
Figure BDA0002280931830000077
Figure BDA0002280931830000078
Figure BDA0002280931830000079
Figure BDA00022809318300000710
因此利用Hε(·)可以方便地表示演化曲线的内部和外部。将局部与全局信息结合,一方面可以对窗口大小的选择不过于敏感,另一方面也可得到良好的演化效果。
进一步地,可以设置所述步骤S4,具体为:利用原始灰度不均图像的各像素值、各像素点的全局算术均值和局部拟合均值,计算图像各像素点的全局拟合方差的公式为:
Figure BDA00022809318300000711
局部拟合方差的公式为:
Figure BDA00022809318300000712
式中,
Figure BDA0002280931830000081
分别表示像素点x在演化曲线内部和外部的全局拟合方差,
Figure BDA0002280931830000082
分别表示像素点x在演化曲线内部和外部的局部拟合方差。对于灰度不均图像,将图像每个像素在其邻域内的局部拟合方差结合目标和背景的全局拟合方差后,可以更准确地计算出内部能量和外部能量,表达为轮廓曲线上的膨胀力和收缩力的大小,从而促使轮廓曲线逼近目标真正边缘。
进一步地,可以设置所述步骤S5中:
长度项Length的公式为:
Figure BDA0002280931830000083
惩罚项
Figure BDA0002280931830000084
的公式为:
Figure BDA0002280931830000085
式中,μ为长度项的系数,取μ=τ×2552,τ∈[0,1];一般在分割小目标时,τ取较小的数值,分割大目标时,τ取较大的数值;ε=1为正规化参数,δε(·)为狄克拉函数的近似表达;▽代表梯度算子;
进一步地,所述步骤S6中,由于灰度不均效应在图像局部区域是缓慢变化的,甚至在小区域中的灰度是定值,因此我们结合全局拟合方差、局部拟合方差,利用速度停止算子、长度项和惩罚项,构造的能量泛函为:
Figure BDA0002280931830000086
对能量泛函利用变分法的梯度下降流,得到水平集函数的迭代演化的Euler-Lagrange方程:
Figure BDA0002280931830000087
计算水平集函数迭代演化公式:
Figure BDA0002280931830000088
得到更新的水平集函数值
Figure BDA0002280931830000091
式中,λ1、λ2是可变参数;div是散度算子,▽是梯度算子,Δ是Laplacian算子;n是迭代次数,Δt是步长;对于灰度均匀的图像,λ1和λ2的数值接近或者相等,即全局项和局部项所起的作用应是一样的;对于灰度不均的图像,λ1的数值应该小于λ2的数值,从而使得局部项的效果得到进一步加强。驱动力项由全局拟合方差和局部拟合方差构成,这里将速度停止算子加权到驱动力项,除了可以调节演化曲线速度,还可以避免演化曲线陷入局部最优,使演化曲线更光滑;
进一步地,可以设置所述步骤S7中,迭代停止准则包括:准则1:迭代次数n达到设置的最大迭代次数Numiter;或者准则2:在规定的连续迭代次数Num内,演化曲线内部在迭代更新前后的面积差均小于给定阈值ω(迭代停止准则1或2满足一个即停止,输出结果)。可以针对不同灰度不均图像设置不同的Numiter、Num和ω的值。迭代过程中,检查是否满足迭代停止准则2,若满足,则迭代停止,输出分割结果图像;若不满足,则返回步骤S3,直到水平集函数迭代次数达到Numiter时停止迭代,输出分割结果图像。
下面通过代入具体的灰度不均图像对实施例1作进一步的说明:
待分割的灰度不均图像如图2、图7所示(实验1为灰度不均的合成图、实验2为灰度不均囊肿图),则基于水平集的灰度不均图像分割方法包括:
S1、先计算高斯平滑后的图像Gσ*I(x)各像素点的梯度值|▽Gσ*I(x)|,再计算各像素点的速度停止算子:
Figure BDA0002280931830000092
实验1、实验2均取σ=0.8。
S2、在原始图像I(x)中选定圆心为x0、半径为r的圆形初始演化曲线C的位置,计算初始水平集函数
Figure BDA0002280931830000093
|dist(x,x0)|表示任意像素点x到圆心像素x0的距离。
二维灰度不均图像及其初始演化轮廓曲线如图3、图8所示,三维初始水平集函数
Figure BDA0002280931830000094
如图5、图10所示。
S3、利用水平集函数,计算全局算术均值c1、c2,局部拟合均值a1、a2
Figure BDA0002280931830000101
Figure BDA0002280931830000102
S4、利用c1、c2、a1、a2,计算图像各像素点的全局拟合方差
Figure BDA0002280931830000103
局部拟合方差
Figure BDA0002280931830000104
Figure BDA0002280931830000105
Figure BDA0002280931830000106
S5、利用水平集函数,计算两个规则化项:长度项和惩罚项,实验1、实验2取μ=0.01×2552
S6、利用g(x)、
Figure BDA0002280931830000107
以及长度项和惩罚项,计算水平集函数的迭代更新公式
Figure BDA0002280931830000108
得到更新的图像各像素点的水平集函数值
Figure BDA0002280931830000109
对于实验1,取λ1=0.1,λ2=7;对于实验2,取λ1=0.1,λ2=1。
S7、迭代过程中判断是否满足迭代停止准则,满足,则结束迭代,输出分割结果;不满足,则返回步骤S3继续迭代。最终得到的演化曲线如图4、图9所示,最终的三维水平集函数如图6、图11所示。对于实验1,取Numiter=190,Num=15,ω=5;对于实验2,取Numiter=220,Num=15,ω=5。
上面结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (8)

1.一种基于水平集的灰度不均图像分割方法,其特征在于:所述方法步骤如下:
S1、读取原始灰度不均图像的各像素值I(x),对原始灰度不均图像的各像素值进行高斯平滑,计算平滑后的图像各像素点的梯度值,并根据梯度值计算各像素点x的速度停止算子值g(x);
S2、在原始灰度不均图像中设置圆形初始演化曲线的位置,定义水平集函数
Figure FDA0002280931820000011
的形式为符号距离函数;其中,图像各像素点的初始水平集函数值
Figure FDA0002280931820000012
为:计算各像素点到初始演化曲线的最短距离;初始演化曲线上的各像素点到自身的最短距离为0,称作零水平集;n表示迭代次数;
S3、利用原始灰度不均图像的各像素值、各像素点的水平集函数值,计算图像各像素点的全局像素灰度均值c1、c2和局部区域拟合均值a1、a2
S4、利用原始灰度不均图像的各像素值、各像素点的全局像素灰度均值和全局像素灰度均值,计算图像各像素点的全局拟合方差
Figure FDA0002280931820000013
和局部拟合方差
Figure FDA0002280931820000014
Figure FDA0002280931820000015
S5、利用图像各像素的水平集函数值,计算长度项Length;计算惩罚项
Figure FDA0002280931820000016
S6、利用速度停止算子、全局拟合方差、局部拟合方差、长度项和惩罚项,构造能量泛函,得到水平集函数迭代公式,计算迭代公式得到更新的水平集函数;
S7、检查是否满足迭代停止准则,若满足,则迭代停止,输出分割结果图像;若不满足,则返回步骤S3。
2.根据权利要求1所述的基于水平集的灰度不均图像分割方法,其特征在于:所述步骤S1中,各像素点的速度停止算子值,公式为:
Figure FDA0002280931820000017
式中,
Figure FDA0002280931820000018
是高斯平滑后图像Gσ*I(x)各像素点的梯度值,Gσ代表均值为0且方差为σ的高斯核,*代表卷积算子,
Figure FDA0002280931820000019
代表梯度算子;e是自然底数;0<q≤1。
3.根据权利要求1所述的基于水平集的灰度不均图像分割方法,其特征在于:所述步骤S2,具体为:在原始灰度不均图像中设置圆心为x0、半径为r的圆形初始演化曲线C的位置,定义水平集函数
Figure FDA0002280931820000021
为符号距离函数;其中图像各像素点的初始水平集函数值
Figure FDA0002280931820000022
为:计算各像素点到初始演化曲线的最短距离;初始演化曲线上的各像素点到自身的最短距离为0,称作零水平集;
其中,演化曲线C与水平集函数
Figure FDA0002280931820000023
的关系表达为:
Figure FDA0002280931820000024
式中,Ω表示图像区域;inside(C)表示演化曲线C的内部区域;outside(C)表示演化曲线C的外部区域;
Figure FDA0002280931820000025
|dist(x,x0)|表示任意像素点x到圆心像素x0的距离。
4.根据权利要求3所述的基于水平集的灰度不均图像分割方法,其特征在于:所述步骤S3,具体为:利用原始灰度不均图像的各像素值、各像素点的水平集函数值,计算图像各像素点的全局算术均值的公式为:
Figure FDA0002280931820000026
局部拟合均值的公式为:
Figure FDA0002280931820000027
式中,c1、c2分别表示演化曲线内部和外部的全局像素灰度均值;a1、a2分别表示平均卷积算子后的图像演化曲线内部和外部的局部区域拟合均值;I(x)是原始灰度不均图像;KA表示均值核;ε=1为正规化参数,Hε(·)为阶跃函数:
Figure FDA0002280931820000028
Figure FDA0002280931820000029
Figure FDA00022809318200000211
5.根据权利要求4所述的基于水平集的灰度不均图像分割方法,其特征在于:所述步骤S4,具体为:利用原始灰度不均图像的各像素值、各像素点的全局算术均值和局部拟合均值,计算图像各像素点的全局拟合方差的公式为:
Figure FDA00022809318200000212
局部拟合方差的公式为:
Figure FDA0002280931820000031
式中,
Figure FDA0002280931820000032
分别表示像素点x在演化曲线内部和外部的全局拟合方差,
Figure FDA0002280931820000033
分别表示像素点x在演化曲线内部和外部的局部拟合方差。
6.根据权利要求5所述的基于水平集的灰度不均图像分割方法,其特征在于:所述步骤S5中:
长度项Length的公式为:
Figure FDA0002280931820000034
惩罚项
Figure FDA0002280931820000035
的公式为:
Figure FDA0002280931820000036
式中,μ为长度项的系数,取μ=τ×2552,τ∈[0,1];ε=1为正规化参数,δε(·)为狄克拉函数的近似表达;
Figure FDA0002280931820000037
代表梯度算子。
7.根据权利要求6所述的基于水平集的灰度不均图像分割方法,其特征在于:所述步骤S6中,构造的能量泛函为:
Figure FDA0002280931820000038
对能量泛函利用变分法的梯度下降流,得到水平集函数的迭代演化的Euler-Lagrange方程:
Figure FDA0002280931820000039
计算水平集函数迭代演化公式:
Figure FDA00022809318200000310
得到更新的水平集函数值
Figure FDA00022809318200000311
式中,λ1、λ2是可变参数;div是散度算子,
Figure FDA00022809318200000312
是梯度算子,Δ是Laplacian算子;n是迭代次数,Δt是步长。
8.根据权利要求1所述的基于水平集的灰度不均图像分割方法,其特征在于:所述步骤S7中,迭代停止准则包括:迭代次数n达到设置的最大迭代次数Numiter;或者在规定的连续迭代次数Num内,演化曲线内部在迭代更新前后的面积差均小于给定阈值ω。
CN201911145061.6A 2019-11-20 2019-11-20 一种基于水平集的灰度不均图像分割方法 Active CN111145179B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911145061.6A CN111145179B (zh) 2019-11-20 2019-11-20 一种基于水平集的灰度不均图像分割方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911145061.6A CN111145179B (zh) 2019-11-20 2019-11-20 一种基于水平集的灰度不均图像分割方法

Publications (2)

Publication Number Publication Date
CN111145179A true CN111145179A (zh) 2020-05-12
CN111145179B CN111145179B (zh) 2023-07-25

Family

ID=70517170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911145061.6A Active CN111145179B (zh) 2019-11-20 2019-11-20 一种基于水平集的灰度不均图像分割方法

Country Status (1)

Country Link
CN (1) CN111145179B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112446381A (zh) * 2020-11-11 2021-03-05 昆明理工大学 一种利用全卷积网络驱动的基于测地线活动轮廓的混合语义分割方法
CN118279331A (zh) * 2024-06-03 2024-07-02 泉州医学高等专科学校 基于改进局部信息的cv模型的图像分割方法

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070122039A1 (en) * 2005-11-29 2007-05-31 Microsoft Corporation Segmentation of objects by minimizing global-local variational energy
CN101639935A (zh) * 2009-09-07 2010-02-03 南京理工大学 基于几何活动轮廓目标跟踪的数字人连续切片图像分割方法
DE102011114221B3 (de) * 2011-09-23 2013-02-07 Atlas Elektronik Gmbh Verfahren und Vorrichtung zur Extraktion von Konturen aus Sonarbildern
CN104202885A (zh) * 2014-09-19 2014-12-10 大连工业大学 利用噪声统计城市空间能量脉动的方法及其系统实现
CN104199072A (zh) * 2013-07-03 2014-12-10 王樱子 空间飞行物发现与轨迹标记系统及其实现轨迹标记的方法
CN104637057A (zh) * 2015-02-04 2015-05-20 昆明理工大学 一种基于遗传算法的灰度-梯度熵多阈值快速分割方法
CN105321184A (zh) * 2015-11-26 2016-02-10 北京交通大学 改进的基于边缘水平集的含噪图像分割方法与系统
CN105551054A (zh) * 2016-01-14 2016-05-04 辽宁师范大学 全局和局部信息自适应调整的图像分割活动轮廓方法
US20160275674A1 (en) * 2015-12-29 2016-09-22 Laboratoires Bodycad Inc. Method and system for performing multi-bone segmentation in imaging data
CN106530314A (zh) * 2016-12-21 2017-03-22 中国科学院合肥物质科学研究院 一种多尺度局部统计主动轮廓模型(lsacm)水平集图像分割方法
CN106570867A (zh) * 2016-10-18 2017-04-19 浙江大学 基于灰度形态学能量法的活动轮廓模型图像快速分割方法
CN106682633A (zh) * 2016-12-30 2017-05-17 四川沃文特生物技术有限公司 基于机器视觉的粪便镜检图像有形成分的分类识别方法
CA2940393A1 (en) * 2015-12-29 2017-06-29 Veneree Rakotomalala Randrianarisoa Method and system for performing bone multi-segmentation in imaging data
EP3188127A1 (en) * 2015-12-29 2017-07-05 Laboratoires Bodycad Inc. Method and system for performing bone multi-segmentation in imaging data
CN107240108A (zh) * 2017-06-06 2017-10-10 衢州学院 基于局部高斯分布拟合与局部符号差能量驱动的活动轮廓模型图像分割方法
CN107274414A (zh) * 2017-05-27 2017-10-20 西安电子科技大学 基于改进局部信息的cv模型的图像分割方法
CN107993237A (zh) * 2017-11-28 2018-05-04 山东大学 一种基于窄带约束的几何活动轮廓模型图像局部分割方法
CN108460781A (zh) * 2018-02-09 2018-08-28 河南师范大学 一种基于改进spf的活动轮廓图像分割方法及装置
CN109087309A (zh) * 2018-07-19 2018-12-25 华南理工大学 一种融合全局和局部信息水平集的图像分割方法
CN109472792A (zh) * 2018-10-29 2019-03-15 石家庄学院 结合局部熵的局部能量泛函与非凸正则项的图像分割方法
CN110120057A (zh) * 2019-04-16 2019-08-13 东华理工大学 基于权重全局和局部拟合能量的模糊区域性活动轮廓分割模型

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070122039A1 (en) * 2005-11-29 2007-05-31 Microsoft Corporation Segmentation of objects by minimizing global-local variational energy
CN101639935A (zh) * 2009-09-07 2010-02-03 南京理工大学 基于几何活动轮廓目标跟踪的数字人连续切片图像分割方法
DE102011114221B3 (de) * 2011-09-23 2013-02-07 Atlas Elektronik Gmbh Verfahren und Vorrichtung zur Extraktion von Konturen aus Sonarbildern
CN104199072A (zh) * 2013-07-03 2014-12-10 王樱子 空间飞行物发现与轨迹标记系统及其实现轨迹标记的方法
CN104202885A (zh) * 2014-09-19 2014-12-10 大连工业大学 利用噪声统计城市空间能量脉动的方法及其系统实现
CN104637057A (zh) * 2015-02-04 2015-05-20 昆明理工大学 一种基于遗传算法的灰度-梯度熵多阈值快速分割方法
CN105321184A (zh) * 2015-11-26 2016-02-10 北京交通大学 改进的基于边缘水平集的含噪图像分割方法与系统
CA2940393A1 (en) * 2015-12-29 2017-06-29 Veneree Rakotomalala Randrianarisoa Method and system for performing bone multi-segmentation in imaging data
US20160275674A1 (en) * 2015-12-29 2016-09-22 Laboratoires Bodycad Inc. Method and system for performing multi-bone segmentation in imaging data
EP3188127A1 (en) * 2015-12-29 2017-07-05 Laboratoires Bodycad Inc. Method and system for performing bone multi-segmentation in imaging data
CN105551054A (zh) * 2016-01-14 2016-05-04 辽宁师范大学 全局和局部信息自适应调整的图像分割活动轮廓方法
CN106570867A (zh) * 2016-10-18 2017-04-19 浙江大学 基于灰度形态学能量法的活动轮廓模型图像快速分割方法
CN106530314A (zh) * 2016-12-21 2017-03-22 中国科学院合肥物质科学研究院 一种多尺度局部统计主动轮廓模型(lsacm)水平集图像分割方法
CN106682633A (zh) * 2016-12-30 2017-05-17 四川沃文特生物技术有限公司 基于机器视觉的粪便镜检图像有形成分的分类识别方法
CN107274414A (zh) * 2017-05-27 2017-10-20 西安电子科技大学 基于改进局部信息的cv模型的图像分割方法
CN107240108A (zh) * 2017-06-06 2017-10-10 衢州学院 基于局部高斯分布拟合与局部符号差能量驱动的活动轮廓模型图像分割方法
CN107993237A (zh) * 2017-11-28 2018-05-04 山东大学 一种基于窄带约束的几何活动轮廓模型图像局部分割方法
CN108460781A (zh) * 2018-02-09 2018-08-28 河南师范大学 一种基于改进spf的活动轮廓图像分割方法及装置
CN109087309A (zh) * 2018-07-19 2018-12-25 华南理工大学 一种融合全局和局部信息水平集的图像分割方法
CN109472792A (zh) * 2018-10-29 2019-03-15 石家庄学院 结合局部熵的局部能量泛函与非凸正则项的图像分割方法
CN110120057A (zh) * 2019-04-16 2019-08-13 东华理工大学 基于权重全局和局部拟合能量的模糊区域性活动轮廓分割模型

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张帆;张新红;: "基于位错理论的距离正则化水平集图像分割算法", no. 05 *
张桂梅;周飞飞;储;: "一种改进的变分水平集的图像分割算法", no. 05 *
陈雯;朱敏;: "结合区域间差异性的水平集演化模型", no. 06 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112446381A (zh) * 2020-11-11 2021-03-05 昆明理工大学 一种利用全卷积网络驱动的基于测地线活动轮廓的混合语义分割方法
CN118279331A (zh) * 2024-06-03 2024-07-02 泉州医学高等专科学校 基于改进局部信息的cv模型的图像分割方法
CN118279331B (zh) * 2024-06-03 2024-08-06 泉州医学高等专科学校 基于改进局部信息的cv模型的图像分割方法

Also Published As

Publication number Publication date
CN111145179B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN108776969B (zh) 基于全卷积网络的乳腺超声图像肿瘤分割方法
CN106570867B (zh) 基于灰度形态学能量法的活动轮廓模型图像快速分割方法
Xu et al. Object segmentation using graph cuts based active contours
Li et al. Minimization of region-scalable fitting energy for image segmentation
Jiang et al. Image segmentation based on level set method
Ge et al. A hybrid active contour model based on pre-fitting energy and adaptive functions for fast image segmentation
Yan et al. Hybrid active contour model driven by optimized local pre-fitting image energy for fast image segmentation
CN110120057B (zh) 基于权重全局和局部拟合能量的模糊区域性活动轮廓分割模型
CN108460781B (zh) 一种基于改进spf的活动轮廓图像分割方法及装置
CN105184766B (zh) 一种频域边界能量模型的水平集图像分割方法
Li et al. Fast distance preserving level set evolution for medical image segmentation
CN109191477B (zh) 基于全局与局部拟合能量的模糊区域型活动轮廓分割模型
Jin et al. A robust active contour model driven by fuzzy c-means energy for fast image segmentation
CN111145179B (zh) 一种基于水平集的灰度不均图像分割方法
CN111145142B (zh) 一种基于水平集算法的灰度不均囊肿图像分割方法
Chen et al. A generalized asymmetric dual-front model for active contours and image segmentation
Wei et al. A fast snake model based on non-linear diffusion for medical image segmentation
Jiang et al. Image segmentation based on PDEs model: A survey
CN108898611B (zh) 基于显著感知先验的模糊区域活动轮廓分割模型
CN110969635A (zh) 基于先验约束水平集框架的鲁棒快速图像分割方法
Baillard et al. Segmentation of 3D brain structures using level sets and dense registration
CN115965642A (zh) 基于自适应分数阶边缘停止函数的图像分割方法及装置
Baillard et al. Cooperation between level set techniques and dense 3d registration for the segmentation of brain structures
Zia et al. Active Contour Model for Image Segmentation
Huang et al. MR image segmentation based on fuzzy c-means clustering and the level set method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant