CN104199072A - 空间飞行物发现与轨迹标记系统及其实现轨迹标记的方法 - Google Patents

空间飞行物发现与轨迹标记系统及其实现轨迹标记的方法 Download PDF

Info

Publication number
CN104199072A
CN104199072A CN201310289428.8A CN201310289428A CN104199072A CN 104199072 A CN104199072 A CN 104199072A CN 201310289428 A CN201310289428 A CN 201310289428A CN 104199072 A CN104199072 A CN 104199072A
Authority
CN
China
Prior art keywords
user terminal
time
space
satellite
space flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310289428.8A
Other languages
English (en)
Other versions
CN104199072B (zh
Inventor
王樱子
王智森
申莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201310289428.8A priority Critical patent/CN104199072B/zh
Publication of CN104199072A publication Critical patent/CN104199072A/zh
Application granted granted Critical
Publication of CN104199072B publication Critical patent/CN104199072B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position

Abstract

本发明涉及空间飞行物发现与轨迹标记系统及其实现轨迹标记的方法,属于无线通信技术领域。空间飞行物发现与轨迹标记系统包括至少3颗卫星,地面用户终端,地面数据中心;地面用户终端包括接收机,解调器,存储器,调制器及发射机;接收机连接解调器,解调器连接存储器,存储器连接调制器,调制器连接发射机;解调后获得数字信号,从解调后的数字信号可以获取时变扰动变化量,时变扰动变化量的特征信息存储到存储器,特征信息经过调制后由发射机发送到地面数据中心;地面用户终端是能够接收卫星时间信标信号并且根据时间信标信号计算其所在位置;时间信标信号包括卫星发射信号时的时间和此时间卫星所处的空间位置。

Description

空间飞行物发现与轨迹标记系统及其实现轨迹标记的方法
技术领域
本发明涉及空间飞行物发现与轨迹标记系统及其实现轨迹标记的方法,属于无线通信技术领域。
背景技术
随着第16颗北斗导航卫星的成功发射和顺利正常运作,2012年12月27日起正式提供范围涵盖亚太大部分地区的全天时、全天候、高精度的授时、定位和导航服务。北斗卫星导航系统的建设与发展将满足国家安全、经济建设、科研发展和社会进步等发面的需求,维护国家权益,增强综合国力。目前的卫星导航系统包括美国的GPS系统、俄罗斯的GLONASS系统、欧盟的Galileo和中国的北斗导航定位系统,在交通运输、海洋渔业、水文监测、气象测报、通讯时统、电力调度和救灾减灾等等方面提供高性能的定位、导航、授时,以及北斗导航系统的短报文通信服务。
我国是一个幅员辽阔的国家,尤其在我国域内雷达覆盖不到的世界各地的广阔的公共海域,利用大洋上的船只等,对可能进入我国领空的飞行物进行发现、标注并绘制飞行物的轨迹,显得尤为重要,可谓“拒敌于千里之外”,为维护自己国家及周边国家的安全,为人民生活的更加方便、舒适提供了支持。
发明内容
本发明针对以上问题的提出,而研制空间飞行物轨迹标记系统及其实现标记轨迹的方法。
本发明采取的技术方案如下:
空间飞行物发现与轨迹标记系统包括至少3颗卫星,地面用户终端,地面数据中心;地面用户终端包括接收机,解调器,存储器,调制器及发射机;接收机连接解调器,解调器连接存储器,存储器连接调制器,调制器连接发射机,解调后获得数字信号,从解调后的数字信号可以获取时变扰动变化量,时变扰动变化量的特征信息存储到存储器,特征信息经过调制后由发射机发送到地面数据中心;地面用户终端是能够接收卫星时间信标信号并且根据时间信标信号计算地面用户终端所在位置,地面用户终端能够测量接收卫星时标信号的扰动从而获取时变扰动变化量,时变扰动变化量包括信号的扰动时长及信号的扰动深度的参数信息,地面用户终端将信号的扰动信息发送到地面数据中心的设备;卫星与地面用户终端进行无线通信,地面用户终端与地面数据中心进行无线通信;所述地面用户终端可以是移动状态或固定状态;所述地面数据中心包括空间地理信息系统;所述卫星空间位置及地面用户终端的位置是以地球的球心为圆点的三维坐标系统来表示。
空间飞行物发现与轨迹标记系统实现空间飞行物轨迹标记的方法:当地面用户终端与卫星之间的信号直线传播路径内有空间飞行物时,地面用户终端接收到的时间信标信号会产生时变扰动,地面用户终端把时变扰动变化量传输到地面数据中心,时间信标信号包括卫星发射信号时的时间和此时间卫星所处的空间位置;空间飞行物包括空间飞行物群;空间飞行物在空间飞行时会对不同的地面用户终端产生时变扰动变化量,每个产生时变扰动变化量的地面用户终端测定的信号扰动变化量通过各种网络传输到地面数据中心;如果用户终端、卫星和地面数据中心的时钟完全同步,当覆盖全球的35颗北斗导航卫星和地面用户终端足够多时,在不间断的授时信号的覆盖下,将地面数据中心分析处理出的空间飞行物的空间、时间的坐标变化标注到空间地理信息系统上,依据空间飞行物的坐标变化的时序关系,连接空间飞行物对地面用户终端的产生扰动时的空间飞行物的位置坐标点,就可以绘制出空间飞行物在空间运动形成的轨迹。飞行物的空间位置是以地球的球心为圆点的三维坐标系统来表示。
卫星对地面用户终端产生扰动时的空间位置坐标确定方法如下:
第一步:下发的时间信标信号包括卫星发射信号时的时间和此时间卫星所处的空间位置,所以可以确定卫星的瞬时的三维坐标的位置(xs,ys,zs);
第二步:地面用户终端是能够接收卫星时间信标信号并且根据时间信标信号计算地面用户终端所在位置(xu,yu,zu);在空间的3颗卫星与地面用户终端通信时,可根据三球交汇原理确定地面用户终端的位置(xu,yu,zu):
第三步:由三球交汇原理确定空间飞行物对地面用户终端产生扰动时的空间飞行物三维空间位置坐标(xp,yp,zp)如下:
x p = ( x u + ξx s ) / ( 1 + ξ ) y p = ( y u + ξy s ) / ( 1 + ξ ) z p = ( z u + ξz s ) / ( 1 + ξ ) ,
(xs,ys,zs)是卫星的坐标,ξ是定比分点, ξ = d / [ ( x u - x s ) 2 + ( y u - y s ) 2 + ( z u - z s ) 2 - d ] ; 则在时刻tp,空间飞行物的时空参量(xp,yp,zp,tp)可求出,d是空间飞行物对地面用户终端产生扰动的距离。
空间飞行物对地面用户终端产生扰动的距离确定方法如下:
空间飞行物距用户终端的距离d可表示为口径的场和表面积的函数,E代表口径的场,s代表空间飞行物表面积:
空间飞行物距用户终端的距离d可表示为口径的场(E)和表面积(s)的函数:
d=f(Ep,s),
详细的变量关系要依据电磁场原理推导和实际测量数据的验证。由惠更斯原理,近似的,平面波入射在相对大的导电平面时,绕射的电磁场可按格林定理推导的基尔霍夫公式给出:
式中,θ0为入射波与z轴的夹角,当θ0=0时,cosθ0=1;
它是物体表面任意场点到观察点P的距离;s为物体表面积,λ为入射平面波波长;k为入射波波数,是入射波在物体表面上的电场强度;
对于长条形物体;设入射波为垂直导电平面的平面电磁波,在物体表面上,只有x方向的电场Es(x),则Es(x)=axE0
由基尔霍夫公式得绕射场的电场强度分布为
式中,a为物体的长度,b为物体的宽度;d为场点P到物体中心的距离;θ为d与z轴的夹角;为d在xoy面上的投影与x轴的夹角,
当θ→0时,由洛必达法则,得
E p = j E 0 se - jkd λd , - - - ( 1 )
式(1)也可以表示为
de jkd = j E 0 s λE p , - - - ( 2 )
同理,对于圆形绕射口径,可得其绕射场的电场强度分布为
E p = j π E 0 d 0 2 e - jkd 2 λd J 1 ( k d 0 2 sin θ ) k d 0 2 sin θ ,
式中,d0为圆形物体的直径;为一阶第一类Bessel函数;由式(2)知,空间飞行物距离用户终端的距离d与入射波的波长、场强(场强可由卫星入射时的功率得知),阴影区接收点P的场强,以及障碍物的大小有关;根据以上的推导,知道卫星的位置,可以求出用户终端的位置,估算出空间飞行物距离地面用户终端的距离d间接表示为
其中式子左边为未知量d,右边全部为已知量。
本发明原理及有益效果:地面数据中心包括有一个数据库,为地球表面各点至地球球心的距离,利用三球交汇定位的条件(如图2所示),地面用户终端能够接收卫星时间信标信号并且根据时间信标信号计算其所在位置。地面用户终端将扰动信号的变化量发送到地面数据中心,经地面数据中心分析计算可以估计出飞行物或飞行物群并判别空间飞行物距离用户终端的距离。如果用户终端、空间星座和地面数据中心的时钟同步、地面用户终端数足够多,各地面用户终端接收到的信息都能汇聚到地面数据中心,那么将地面数据中心计算出的飞行物的时空参量等信息标注到空间地理信息系统上,依据数据的时序关系,连接这些空间点,就可以绘制出空间飞行物的运动轨迹。
附图说明
图1(a)卫星电磁波信号照射示意图。
图1(b)有遮挡时阴影部分电磁波强度变化示意图。
图2卫星导航系统的三球交汇定位示意图。
图3卫星导航系统的三球交汇定位实物图。
图4北斗导航系统定位通信示意图。
图5理想同步定位示意图。
图6空中飞行物产生的阴影区平面口径几何图。
图7(a)卫星信号与地面终端A的直线信号传播路径内有飞行物示意图。
图7(b)卫星信号与地面终端B的直线信号传播路径内有飞行物示意图。
图7(c)卫星信号与地面终端F的直线信号传播路径内有飞行物示意图。
图7(d)地面终端测量的扰动信息与空间地理信息系统(GIS系统)的关系示意图。
图8空中飞行物被空间地理信息系统(GIS系统)测绘轨迹示意图。
图9本发明的系统结构简图。
图10当地面用户终端与卫星之间的信号直线传播路径内有空中飞行物时示意图。
图11长条形飞行物划过时本发明的系统示意图。
图12地面用户终端的分布密度解释图。
图13飞行物相对速度的大小对判别概率的影响。
图14地面用户终端的工作过程流程图。
图15地面用户终端的工作原理简图。
具体实施方式
下面通过附图对本发明做进一步说明:本发明的一个实施例的实施方式如下:
图9所示:空间飞行物发现与轨迹标记系统包括至少3颗卫星,地面用户终端,地面数据中心;图15所示:地面用户终端包括接收机,解调器,存储器,调制器及发射机;接收机连接解调器,解调器连接存储器,存储器连接调制器,调制器连接发射机,解调后获得数字信号,从解调后的数字信号可以获取时变扰动变化量,时变扰动变化量的特征信息存储到存储器,特征信息经过调制后由发射机发送到地面数据中心;图14所示:地面用户终端是能够接收卫星时间标信号并且根据时间信标信号计算地面用户终端所在位置,地面用户终端能够测量接收卫星时标信号的扰动从而获取时变扰动变化量。时变扰动变化量包括信号的扰动时长及信号的扰动深度的参数信息,地面用户终端将信号的扰动信息发送到地面数据中心的设备;卫星与地面用户终端进行无线通信,地面用户终端与地面数据中心进行无线通信;所述地面用户终端可以是移动状态或固定状态;所述地面数据中心包括空间地理信息系统;所述卫星空间位置及地面用户终端的位置是以地球的球心为圆点的三维坐标系统来表示。
空间飞行物发现与轨迹标记系统实现空间飞行物轨迹标记的方法:图10所示,当地面用户终端与卫星之间的信号直线传播路径内有空间飞行物时,地面用户终端接收到的时间信标信号会产生时变扰动,地面用户终端把时变扰动变化量传输到地面数据中心,时间信标信号包括卫星发射信号时的时间和此时间卫星所处的空间位置;空间飞行物包括空间飞行物群;空间飞行物在空间飞行时会对不同的地面用户终端产生时变扰动变化量,每个产生时变扰动变化量的地面用户终端测定的信号扰动变化量通过各种网络传输到地面数据中心;如果用户终端、卫星和地面数据中心的时钟完全同步,当覆盖全球的35颗北斗导航卫星和地面用户终端足够多时,在不间断的授时信号的覆盖下,将地面数据中心分析处理出的空间飞行物的空间、时间的坐标变化标注到空间地理信息系统上,依据空间飞行物的坐标变化的时序关系,连接空间飞行物对地面用户终端的产生扰动时的空间飞行物的位置坐标点,就可以绘制出空间飞行物在空间运动形成的轨迹。空间飞行物的空间位置以地球的球心为圆点的三维坐标系统来表示。
空间飞行物发现与轨迹标记系统实现空间飞行物轨迹标记的方法中,空间飞行物对地面用户终端产生扰动时的距离确定方法如下:
空间飞行物距用户终端的距离d可表示为口径的场(E)和表面积(s)的函数:
d=f(Ep,s),
详细的变量关系要依据电磁场原理推导和实际测量数据的验证。由惠更斯原理,近似的,平面波入射在相对大的导电平面时,绕射的电磁场可按格林定理推导的基尔霍夫公式给出:
式中,θ0为入射波与z轴的夹角,当θ0=0时,cosθ0=1。
,它是物体表面任意场点到观察点P的距离;s为物体表面积,λ为入射平面波波长;k为入射波波数,是入射波在物体表面上的电场强度。
对于长条形物体,如图6所示。设入射波为垂直导电平面的平面电磁波,在物体表面上,只有x方向的电场Es(x),则Es(x)=axE0
由基尔霍夫公式得绕射场的电场强度分布为
式中,a为物体的长度,b为物体的宽度;d为场点P到物体中心的距离;θ为d与z轴的夹角;为d在xoy面上的投影与x轴的夹角,
当θ→0时,由洛必达法则,得
E p = j E 0 se - jkd λd - - - ( 1 )
式(1)也可以表示为
de jkd = j E 0 s λE p - - - ( 2 )
同理,对于圆形绕射口径,可得其绕射场的电场强度分布为
E p = j π E 0 d 0 2 e - jkd 2 λd J 1 ( k d 0 2 sin θ ) k d 0 2 sin θ ,
式中,d0为圆形物体的直径;为一阶第一类Bessel函数。
由式(2)式知,空间飞行物距离用户终端的距离d与入射波的波长、场强,阴影区接收点P的场强,以及障碍物的大小有关;根据以上的推导,知道卫星的位置,可以求出用户终端的位置,估算出空间飞行物距离地面用户终端的距离d间接表示为其中式子左边为未知量d,右边全部为已知量。
那么根据空间几何原理,可以得到飞行物的空间坐标(xp,yp,zp),则在时刻tp,空间飞行物的时空参量(xp,yp,zp,tp)可求。图7(a)到图7(c)是由图1(a)到图1(b)演化而来的多用户情形示意图。
最后,将单个用户终端测定的信号扰动变化量通过各种网络汇聚到数据中心;图7(a)到7(c)所示:空间飞行物飞行时经过了A,B,F这些地面用户终端与卫星的直线传播的路径。当空间飞行物处于此时用户终端接收到时变的扰动信号,并将扰动信号发送到数据中心。地面用户终端处于A,B,F这些地面用户终端与卫星的直线传播的路径时,地面用户终端A,B,F会接收到时变扰动变化量。7(d)所示:每个产生时变扰动变化量的地面用户终端测定的信号扰动变化量通过各种网络传输到地面数据中心;如果用户终端、空间星座和地面数据中心的时钟完全同步,当覆盖全球的35颗北斗导航卫星和游动于海上和陆地的用户终端足够多时,在不间断的授时信号的覆盖下,将地面数据中心分析处理出的空间飞行物的空间、时间的坐标变化标注到空间GIS(地理信息系统)上,依据空间飞行物的坐标变化的时序关系,连接空间飞行物对地面用户终端的产生扰动时的空间飞行物的位置坐标点,就可以绘制出空间飞行物在空间运动形成的轨迹(如图8所示)。
空间飞行物发现与轨迹标记系统实现空间飞行物轨迹标记的方法中的卫星对地面用户终端产生扰动时的空间位置坐标确定方法如下:
第一步:下发的时间信标信号包括卫星发射信号时的时间和此时间卫星所处的空间位置,所以可以确定卫星的瞬时的三维坐标的位置(xs,ys,zs);
第二步:地面用户终端是能够接收卫星时间标信号并且根据时间信标信号计算地面用户终端所在位置(xu,yu,zu);在空间的3颗卫星与地面用户终端通信时,可根据三球交汇原理确定地面用户终端的位置(xu,yu,zu)。
如图2及图3所示:首先,在空间中若已经确定A、B、C三点的空间位置,且第四点D到上述三点的距离皆已知的情况下,即可以确定D的空间位置,原理如下:因为A点位置和AD间距离已知,可以推算出D点一定位于以A为圆心、AD为半径的圆球表面,按照此方法又可以得到以B、C为圆心的另两个圆球,即D点一定在这三个圆球的交汇点上,即三球交汇定位。
其次,空间三维坐标可以表示为地球及其空中的经度、纬度和高度,其原点坐标(0,0,0)为地球中心,地面数据中心的固定位置的坐标为(xe,ye,ze)(如图4所示);其中,同步标准时钟为t。空间星座的某一卫星在时间点ts的坐标为(xs,ys,zs),某一用户终端在时间点tu的坐标为(xu,yu,zu)。假设用户终端和空间星座的时钟理想同步,电磁波在任何空间传播速度c=3×108m/s,电磁波直线传播。
在理想系统同步的条件下,根据立体几何原理与电磁波的直线传输假设,用户终端就可以算出其在某一时刻的空间位置。
北斗导航系统的空间星座的坐标,则用于用户终端的三颗卫星s1,s2,s3的坐标分别为 空间星座的三颗卫星的授时定位信号发射时间分别为用户终端同步接收到空间星座的三颗卫星的时间为用户终端在同步时间接收授时定位信号时的未知坐标为(如图5所示)。根据已知条件的卫星授时信号的发射时间,由方程组(3),可求出坐标
[ ( x u 1 - x s 1 ) 2 + ( y u 1 - y s 1 ) 2 + ( z u 1 - z s 1 ) 2 ] 1 2 = c × ( t u 1 - t s 1 ) [ ( x u 1 - x s 2 ) 2 + ( y u 1 - y s 2 ) 2 + ( z u 1 - z s 2 ) 2 ] 1 2 = c × ( t u 1 - t s 2 ) [ ( x u 1 - x s 3 ) 2 + ( y u 1 - y s 3 ) 2 + ( z u 1 - z s 3 ) 2 ] 1 2 = c × ( t u 1 - t s 3 ) , - - - ( 3 )
再次,根据用户终端接收到的扰动信号的扰动变化量,各个用户终端将接收到的扰动变化量通过各种网络发送到数据中心,判别空间飞行物或飞行物群的存在。数据中心存在着大量的既存数据信息可供参考,并且具有“自学习”的能力,根据用户终端发送来的数据,数据中心可以判别空间飞行物或飞行物群的存在。结合电磁场理论可以估计飞行物距离用户终端的距离,并以此计算飞行物相对于地球中心远点的坐标,即飞行物的位置确认。另外,飞行物体(如飞机)具有很好的电磁遮蔽作用,当空间星座与用户终端两者之间的直线段受到空中飞行物的遮挡时,在飞行物身后形成阴影扇形区域(如图1(a)到图1(b)所示)。由电磁波的绕射原理,电磁波在障碍物的阴影区产生电磁场。而产生的电磁场直接与飞行物表面积(s),飞行物到终端的距离(d)相关。由于飞行物的速度远远大于用户终端的速度,用户终端的接收信号将产生时变扰动,根据扰动模式可以估计出空间飞行物的大小。口径的场(E)和表面积(s)可作为估计飞行物到终端距离的重要依据。
第三步由三球交汇原理确定空间飞行物对地面用户终端产生扰动时的空间飞行物三维空间位置坐标(xp,yp,zp)如下:
x p = ( x u + ξx s ) / ( 1 + ξ ) y p = ( y u + ξy s ) / ( 1 + ξ ) z p = ( z u + ξz s ) / ( 1 + ξ ) ,
(xs,ys,zs)是卫星的坐标,ξ是定比分点, ξ = d / [ ( x u - x s ) 2 + ( y u - y s ) 2 + ( z u - z s ) 2 - d ] ; 则在时刻tp,空间飞行物的时空参量(xp,yp,zp,tp)可求出:最后,将单个用户终端测定的信号扰动变化量通过各种网络汇聚到数据中心,如果用户终端、空间星座和地面数据中心的时钟完全同步,当覆盖全球的35颗北斗导航卫星和游动于海上和陆地的用户终端足够多时,在不间断的授时信号的覆盖下,将数据中心分析处理出的飞行物的空间、时间等信息标注到空间地理信息系统上,依据数据的时序关系,连接这些信息点,就可以绘制出飞行物在空间运动的轨迹。
对单北斗卫星导航系统,地平线以上可视的卫星数一般为8~11颗,在山脚下或高大建筑物旁、可视度只有90°收视角的恶劣环境下能确保在任一时刻都能够收到至少4颗以上的卫星信号。在野外环境下,山体视角在45°度以上的时候,一般只能收到四颗卫星。如果是山涧中,接收机不能定位。
假设用户终端能同时接收4颗卫星的信号,那么用户终端数Q越大,用户终端和卫星间形成的4Q条路径数越密集,我们发现飞行物的概率就会越大,随之复杂度也越高。授时信号经过远距离传播后,其信号可以近似为平面波。当长条形飞行物划过时,如图11所示,就会形成带状。图12中,设一个格的面积为p×q,其中p为格的宽度,q为长度。q与用户终端数Q密切相关,Q越大,q越小。若卫星与用户终端相对静止,Sab为单位时间飞行物扫过的面积,当Sab/Spq≥1时,则理论上发现飞行物的概率P=1。另外,用户终端的速度相对卫星以及飞行物而言,是很小的。卫星与飞行物的相对速度越大,发现飞行物的概率也越大。相对速度的大小对判别概率的影响示意图13所示,其中,相对速度v2>v1>v0,判别概率的斜率也随之增大。
综上分析可以得出,用户终端数和卫星与飞行物的相对速度都是影响飞行物发现的重要因素。飞行物越大、用户终端数越多、卫星与飞行物的相对速度越大,发现飞行物的概率也越大。
本发明不局限于上述实施例,任何在本发明披露的技术范围内的等同构思或者改变,均列为本发明的保护范围。

Claims (4)

1.空间飞行物发现与轨迹标记系统,其特征在于:包括至少3颗卫星,地面用户终端,地面数据中心;地面用户终端包括接收机,解调器,存储器,调制器及发射机;接收机连接解调器,解调器连接存储器,存储器连接调制器,调制器连接发射机;解调后获得数字信号,从解调后的数字信号可以获取时变扰动变化量,时变扰动变化量的特征信息存储到存储器,特征信息经过调制后由发射机发送到地面数据中心;地面用户终端是能够接收卫星时间信标信号并且根据时间信标信号计算其所在位置;时间信标信号包括卫星发射信号时的时间和此时间卫星所处的空间位置;地面用户终端能够测量接收卫星时标信号的扰动从而获取时变扰动变化量,时变扰动变化量包括信号的扰动时长及信号的扰动深度的参数信息;地面用户终端将信号的扰动信息发送到地面数据中心的设备;卫星与地面用户终端进行无线通信,地面用户终端与地面数据中心进行无线通信;所述地面用户终端可以是移动状态或固定状态;所述地面数据中心包括空间地理信息系统;所述卫星空间位置及地面用户终端的位置是以地球的球心为圆点的三维坐标系统来表示。
2.根据权利要求1所述的空间飞行物发现与轨迹标记系统实现空间飞行物轨迹标记的方法,其特征在于:当地面用户终端与卫星之间的信号直线传播的路径内有空间飞行物时,地面用户终端的接收机接收到的信号经过解调器后会获取时变扰动变化量即地面用户终端接收到的时间信标信号会产生时变扰动;地面用户终端把时变扰动变化量传输到地面数据中心;空间飞行物包括空间飞行物群;空间飞行物在空间飞行时会对不同的地面用户终端产生时变扰动变化量,每个产生时变扰动变化量的地面用户终端测定的信号扰动变化量通过各种网络传输到地面数据中心;如果用户终端、卫星和地面数据中心的时钟完全同步,当覆盖全球的35颗北斗导航卫星和地面用户终端足够多时,在不间断的授时信号的覆盖下,将地面数据中心分析处理出的空间飞行物的空间、时间的坐标变化标注到空间地理信息系统上,依据空间飞行物的坐标变化的时序关系,连接空间飞行物对地面用户终端产生扰动时的空间飞行物的位置坐标点可以绘制出空间飞行物在空间运动形成的轨迹;空间飞行物的空间位置以地球的球心为圆点的三维坐标系统来表示。
3.根据权利要求2所述的空间飞行物发现与轨迹标记系统实现空间飞行物轨迹标记的方法,其特征在于:空间飞行物对地面用户终端产生扰动时的空间位置坐标确定方法如下:
第一步:卫星下发的时间信标信号包括卫星发射信号时的时间和此时间卫星所处的空间位置,所以可以确定卫星的瞬时的三维坐标的位置;卫星的瞬时的三维坐标的位置表示为(xs,ys,zs);
第二步:地面用户终端是能够接收卫星时间信标信号并且根据时间信标信号计算地面用户终端所在位置,地面用户终端的位置表示为(xu,yu,zu);在空间的3颗卫星与地面用户终端通信时可根据三球交汇原理确定地面用户终端的位置(xu,yu,zu):
第三步:由三球交汇原理确定空间飞行物在tp时刻对地面用户终端产生扰动时的空间飞行物三维空间位置坐标(xp,yp,zp)如下:
x p = ( x u + ξx s ) / ( 1 + ξ ) y p = ( y u + ξy s ) / ( 1 + ξ ) z p = ( z u + ξz s ) / ( 1 + ξ ) ,
(xs,ys,zs)是卫星在tp时刻的瞬时三维坐标,ξ是定比分点,
ξ = d / [ ( x u - x s ) 2 + ( y u - y s ) 2 + ( z u - z s ) 2 - d ] ;
则在时刻tp空间飞行物的时空参量(xp,yp,zp,tp)可求出,d是空间飞行物对地面用户终端产生扰动时的距离。
4.根据权利要求2所述的空间飞行物发现与轨迹标记系统实现空间飞行物轨迹标记的方法,其特征在于:空间飞行物对地面用户终端产生扰动时空间飞行物与产生扰动的地面用户终端的距离确定方法如下:
空间飞行物对地面用户终端产生扰动时空间飞行物与产生扰动的地面用户终端的距离可表示为口径的场和表面积的函数:
d=f(EP,s),
d表示空间飞行物对地面用户终端产生扰动时空间飞行物与产生扰动的地面用户终端的距离,Ep代表口径的场,s代表空间飞行物表面积;详细的变量关系要依据电磁场原理推导和实际测量数据的验证;由惠更斯原理近似的表示为:平面波入射在相对大的导电平面时绕射的电磁场可按格林定理推导的基尔霍夫公式给出:
式中,θ0为入射波与竖直方向的夹角,当θ0=0时,cosθ0=1;
,它是物体表面任意场点到观察点P的距离;s为物体表面积,λ为入射平面波波长;k为入射波波数,是入射波在物体表面上的电场强度;
对于长条形物体;设入射波为垂直导电平面的平面电磁波,在物体表面上,只有x方向的电场Es(x),则Es(x)=axE0
由基尔霍夫公式得绕射场的电场强度分布为
式中,a为物体的长度,b为物体的宽度;d为场点P到物体中心的距离;
θ为d与竖直方向的夹角;为d在水平面上的投影与所选水平参考轴的夹角,当θ→0时,由洛必达法则,得
E p = j E 0 se - jkd λd , - - - ( 1 )
式(1)也可以表示为
de jkd = j E 0 s λE p , - - - ( 2 )
同理,对于圆形绕射口径,可得其绕射场的电场强度分布为
E p = j π E 0 d 0 2 e - jkd 2 λd J 1 ( k d 0 2 sin θ ) k d 0 2 sin θ ,
式中,d0为圆形物体的直径;为一阶第一类Bessel函数;由式(2)知,空间飞行物距离用户终端的距离d与入射波的波长、场强,阴影区接收点P的场强,以及障碍物的大小有关;根据以上的推导,知道卫星的位置,可以求出用户终端的位置,估算出空间飞行物距离地面用户终端的距离d间接表示为
de jkd = j E 0 s λE p , - - - ( 3 )
式子(3)左边除未知量d外全部是已知量,式子(3)右边全部是已知量。
CN201310289428.8A 2013-07-03 2013-07-03 空间飞行物发现与轨迹标记系统及其实现轨迹标记的方法 Expired - Fee Related CN104199072B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310289428.8A CN104199072B (zh) 2013-07-03 2013-07-03 空间飞行物发现与轨迹标记系统及其实现轨迹标记的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310289428.8A CN104199072B (zh) 2013-07-03 2013-07-03 空间飞行物发现与轨迹标记系统及其实现轨迹标记的方法

Publications (2)

Publication Number Publication Date
CN104199072A true CN104199072A (zh) 2014-12-10
CN104199072B CN104199072B (zh) 2018-05-15

Family

ID=52084384

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310289428.8A Expired - Fee Related CN104199072B (zh) 2013-07-03 2013-07-03 空间飞行物发现与轨迹标记系统及其实现轨迹标记的方法

Country Status (1)

Country Link
CN (1) CN104199072B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104484883A (zh) * 2014-12-24 2015-04-01 河海大学常州校区 基于视频的三维虚拟船舶定位及其轨迹模拟方法
CN109541579A (zh) * 2018-12-28 2019-03-29 中南大学 基于Bezier模型的霍夫变换的多普勒穿墙雷达定位方法
CN111090943A (zh) * 2019-12-18 2020-05-01 北京科技大学 一种快中子反应堆全堆子通道几何建模方法及系统
CN111145179A (zh) * 2019-11-20 2020-05-12 昆明理工大学 一种基于水平集的灰度不均图像分割方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100271260A1 (en) * 2009-04-27 2010-10-28 GTA Electronics Co., Ltd. Power-saving position tracking device
CN102141395A (zh) * 2011-01-04 2011-08-03 西安工程大学 基于ZigBee的输电导线风偏在线监测系统及监测方法
CN103138851A (zh) * 2011-11-28 2013-06-05 孟宝宏 一种移动电磁传播仿真平台及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100271260A1 (en) * 2009-04-27 2010-10-28 GTA Electronics Co., Ltd. Power-saving position tracking device
CN102141395A (zh) * 2011-01-04 2011-08-03 西安工程大学 基于ZigBee的输电导线风偏在线监测系统及监测方法
CN103138851A (zh) * 2011-11-28 2013-06-05 孟宝宏 一种移动电磁传播仿真平台及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUNNY LEUNG等: "Real-time Navigation of Formation-Flying Spacecraft Using Global-Positioning-System Measurements", 《JOURNAL OF GUIDANCE,CONTROL,AND DYNAMICS》 *
张金标: "飞行器上全向天线的测量方法", 《电子科学学刊》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104484883A (zh) * 2014-12-24 2015-04-01 河海大学常州校区 基于视频的三维虚拟船舶定位及其轨迹模拟方法
CN109541579A (zh) * 2018-12-28 2019-03-29 中南大学 基于Bezier模型的霍夫变换的多普勒穿墙雷达定位方法
CN109541579B (zh) * 2018-12-28 2022-12-27 中南大学 基于Bezier模型的霍夫变换的多普勒穿墙雷达定位方法
CN111145179A (zh) * 2019-11-20 2020-05-12 昆明理工大学 一种基于水平集的灰度不均图像分割方法
CN111090943A (zh) * 2019-12-18 2020-05-01 北京科技大学 一种快中子反应堆全堆子通道几何建模方法及系统
CN111090943B (zh) * 2019-12-18 2021-10-12 北京科技大学 一种快中子反应堆全堆子通道几何建模方法及系统

Also Published As

Publication number Publication date
CN104199072B (zh) 2018-05-15

Similar Documents

Publication Publication Date Title
CN105607053A (zh) 一种浮标式高频地波雷达系统
CN102540177B (zh) 一种基于三维射线追踪算法的目标定位方法
CN103760585B (zh) 一种适用林区的星‑地结合定位方法
Fu et al. Ultra-wideband pose detection system for boom-type roadheader based on Caffery transform and Taylor series expansion
CN109059916A (zh) 一种基于惯导的浮空器掩星预报方法
CN104199072A (zh) 空间飞行物发现与轨迹标记系统及其实现轨迹标记的方法
Shi et al. Satellite navigation for digital earth
CN102607560A (zh) 地球表面基于恒向线的两站测向交叉定位跟踪算法
CN101777958A (zh) 一种预测接收点附近一定范围内群时延的方法
CN102650688B (zh) 卫星的快速高精度轨道测量方法
CN104422938A (zh) 新型基于北斗星系统时序有向预测路线和旅游信息汇编的方法
CN111008361B (zh) 一种电离层参数重构方法
CN102589548B (zh) 地球表面基于大圆的两站测向交叉定位跟踪算法
CN108490393A (zh) 一种基于闪电定位网的海上移动平台定位和导航方法
Chen et al. Research on indoor and outdoor integrated location service technology
Ning et al. Overview of the development of global navigation satellite system
Zhong et al. Collaborative navigation in V2I network based on Chan-Taylor joint iterative algorithm
Zhao Research on Fusion Location Positioning Technology in Power Business
Roongpiboonsopit et al. Integrated global navigation satellite system (iGNSS) QoS prediction
Ichiba et al. Analysis of a Sub-GHz-Band Diffraction Propagation Model for Maritime Application
Li et al. Tethered balloon communication technology provides mobile communication network coverage for complex terrain environments
Jiang et al. GPS application in highway survey
Meng et al. Towards ubiquitous positioning (ubipos): A gnss perspective
Tang et al. Transmission Line Geological Hazard Detection Based on UAV LiDAR DEM and InSAR
CN106405515A (zh) 一种天基雷达杂波仿真方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180515

Termination date: 20190703