CN111111777A - 一种Pd基聚多巴胺包裹碳纳米管催化剂的制备方法及其在Heck反应中的应用 - Google Patents
一种Pd基聚多巴胺包裹碳纳米管催化剂的制备方法及其在Heck反应中的应用 Download PDFInfo
- Publication number
- CN111111777A CN111111777A CN201911293168.5A CN201911293168A CN111111777A CN 111111777 A CN111111777 A CN 111111777A CN 201911293168 A CN201911293168 A CN 201911293168A CN 111111777 A CN111111777 A CN 111111777A
- Authority
- CN
- China
- Prior art keywords
- polydopamine
- carbon nanotube
- catalyst
- coated carbon
- nanotube catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 94
- 229920001690 polydopamine Polymers 0.000 title claims abstract description 82
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 65
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 56
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 238000007341 Heck reaction Methods 0.000 title claims description 9
- 238000000034 method Methods 0.000 claims abstract description 27
- 230000002194 synthesizing effect Effects 0.000 claims abstract 2
- 238000003756 stirring Methods 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 15
- 239000012153 distilled water Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000001291 vacuum drying Methods 0.000 claims description 10
- 230000009467 reduction Effects 0.000 claims description 9
- CTENFNNZBMHDDG-UHFFFAOYSA-N Dopamine hydrochloride Chemical compound Cl.NCCC1=CC=C(O)C(O)=C1 CTENFNNZBMHDDG-UHFFFAOYSA-N 0.000 claims description 7
- 239000007853 buffer solution Substances 0.000 claims description 7
- 229960001149 dopamine hydrochloride Drugs 0.000 claims description 7
- 238000000967 suction filtration Methods 0.000 claims description 7
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 6
- 238000005303 weighing Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 25
- 239000002105 nanoparticle Substances 0.000 abstract description 13
- 238000005580 one pot reaction Methods 0.000 abstract description 9
- 230000015572 biosynthetic process Effects 0.000 abstract description 8
- 238000003786 synthesis reaction Methods 0.000 abstract description 8
- 230000003993 interaction Effects 0.000 abstract description 4
- 230000008021 deposition Effects 0.000 abstract description 3
- 239000006185 dispersion Substances 0.000 abstract description 3
- 239000011943 nanocatalyst Substances 0.000 abstract description 3
- 238000006116 polymerization reaction Methods 0.000 abstract description 3
- 230000001276 controlling effect Effects 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 102
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229910052763 palladium Inorganic materials 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000002638 heterogeneous catalyst Substances 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910021076 Pd—Pd Inorganic materials 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- YCOXTKKNXUZSKD-UHFFFAOYSA-N as-o-xylenol Natural products CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 description 2
- AAMATCKFMHVIDO-UHFFFAOYSA-N azane;1h-pyrrole Chemical compound N.C=1C=CNC=1 AAMATCKFMHVIDO-UHFFFAOYSA-N 0.000 description 2
- 125000003636 chemical group Chemical group 0.000 description 2
- 239000002815 homogeneous catalyst Substances 0.000 description 2
- SNHMUERNLJLMHN-UHFFFAOYSA-N iodobenzene Chemical compound IC1=CC=CC=C1 SNHMUERNLJLMHN-UHFFFAOYSA-N 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000010025 steaming Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 238000010485 C−C bond formation reaction Methods 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
- B01J31/069—Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/394—Metal dispersion value, e.g. percentage or fraction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/333—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
- C07C67/343—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/40—Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
- B01J2231/42—Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
- B01J2231/4205—C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
- B01J2231/4261—Heck-type, i.e. RY + C=C, in which R is aryl
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种简单高效的方法,通过一锅法合成聚多巴胺包裹碳纳米管负载Pd纳米催化剂的制备方法,主要包括Pd/CNTs‑PDA催化剂的合成步骤,本发明的方法通过调控聚合反应和Pd沉积反应过程中的反应条件,促进Pd纳米颗粒在载体上高效的分散,防止Pd纳米颗粒在反应中流失,污染产物;通过加强活性中心与载体的相互作用,提高催化剂的可重复使用性能,降低催化剂的成本;通过一锅法合成方法,简化制备流程,降低制备成本。
Description
技术领域
本发明涉及催化剂合成技术领域,尤其涉及一种制备Pd基聚多巴胺包裹碳纳米管催化剂 方法及其在Heck反应中的应用。
背景技术
Heck反应是指卤代烃与活化不饱和烃在钯催化下,生成反式产物的反应。该反应是一种 非常有用的碳-碳键形成反应,具有合成的重要性,被广泛地应用于在合成医药、香料、染料、 液晶等精细化工产品。贵金属Pd是Heck反应最有效的催化剂。早期的Pd催化剂是含有膦配 体的均相催化剂,此类催化剂很容易对环境造成污染。尽管在后来的发展中,逐渐出现了一些 不包含膦配体的Pd均相催化剂,但是反应后,催化剂难以从反应混合物中分离,不能重复利用 等,造成了催化剂的成本高、产物提纯困难,使得其不能在工业化中应用。非均相催化剂是解 决这一问题的主要方法之一。其是通过将活性催化位点通过化学键固载到聚合物、碳材料、介 孔材料等无机或者有机载体中。然而,目前大多数的非均相催化剂中,Pd纳米粒子很难实现 高分散均一的负载,这是由于(1)载体表面活性不高,对Pd纳米颗粒的吸附力不足,Pd纳 米颗粒很容易团聚;(2)载体比表面积较小,无法提供充分的Pd纳米颗粒附着位点。这些缺 点导致了非均相催化剂的反应活性低,在反应中易出现流失的现象。解决这一问题的方法是之 一,是(1)对载体进行化学修饰,从而提高Pd纳米颗粒的分散性和锚定力,(2)选取大比表 面积的载体。这就造成了此类非均相催化剂的制备需要耗费例如载体修饰、催化剂负载等多步 流程,使得催化剂的制备耗能高、成本高。因此,急需开发一种流程简单、经济的合成路径合 成非均相Pd催化剂,应用于Heck反应的工业化生产中。
碳纳米管是一种具有大比面积、抗酸碱性强、结构稳定且具有特殊电子结构的载体,非常 适合应用于有机反应的催化剂载体。但是碳纳米管的碳结构非常稳定,活性较低,因此在负载 金属纳米颗粒时,非常容易团聚。因此,对碳纳米管进行预处理,使其表面含有丰富的官能团 是解决这一问题的主要方法。在大量的预处理的方法中,使用聚合物包裹碳纳米管,是非常有 效的改性手段,其可以在不破坏碳纳米管原有结构的基础上,在碳纳米管表面生成非常丰富的 化学基团,这些基团可以与金属纳米颗粒成键,从而降低Pd-Pd键的作用力,起到分散Pd团 簇的作用。然而,目前制备聚合物包裹碳纳米管负载Pd催化剂的方法主要为两步法,包括聚 合物负载碳纳米管的制备、洗涤、Pd纳米颗粒的沉积等过程,制备工艺复杂,成本高且在反 应过程中易产生大量的废液。
发明内容
本发明目的在于提供一种简单、高效的聚多巴胺包裹碳纳米管负载Pd纳米催化剂的制备 方法。
为解决以上技术问题,本发明采用的技术方案是:一种Pd基聚多巴胺包裹碳纳米管催化 剂的制备方法,包括以下步骤:
(1)、Pd/CNTs-PDA催化剂的一锅法合成:
取碳纳米管到三颈烧瓶中,加入一定量的蒸馏水在机械搅拌器下搅拌一段时间;将盐酸多 巴胺DA、H8Cl6N2Pd溶液、Tris-HCl缓冲液、蒸馏水依次加入到上述混合液中,超声搅拌, 抽滤得黑色固体,真空干燥,将得到的黑色固体在H2/N2中还原,制得催化剂Pd/CNTs-PDA。
具体的,
称取0.95g碳纳米管到500mL的三颈烧瓶中,加入100mL蒸馏水在机械搅拌器下搅拌 2h;将0.95g盐酸多巴胺DA,47mL 10mmol/L H8Cl6N2Pd溶液,50ml、pH=8.5的Tris-HCl缓冲液、100mL蒸馏水依次加入到上述混合液中,超声搅拌,抽滤得黑色固体,真空干燥, 将得到的黑色固体在H2/N2的混合气氛中还原,制得催化剂Pd/CNTs-PDA。
优选的,超声搅拌时间为24h;真空干燥温度为60℃,干燥时间为12h。
优选的,包括将得到的黑色固体在200℃的H2/N2=1:1中还原1h。
优选的,在H2/N2=1:1混合气氛中,H2与N2的流速均为20mL/min。
本发明的另一个目的提供了一种如上述的制备方法所制得的Pd基聚多巴胺包裹碳纳米管 催化剂,该催化剂由聚多巴胺均匀的包裹在碳纳米管的管外,碳纳米管的管径在20-30nm, 聚多巴胺的平均厚度为8.6±1.0nm,Pd元素分布于聚多巴胺的中间,Pd的尺寸在0.5-3.0nm。
进一步的,所述催化剂Pd/CNTs-PDA中零价态的零价态的Pd占据73%和二价态的Pd占 据27%。
进一步的,所述催化剂Pd/CNTs-PDA中的CNTs-PDA包含6%的PDA。
本发明方法制得的Pd基聚多巴胺包裹碳纳米管催化剂在Heck反应中具体非常优异的催 化性能。
本发明提出了一种简单高效的方法,通过一锅法合成聚多巴胺包裹碳纳米管负载Pd纳米 催化剂。我们选取了易得且环保的化合物——聚多巴胺作为修饰物,来包裹碳纳米管。其表面 丰富的化学基团可以为Pd提供稳定的吸附位点。将聚多巴胺的聚合和Pd的负载在一个流程 中进行,可以使得Pd纳米颗粒在动态沉积过程中,找寻到更多丰富的位点,因而具有更好的 分散性和稳定性。
为传统催化剂在Heck反应中存在稳定性差、反应活性低和制备流程复杂的问题,本发明 使用一锅法制备聚多巴胺包裹碳纳米管负载Pd复合催化剂;通过调控聚合反应和Pd沉积反 应过程中的反应条件,促进Pd纳米颗粒在载体上高效的分散,防止Pd纳米颗粒在反应中流 失,污染产物;通过加强活性中心与载体的相互作用,提高催化剂的可重复使用性能,降低催 化剂的成本;再者,通过一锅法合成方法,简化制备流程,降低制备成本。
附图说明
图1为本发明催化剂的高角环形暗场像(a)及元素分布图元素分布图C(b),N(c),O(d)和 Pd(e);
图2为本发明Pd/CNTs-PDA的XPS谱图,Pd分谱图(a),C分谱图(b),N分谱图(c)。
图3为本发明中Pd/CNTs和Pd/CNTs-PDA的TG图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述, 但不构成对本发明保护范围的限制。
实施例1
Pd/CNTs-PDA催化剂的制备
(1)Pd基聚多巴胺(PDA)包裹碳纳米管(CNTs)催化剂的合成
称取0.95g碳纳米管到500mL的三颈烧瓶中,加入100mL蒸馏水在机械搅拌器下搅拌 2h;将0.95g盐酸多巴胺DA、47mL 10mmol/L H8Cl6N2Pd溶液、50ml(PH=8.5)Tris-HCl缓冲 液、100mL蒸馏水依次加入到上述混合液中,超声搅拌24h,抽滤得黑色固体,60℃真空干燥12h。样品在200℃的H2/N2(1:1)的混合气氛中还原1h,H2与N2的流速均为20mL/min。 命名为Pd/CNTs-PDA。
实施例2
Pd/PDA催化剂的制备
(1)Pd基聚多巴胺(PDA)催化剂的合成
在500mL的烧杯中依次加入0.95g盐酸多巴胺单体DA、4.32mL 0.1086mol/LH8Cl6N2Pd 溶液、100ml(PH=8.5)Tris-HCl缓冲液,接着在室温下搅拌24h,抽滤得黑色固体,60℃真空 干燥12h。样品在200℃的H2/N2(1:1)的混合气氛中还原1h,H2与N2的流速均为20mL/min。 命名为Pd/PDA。
实施例3
Pd/CNTs催化剂的制备
(1)Pd基碳纳米管(CNTs)催化剂的合成
在250mL的烧杯中依次加入8.34mL 0.0563mol/L H8Cl6N2Pd溶液、100mL丙酮溶液磁 力搅拌10min,然后加入0.95g碳纳米管搅拌50min;接着超声3h(温度低于30℃),旋蒸(40 ℃、100转速),接着放入60℃真空干燥12h。样品在200℃的H2/N2(1:1)的混合气氛中还原1h,H2与N2的流速均为20mL/min。命名为Pd/CNTs。
1.催化剂的活性测试
将10mmol碘苯,15mmol丙烯酸甲酯,15mmol三乙胺加入到20ml的N,N-二甲基甲酰胺溶剂中,转移至50ml圆底烧瓶中。反应条件为:100℃下磁力搅拌反应3h。催化剂用量 为40mg(质量分数为5%)。每次反应过后,反应液冷却至室温。然后催化剂通过抽滤进行分离。接着,使用无水乙醇多次洗涤,在60℃真空干燥12h。最后将干燥后的催化剂用于下一轮新的反应中。
2.催化剂的结构描述
催化剂的高角环形暗场像见图1a,相应的元素分布见图b-c。从图中可以看到,碳纳米管 的管径在20-30nm,聚多巴胺富含碳、氧和氮元素。可以观测到聚多巴胺均匀的包裹在碳纳 米管的管外,平均的厚度为8.6±1.0nm。Pd元素的分布见图e,Pd元素分布于聚多巴胺的中 间,Pd的尺寸在0.5-3.0nm(平均尺寸为1.9±0.4nm)。
催化剂Pd/CNTs-PDA的元素组成通过XPS来测试,主要为C,N,O,Pd元素。其中Pd 等分谱图(图2a)中,位于341.8和336.2eV处的峰,归属于Pd(0)3d3/2和3d5/2,而位于339.8 和338.2处的峰主要归属于Pd(II)3d3/2和3d5/2。可能是由于与O和N元素作用,产生的二价 化合物,其中,Pd(0)占据73%,而Pd(II)占到27%。在Pd/CNT样品中,Pd5/2的结合能为336.0eV,PDA与Pd的键合作用使得Pd5/2的峰发生了偏移。这说明有部分的Pd与聚多巴胺表面 的氧和氮形成了新的物种,从而加强了Pd与载体之间的相互作用。对C1s分谱(图2b)的分 析发现,位于284.9eV归属于C-N,C-O-,-C-C-键,位于287.2eV的峰归属于C=O键,位 于289.1eV的峰归属于–COOH。对N的分谱分析发现(图2c),位于400.2eV的峰为吡咯型 氮,位于399.2eV的峰归属于Nx-metal的复合物,而402.2处的峰主要归属于PDA外层的 N-H,-N=基团。所有氮的结构中,吡咯型氮占大部分。这说明碳纳米管表面由聚多巴胺包裹, 形成了大量的含氮和含氧的官能团。Pd物种在负载过程中,可以与多种含氧和含氮的物种结 合,形成二价的化合物。这些化合物与载体之间形成了稳定的相互作用,可以防止Pd-Pd的团聚。图3是催化剂Pd/CNT和Pd/CNTs-PDA的热重结果。我们发现在500℃的时候,Pd/CNT 失重约为5.4%,而Pd/CNTs-PDA的失重约为11.4%,在CNTs-PDA中包含约为6%的PDA。
在表1中,我们列出了文献中报道的催化剂在催化碘苯和丙烯酸甲酯的性能,我们发现, 文献中报道的这些催化剂,均需要通过2-4步的反应,催化剂的制备过程复杂。相对来说,我 们的Pd/CNT-PDA只需要一步反应就可以制得。另外,Pd/CNT-PDA催化剂,可以在更低的催 化剂用量、或较低的反应温度或较短的反应时间下获得转化率,说明我们的催化剂具有非常优 异的催化性能。
表1催化剂性能比较
aPd content with respect to ArX.
bConversation
参考文献:
1.Ye,Z.;Zhang,B.;Shao,L.;Xing,G.;Qi,C.;Tao,H.,Palladium nanoparticlesembedded chitosan/poly(vinyl alcohol) composite nanofibers as an efficientand stable heterogeneous catalyst for Heck reaction.Journal of AppliedPolymer Science 2019,136.
2.Shao,L.;Ji,W.;Dong,P.;Zeng,M.;Qi,C.;Zhang,X.-M.,Coupling reactionsof aromatic halides with palladium catalyst immobilized on poly(vinylalcohol)nanofiber mats.Applied Catalysis A:General 2012,413-414,267-272.
3.Gole,B.;Sanyal,U.;Banerjee,R.;Mukherjee,P.S.,High Loading of PdNanoparticles by Interior Functionalization of MOFs for HeterogeneousCatalysis.Inorganic Chemistry,acs.inorgchem.5b02739.
4.Motevalizadeh,S.F.;Alipour,M.;Ashori,F.;Samzadeh-Kermani,A.;Hamadi,H.;Ganjali,M.R.;Aghahosseini,H.; Ramazani,A.;Khoobi,M.;Gholibegloo,E.,Heckand oxidative boron Heck reactions employing Pd(II)supported amphiphilizedpolyethyleneimine-functionalized MCM-41(MCM-41@aPEI-Pd)as an efficient andrecyclable nanocatalyst.Applied Organometallic Chemistry 2018,32(3),e4123.
5.Mahmoudi,H.;Valentini,F.;Ferlin,F.;Bivona,L.A.;Anastasiou,I.;Fusaro,L.;Aprile,C.;Marrocchi,A.;Vaccaro,L.,A tailored polymeric cationictag–anionic Pd(ii)complex as a catalyst for the low-leaching Heck–Mizorokicoupling in flow and in biomass-derived GVL.Green Chemistry 2019,21(2),355-360.
6.Giacalone,F.;Campisciano,V.;Calabrese,C.;La Parola,V.;Liotta,L.F.;Aprile,C.;Gruttadauria,M.,Supported C60-IL-PdNPs as extremely activenanocatalysts for C–C cross-coupling reactions.Journal of Materials ChemistryA 2016, 4(43),17193-17206.
7.Bagherzadeh,M.;Kaveh,R.;Mahmoudi,H.,Facile synthesis of arecyclable Pd-rGO/CNT/CaFe2O4 nanocomposite with high multifunctionalphotocatalytic activity under visible light irradiation.Journal of MaterialsChemistry A 2019,7 (27),16257-16266.
8.Nuri,A.;Vucetic,N.;Smatt,J.H.;Mansoori,Y.;Mikkola,J.P.;Murzin,D.Y.,Pd Supported IRMOF-3:Heterogeneous,Effi cient and Reusable Catalyst for HeckReaction.Catalysis Letters 2019,149(7),1941-1951.
9.Wei,Y.L.;Li,Y.;Chen,Y.Q.;Dong,Y.;Yao,J.J.;Han,X.Y.;Dong,Y.B.,Pd(II)-NHDC-Functionalized UiO-67Type MOF for Catalyzing Heck Cross-Couplingand Intermolecular Benzyne-Benzyne-Alkene Insertion Reactions.2018,57(8),4379-4386.
10.Nabid,M.R.;Bide,Y.;Tabatabaei Rezaei,S.J.,Pd nanoparticlesimmobilized on PAMAM-grafted MWCNTs hybrid materials as new recyclablecatalyst for Mizoraki–Heck cross-coupling reactions.Applied Catalysis A:General 2011,406 (1),124-132.
为了比较催化剂的重复使用性能,我们制备了Pd/PDA,Pd/CNTs与我们的Pd/CNTs-PDA 催化剂比较。我们发现,Pd/CNTs-PDA催化剂在5次循环使用过程中,催化性能略有降低。 而没有混合碳纳米管的Pd/PDA催化剂,在反应一次后,反应性能开始明显降低。而直接将 Pd负载在碳纳米管上的Pd/CNTs在反应3次后,催化效率显著下降。因此,使用聚多巴胺包 裹碳纳米管,负载Pd催化剂,显著的提高了催化剂的稳定性。
表2催化剂重复使用性能比较
催化剂 | 1 | 2 | 3 | 4 | 5 |
Pd/CNTs-PDA | 99.1 | 95.7 | 94.9 | 92.8 | 84 |
Pd/PDA | 98.8 | 81.3 | 80.5 | 79.3 | 77.4 |
Pd/CNTs | 97.6 | 47.6 | 23.5 | 5.9 | 2.5 |
催化剂制备条件:
1. 5%Pd/CNTs-PDA催化剂的合成方法(以合成1g催化剂为例)
称取0.95g碳纳米管到500mL的三颈烧瓶中,加入100mL蒸馏水在机械搅拌器下搅拌2h; 将0.95g盐酸多巴胺单体DA、47mL 10mmol/L H8Cl6N2Pd溶液、50ml(PH=8.5)Tris-HCl缓冲 液、100mL蒸馏水依次加入到上述混合液中,超声搅拌24h,抽滤得黑色固体,60℃真空干 燥12h。样品在200℃的H2/N2(1:1)气氛下还原1h,H2与N2的流速均为20mL/min。
2. 5%Pd/PDA催化剂的合成方法(以合成1g催化剂为例)
在500mL的烧杯中依次加入0.95g盐酸多巴胺单体DA、4.32mL 0.1086mol/LH8Cl6N2Pd溶 液、100ml(PH=8.5)Tris-HCl缓冲液,接着在室温下搅拌24h,抽滤得黑色固体,60℃真空干 燥12h。样品在200℃的H2/N2(1:1)气氛下还原1h,H2与N2的流速均为20mL/min。
3. 5%Pd/CNTs催化剂的合成方法(以合成1g催化剂为例)
在250mL的烧杯中依次加入8.34mL 0.0563mol/L H8Cl6N2Pd溶液、100mL丙酮溶液磁力搅 拌10min,然后加入0.95g碳纳米管搅拌50min;接着超声3h(温度低于30℃),旋蒸(40℃、 100转速),接着放入60℃真空干燥12h。样品在200℃的H2/N2(1:1)气氛下还原1h,H2与 N2的流速均为20mL/min。
综上所述,本发明采用一锅法制备了聚多巴胺包裹碳纳米管负载Pd催化剂。该催化剂在 反应中具有非常好的重复使用性能。在催化剂中大量的含氮和氧官能团与Pd形成配位键,这 些键非常稳定,有效抑制了Pd纳米粒子的流失与团聚,因此,有效降低了催化剂的成本。另 外,采用一锅法制备催化剂的方法,大大减少了制备流程,降低了反应成本,并且催化剂可以 有效的回收与分离,防止了产物的污染及再提纯过程。因此具有潜在的工业化价值。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在 不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保 护范围。
Claims (10)
1.一种Pd基聚多巴胺包裹碳纳米管催化剂的制备方法,其特征在于,包括以下步骤:
(1)Pd基聚多巴胺包裹碳纳米管催化剂的合成:
取一定量的碳纳米管到三颈烧瓶中,加入一定量的蒸馏水在机械搅拌器下搅拌一段时间;将盐酸多巴胺DA、H8Cl6N2Pd溶液、Tris-HCl缓冲液、蒸馏水依次加入到上述混合液中,超声搅拌,抽滤得黑色固体,真空干燥,将得到的黑色固体在H2/N2中还原,制得催化剂Pd/CNTs-PDA。
2.根据权利要求1所述的Pd基聚多巴胺包裹碳纳米管催化剂的制备方法,其特征在于:
包括称取0.95g碳纳米管到500mL的三颈烧瓶中,加入100mL蒸馏水在机械搅拌器下搅拌2h;将0.95g盐酸多巴胺DA,47mL 10mmol/L H8Cl6N2Pd溶液,50ml、pH=8.5的Tris-HCl缓冲液、100mL蒸馏水依次加入到上述混合液中,超声搅拌,抽滤得黑色固体,真空干燥,将得到的黑色固体在H2/N2中还原,制得催化剂Pd/CNTs-PDA。
3.根据权利要求2所述的Pd基聚多巴胺包裹碳纳米管催化剂的制备方法,其特征在于:
所述超声搅拌时间为24h,所述真空干燥温度为60℃,干燥时间为12h。
4.根据权利要求2所述的Pd基聚多巴胺包裹碳纳米管催化剂的制备方法,其特征在于:
包括将得到的黑色固体在200℃的H2/N2=1:1中还原1h。
5.根据权利要求4所述的Pd基聚多巴胺包裹碳纳米管催化剂的制备方法,其特征在于:
包括将得到的黑色固体在H2/N2=1:1中还原,H2、N2的流速均为20mL/min。
6.一种如权利要求1-5任意一项所述的制备方法所制得的Pd基聚多巴胺包裹碳纳米管催化剂。
7.如权利要求6所述的Pd基聚多巴胺包裹碳纳米管催化剂,其特征在于:聚多巴胺均匀的包裹在碳纳米管的管外,碳纳米管的管径在20-30nm,聚多巴胺的平均厚度为8.6±1.0nm,Pd元素分布于聚多巴胺的中间,Pd的尺寸在0.5-3.0nm。
8.如权利要求6或7所述的Pd基聚多巴胺包裹碳纳米管催化剂,其特征在于:所述催化剂Pd/CNTs-PDA中零价态的Pd占据73%和二价态的Pd占据27%。
9.如权利要求8所述的Pd基聚多巴胺包裹碳纳米管催化剂,其特征在于:所述催化剂Pd/CNTs-PDA中的CNTs-PDA包含6%的PDA。
10.如权利要求1-9任一项所述的Pd基聚多巴胺包裹碳纳米管催化剂在Heck反应中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911293168.5A CN111111777B (zh) | 2019-12-16 | 2019-12-16 | 一种Pd基聚多巴胺包裹碳纳米管催化剂的制备方法及其在Heck反应中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911293168.5A CN111111777B (zh) | 2019-12-16 | 2019-12-16 | 一种Pd基聚多巴胺包裹碳纳米管催化剂的制备方法及其在Heck反应中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111111777A true CN111111777A (zh) | 2020-05-08 |
CN111111777B CN111111777B (zh) | 2023-03-14 |
Family
ID=70499019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911293168.5A Active CN111111777B (zh) | 2019-12-16 | 2019-12-16 | 一种Pd基聚多巴胺包裹碳纳米管催化剂的制备方法及其在Heck反应中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111111777B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108080025A (zh) * | 2017-12-21 | 2018-05-29 | 广东医科大学 | 一种钯基聚苯胺包裹碳纳米管纳米催化剂的制备方法及其在Heck反应的应用 |
CN111659372A (zh) * | 2020-06-20 | 2020-09-15 | 珠海复旦创新研究院 | 碳纳米管限域的尺寸可调钯基催化剂及其制备方法与应用 |
CN112675909A (zh) * | 2020-12-24 | 2021-04-20 | 西南民族大学 | 一种聚多巴胺球锚定Pd纳米颗粒催化剂制备方法 |
CN113042083A (zh) * | 2021-03-25 | 2021-06-29 | 西南民族大学 | 一种钯基单原子催化剂及其制备与应用方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160243525A1 (en) * | 2016-05-02 | 2016-08-25 | LiSo Plastics, L.L.C. | Multilayer Polymeric Membrane and Process |
CN106000459A (zh) * | 2016-06-06 | 2016-10-12 | 南京工业大学 | 一种负载型钯纳米催化剂的制备方法 |
US9480978B1 (en) * | 2016-01-06 | 2016-11-01 | King Fahd University Of Petroleum And Minerals | Surface bonded Rh-bis(diarylphosphine) on magnetic nanoparticles as a recyclable catalyst for hydroformylation of olefins |
CN107252695A (zh) * | 2017-07-26 | 2017-10-17 | 广东医科大学 | 钯基多巴胺包裹磁性碳纳米管催化剂及其制备方法及应用 |
CN107489018A (zh) * | 2017-08-07 | 2017-12-19 | 中国科学技术大学 | 一种新型的聚多巴胺包覆石墨烯复合纤维及其制备方法 |
CN108456909A (zh) * | 2018-03-12 | 2018-08-28 | 武汉科技大学 | 一种钛基底表面纳米管负载贵金属纳米颗粒复合材料及其制备方法 |
CN109811366A (zh) * | 2019-03-20 | 2019-05-28 | 鄂尔多斯市瀚博科技有限公司 | 一种分解电解循环淡盐水中氯酸盐的方法 |
-
2019
- 2019-12-16 CN CN201911293168.5A patent/CN111111777B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9480978B1 (en) * | 2016-01-06 | 2016-11-01 | King Fahd University Of Petroleum And Minerals | Surface bonded Rh-bis(diarylphosphine) on magnetic nanoparticles as a recyclable catalyst for hydroformylation of olefins |
US20160243525A1 (en) * | 2016-05-02 | 2016-08-25 | LiSo Plastics, L.L.C. | Multilayer Polymeric Membrane and Process |
CN106000459A (zh) * | 2016-06-06 | 2016-10-12 | 南京工业大学 | 一种负载型钯纳米催化剂的制备方法 |
CN107252695A (zh) * | 2017-07-26 | 2017-10-17 | 广东医科大学 | 钯基多巴胺包裹磁性碳纳米管催化剂及其制备方法及应用 |
CN107489018A (zh) * | 2017-08-07 | 2017-12-19 | 中国科学技术大学 | 一种新型的聚多巴胺包覆石墨烯复合纤维及其制备方法 |
CN108456909A (zh) * | 2018-03-12 | 2018-08-28 | 武汉科技大学 | 一种钛基底表面纳米管负载贵金属纳米颗粒复合材料及其制备方法 |
CN109811366A (zh) * | 2019-03-20 | 2019-05-28 | 鄂尔多斯市瀚博科技有限公司 | 一种分解电解循环淡盐水中氯酸盐的方法 |
Non-Patent Citations (1)
Title |
---|
ZHEYE ZHANG ET AL.: "Facile synthesis of N-doped porous carbon encapsulated bimetallic PdCo as a highly active and durable electrocatalyst for oxygen reduction and ethanol oxidation", 《JOURNAL OF MATERIALS CHEMISTRY A》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108080025A (zh) * | 2017-12-21 | 2018-05-29 | 广东医科大学 | 一种钯基聚苯胺包裹碳纳米管纳米催化剂的制备方法及其在Heck反应的应用 |
CN111659372A (zh) * | 2020-06-20 | 2020-09-15 | 珠海复旦创新研究院 | 碳纳米管限域的尺寸可调钯基催化剂及其制备方法与应用 |
CN111659372B (zh) * | 2020-06-20 | 2022-12-27 | 珠海复旦创新研究院 | 碳纳米管限域的尺寸可调钯基催化剂及其制备方法与应用 |
CN112675909A (zh) * | 2020-12-24 | 2021-04-20 | 西南民族大学 | 一种聚多巴胺球锚定Pd纳米颗粒催化剂制备方法 |
CN113042083A (zh) * | 2021-03-25 | 2021-06-29 | 西南民族大学 | 一种钯基单原子催化剂及其制备与应用方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111111777B (zh) | 2023-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111111777B (zh) | 一种Pd基聚多巴胺包裹碳纳米管催化剂的制备方法及其在Heck反应中的应用 | |
Molnár | The use of chitosan-based metal catalysts in organic transformations | |
Reddy et al. | Nanofibrous TiO2-core/conjugated polymer-sheath composites: synthesis, structural properties and photocatalytic activity | |
CN110918126B (zh) | 一种花状二硫化钼结合UiO-66光催化剂的制备方法 | |
Zhu et al. | Highly catalytic and durable nanocellulose fibers-based nanoporous membrane film for efficient organic pollutant degradation | |
Zhao et al. | One-pot synthesis of conjugated microporous polymers loaded with superfine nano-palladium and their micropore-confinement effect on heterogeneously catalytic reduction | |
Ayad et al. | Polypyrrole-coated cotton fabric decorated with silver nanoparticles for the catalytic removal of p-nitrophenol from water | |
Cheng et al. | In situ prepared nanosized Pt-Ag/PDA/PVA-co-PE nanofibrous membrane for highly-efficient catalytic reduction of p-nitrophenol | |
Wang et al. | Metal-organic framework grown in situ on chitosan microspheres as robust host of palladium for heterogeneous catalysis: Suzuki reaction and the p-nitrophenol reduction | |
CN110064434B (zh) | 本征光催化中空纤维的制备方法 | |
CN107670694B (zh) | 一种金属负载型催化剂及其制备方法和应用 | |
Noël et al. | Cyclodextrins as multitask agents for metal nano-heterogeneous catalysis: A review | |
Xie et al. | Dual roles of cellulose monolith in the continuous-flow generation and support of gold nanoparticles for green catalyst | |
CN106694048A (zh) | 一种核壳铜纳米线‑有机金属骨架复合催化剂及其制备方法和应用 | |
Dang et al. | Polymer nanoparticles with dendrimer-Ag shell and its application in catalysis | |
CN107774246A (zh) | 一种中空介孔硅纳米胶囊核内负载钯催化剂的制备方法及其应用 | |
CN105289748B (zh) | 一种软模板辅助合成磁性限域贵金属催化剂的制备方法 | |
CN108080025A (zh) | 一种钯基聚苯胺包裹碳纳米管纳米催化剂的制备方法及其在Heck反应的应用 | |
Xia et al. | Quaternized polyhedral oligomeric silsesquioxanes stabilized Pd nanoparticles as efficient nanocatalysts for reduction reaction | |
TWI468225B (zh) | 奈米碳管金屬粒子複合物以及包含該複合物的催化劑材料 | |
Kong et al. | Templated synthesis of polyaniline nanotubes with Pd nanoparticles attached onto their inner walls and its catalytic activity on the reduction of p-nitroanilinum | |
Lakshminarayana et al. | Switching of support materials for the hydrogenation of nitroarenes: A review | |
CN114011475A (zh) | 一种氧空位可调的四氧化三铁/聚多巴胺/铜氧化物复合催化剂及其制备方法 | |
Peng et al. | MXene-based gold nanoparticle catalyst with high activity and stability for 4-nitrophenol reduction | |
Zhang et al. | Cellulose derived Pd nano-catalyst for efficient catalysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Sun Wenjing Inventor after: Luo Zhengxiu Inventor after: Ran Maofei Inventor before: Sun Jingwen Inventor before: Luo Zhengxiu Inventor before: Ran Maofei |
|
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |