CN111092116A - 通过源极分割增加正向偏置安全操作区 - Google Patents

通过源极分割增加正向偏置安全操作区 Download PDF

Info

Publication number
CN111092116A
CN111092116A CN201911014151.1A CN201911014151A CN111092116A CN 111092116 A CN111092116 A CN 111092116A CN 201911014151 A CN201911014151 A CN 201911014151A CN 111092116 A CN111092116 A CN 111092116A
Authority
CN
China
Prior art keywords
source
segmented
perimeter
view
power device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911014151.1A
Other languages
English (en)
Inventor
P·谢诺伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies North America Corp
Original Assignee
Infineon Technologies North America Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies North America Corp filed Critical Infineon Technologies North America Corp
Publication of CN111092116A publication Critical patent/CN111092116A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0869Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本公开涉及通过源极分割增加正向偏置安全操作区。例如,一种功率器件,包括:两个栅极条,形成在器件的上表面上;源极条周界,包括两个栅极条和对应源极条之间的总可用共享周界;以及分段源极,形成在两个栅极条之间,其中分段源极的边缘长度覆盖源极条周界的5%到95%之间。

Description

通过源极分割增加正向偏置安全操作区
技术领域
本发明总体上涉及用于增加正向偏置安全操作区(“FBSOA”)的器件和方法。
背景技术
图1示出了FBSOA 100作为各种限制曲线下的面积。例如,FBSOA受到最大电流限制102的限制。FBSOA也受到最大功率限制的限制。示出了100μs(104)、1ms(106)、10ms(108)和DC(110)的功率限制曲线。图1中还示出了热不稳定性限制曲线112和RDS(on)限制曲线116。
一般来说,在线性模式应用以及在设计和使用通过场效应晶体管(FET)时,FBSOA是重要的考虑因素。N沟道金属氧化物半导体FET(MOSFET)通常用于开关应用,因此FBSOA被牺牲用于RDS(on)和其他参数。P沟道MOSFET通常用于线性模式应用,因此FBSOA也是这些器件的重要参数。
FBSOA很难得到显著改善。
FBSOA通过涉及电荷热失衡的复杂事件链确定,在低于零温度系数点的电流水平下通过正反馈放大。存在器件的漏电流和跨导与温度无关的偏置点。这种点被称为零温度系数(ZTC)偏置点。
电气特性的失衡,特别是在器件沟道(Vt,Gm)中,将在一个位置引起更高的电流密度。这导致更高的局部功耗,导致更高的温度,然后导致更低的Vt,从而导致更高的电流,循环继续使得最终导致热失控。
即使在没有电气失衡的情况下,管芯中心和管芯边缘之间的固有热阻抗失衡引起管芯中心更热,进而导致Vt中的电气失衡,最终导致热失控。
这种热失衡在大管芯对小管芯中更为明显,导致管芯中心在与管芯面积不成比例的电流下出现故障。
再次参考图1,在限制曲线112中看出,热不稳定区域在高压下降低FBSOA。降低热不稳定性将导致如虚线114所示的改进最大功率斜率。显然地,降低热不稳定性显著增加了较高电压下的FBSOA。
发明内容
一种功率器件包括:至少两个栅极条,形成在器件的上表面上;源极条周界(perimeter,也称为“周长”),包括至少两个栅极条和对应源极条之间的总可用共享周界;以及分段源极,形成在至少两个栅极条之间,其中分段源极的边缘长度覆盖源极条周界的5%到95%之间。
附图说明
为了更全面地了解本发明及其优点,现结合附图参考以下说明,其中:
图1是典型功率器件的FBSOA的示图;
图2是包括多个栅极条和多个源极条的典型功率器件的平面图;
图3是包括两个栅极条和单个源极条的典型功率器件的平面图;
图4是包括两个栅极条和两个源极条的典型功率器件的平面图;
图5是根据包括方格(checkered)源极的实施例的功率器件的平面图;
图6A是包括两个栅极条和单个源极条的典型功率器件的平面图;
图6B是与图6A的平面图相对应的典型功率器件的截面图;
图7A是包括两个栅极条和两个源极条的典型功率器件的平面图;
图7B是与图7A的平面图相对应的典型功率器件的截面图;
图8A是根据一个实施例的包括方格源极的功率器件的平面图;
图8B是对应于图8A的平面图的包括方格源极的功率器件的第一截面图;
图8C是对应于图8A的平面图的包括方格源极的功率器件的第二截面图;
图9是根据一个实施例的包括部分单侧源极的功率器件的平面图;
图10是根据实施例的包括阶梯源极的功率器件的平面图;
图11A是根据一个实施例的包括阶梯源极的功率器件的平面图;
图11B是与图11A的平面图相对应的包括阶梯源极的功率器件的第一截面图;
图11C是与图11A的平面图相对应的包括阶梯源极的功率器件的第二截面图;
图12是根据一个实施例的包括不对称方格源极的功率器件的平面图;
图13是根据一个实施例的包括不对称阶梯源极的功率器件的平面图;
图14是根据一个实施例的包括具有圆角的方格源极的功率器件的平面图;
图15是根据一个实施例的包括具有圆角的阶梯源极的功率器件的平面图;
图16是根据一个实施例的用于评估分段源极器件的性能的仿真结果表;
图17是根据一个实施例的用于评估分段源极器件的性能的实验结果表;
图18是根据一个实施例的包括源极分割的径向变化的功率器件的平面图;
图19是根据一个实施例的包括源极分割的圆形径向变化的功率器件的平面图;
图20是根据一个实施例的包括源极分割的矩形径向变化的功率器件的平面图;
图21A是根据现有技术的在方形单元中具有正方形源极的蜂窝功率器件的平面图;
图21B是根据一个实施例的蜂窝功率器件的平面图,该蜂窝功率器件具有在正方形单元中具有两个片段的分段正方形源极;
图21C是根据一个实施例的蜂窝功率器件的平面图,该蜂窝功率器件具有在正方形单元中具有单个片段的分段正方形源极;
图22示出了根据一个实施例的适用于包括分段源极的各种功率器件单元配置的平面图;
图23A是根据现有技术的具有沟槽栅极的功率器件的平面图;
图23B是与图23A的平面图相对应的功率器件的截面图;
图24A是根据一个实施例的具有沟槽栅极和分段源极的功率器件的平面图;
图24B是与图24A的平面图相对应的功率器件的第一截面图;以及
图24C是与图24A的平面图相对应的功率器件的第二截面图。
具体实施方式
图2是典型功率器件的平面图,其包括多个多晶硅栅极条202A、202B、202C、202D和202E以及多个源极条204A、204B、204C和204D。虽然图2中示出了五个多晶硅栅极条和四个源极条,但在典型功率器件中可以使用任意数量。在图2中示出了功率器件的单元间距(“cp”)206,其通常对应于诸如栅极条202B的第一多晶硅栅极条和诸如栅极条202C的第二多晶硅栅极条之间的距离。
图3是典型功率器件的平面图,其包括两个栅极条202A和202B以及单个源极条204A。多晶硅栅极条202A和202B与源极条204A之间的总共享周界被定义为“源极条周界”,以帮助解释本文描述的实施例的源极分割。例如,在图3中,源极条204A的边缘206“覆盖”或占据器件的“源极条周界”的100%。如关于图1所解释的,图3所示的典型功率器件可沿着曲线112在较高电压下遭受热不稳定性限制。根据实施例的使用源极分割的器件覆盖小于源极条周界的100%,以便提高在较高操作电压下的热稳定性,从而使FBSOA最大化并将热不稳定性限制曲线从112扩展到114(如图1所示)。在图3的传统器件中,源极204A可占据多晶硅栅极条202A和202B之间的一些或所有面积,但占据如上所定义的源极条周界的100%。
图4是典型功率器件的平面图,其包括两个源极条404A和404B以及两个多晶硅栅极402A和402B。在图4中,源极条404A和404B的边缘406“覆盖”或占据器件“源极条周界”的100%。因此,根据一个实施例,图4所示的器件不被认为具有源极分割。虽然图4中的器件的总源极面积小于图3所示器件的总源极面积,但两个器件仍然覆盖器件的源极条周界的100%。
图5是根据一个实施例的功率器件的平面图,其包括方格源极以及多晶硅栅极条502A和502B,方格源极包括各个源极504A、504B和504C。应注意,源极504A与多晶硅栅极条502B和源极504B横向隔开。源极504B与多晶硅栅极条502A以及源极504A和504C横向隔开。源极504C与多晶硅栅极条502B和源极504B横向隔开。在图5中,源极504A、504B和504C的总边缘长度506覆盖小于器件的“源极条周界”506的50%。下面详细讨论用于在较高操作电压下改进热稳定性以使FBSOA最大化的最佳源极分割覆盖百分比。方格图案间距508如图5所示。方格间距被定义为以下距离:包括源极504B和504C的长度的距离、源极之间的距离以及上一个源极(源极504A)和下一个源极之间的距离的一半。
图6A是包括两个多晶硅栅极条602A和602B以及单个源极条604A的典型功率器件的平面图。图6B是与图6A的平面图相对应的典型功率器件的截面图,示出了形成在器件的上表面上的多晶硅栅极条602A和602B。源极604A大体从多晶硅栅极602A延伸至多晶硅栅极602B。图6B的截面图还示出本体区域607、沟道区域606和延伸到器件底面的漏极608。
图7A是包括两个多晶硅栅极条702A和702B以及两个源极条704A和704B的典型功率器件的平面图。图7B是与图7A的平面图相对应的典型功率器件的截面图,示出了形成在器件的上表面上的多晶硅栅极702A和702B。虽然示出了多晶硅栅极,但可以使用其他材料。源极704A大体从多晶硅栅702A延伸到去往多晶硅栅702B的大约三分之一的距离。类似地,源极704B大体从多晶硅栅702B延伸到去往多晶硅栅702A的大约三分之一的距离。图7B的截面图还示出了本体区域707、沟道区域706和延伸到器件底面的漏极708。应注意,源极704A和704B的边缘没有被分割,因为它们占据了如上所定义的源极条总周界的100%。源极704A、704B和沟道区域706被示为漏极区域708内的掺杂区域。可以使用用于形成源极、本体、沟道和漏极的其它技术,同时保持图7B所示的大体截面配置。
图8A是根据一个实施例的包括多晶硅栅极条802A和802B以及方格源极(包括源极804A和804B)的功率器件的平面图。图8A还包括分别用于创建图8B和图8C所示截面图的限定与器件表面正交的平面的线AA'和BB'。在图8A中,应注意,源极804A和804B的边缘长度覆盖小于如上定义的可用源极条周界的50%。
图8B是与图8A的平面图相对应的沿着线AA'限定的平面的包括方格源极804A、804B的功率器件的第一截面图。应注意,源极804B大体从多晶硅栅极802A延伸到距离多晶硅栅极802B近似一半的距离。图8B还示出了沟道806A、本体区域807和延伸到功率器件的底面的漏极。
图8C是与图8A的平面图相对应的沿着线BB'限定的平面的包括方格源极804A、804B的功率器件的第一截面图。应注意,源极804A大体从多晶硅栅极802B延伸到距离多晶硅栅极802A近似一半的距离。在图8C中还示出了沟道806B、本体区域807和延伸到功率器件底面的漏极。可以使用用于形成源极、本体、沟道和漏极的其他技术,同时保持图8B或图8C所示的大体截面配置。
图9是根据一个实施例的包括多晶硅栅极条902A和902B和部分单侧源极904A的功率器件的平面图。在图9中,部分单侧源极904A的边缘906覆盖小于如上所定义的器件的“源极条周界”的50%。在图9的实施例中,部分单侧源极904A覆盖总可用源极条周界的大约25%。虽然在图9中仅示出了两个多晶硅栅极条、一个源极904A和一个源极条边缘906,但本领域的技术人员应理解,所示平面图图案根据期望在“X”和“Y”方向上重复多次。如前所述,下面详细讨论用于在较高操作电压下改进热稳定性以使FBSOA最大化的最佳源极分割覆盖百分比。
图10是根据一个实施例的包括阶梯源极的功率器件的平面图。在图10中,阶梯源极1004A、1004B和1004C的边缘1006的总长度覆盖如先前定义的器件的总可用源极条周界的50%以上。在图10的实施例中,阶梯源极1004A、1004B和1004C的总边缘长度1006覆盖源极条周界的大约67%。虽然图10中仅示出了两个多晶硅栅极条、三个源极1004A、1004B和1004C以及一个源极条边缘1006,但是本领域技术人员应理解,所示平面图图案根据期望在“X”和“Y”方向上重复多次。如前所提到的,下面详细讨论用于在较高操作电压下改进热稳定性以使FBSOA最大化的最佳源极分割覆盖百分比。图10中示出了梯形间距1008,并且可定义为以下距离:包括源极的长度的距离以及到另一源极的距离。例如,源极1004C和到源极1004B的距离可用于定义阶梯间距1008。
虽然已经示出了方格源极、部分单侧源极和阶梯源极分段图案,但是可以使用其他几何图案来减小源极条周界(分段源极)的源极覆盖百分比,优选是对称的。上面示出和描述了分段源极的一些示例,但并不用于限制。其他这种分段源极图案可用于改进较高操作电压下的热稳定性。
图案间距(例如,阶梯或方格间距)理想地保持较小,以使整个器件的温度均匀。在一个实施例中可以使用几微米到几十微米的范围。
图11A是根据一个实施例的包括多晶硅栅极条1102A和1102B以及包括源极1104A和1104B的阶梯源极的功率器件的平面图。图11A还包括分别用于创建图11B和图11C所示截面图的限定与器件表面正交的平面的线AA'和BB'。源极1104A和1104B的总边缘长度覆盖小于总可用源极条周界的100%。
图11B是与图11A的平面图相对应的沿着线AA'定义的平面的包括阶梯源极1104A、1104B的功率器件的第一截面图。应注意,源极1104B大体从多晶硅栅极1102A延伸到多晶硅栅极1102B。在图11B的截面图中示出了源极1104B、沟道1106、本体1107和漏极1108。
图11C与图11A的平面图相对应的沿着线BB'定义的平面的包括阶梯源极1104A、1104B的功率器件的第二截面图。应注意,阶梯源极1104A或1104B均未在图11C中示出。在图11C的截面图中仅示出了多晶硅栅极1102A和1102B、本体1107和漏极1108。
图12和图13示出了不对称分段源极图案的平面图。先前示出和描述的分段源极图案是对称的。尽管对称图案通常优选具有优异的热稳定性和相对不存在“热点”,但如果需要,也可以在特定应用中使用不对称图案。
图12是根据一个实施例的包括不对称方格源极的功率器件的平面图,其包括多晶硅栅极条1202A和1202B以及各个源极1204A、1204B和1204C。源极1204A和1204B在“Y”方向上的间距小于源极1204B和1204C在“Y”方向上的间距。对于功率器件应用,图12所示的平面图图案根据期望在“X”和“Y”方向上重复多次。
图13是根据一个实施例的包括不对称阶梯源极的功率器件的平面图,其包括多晶硅栅极条1302A和1302B以及各个源极1304A、1304B和1304C。源极1304A和1304B在“Y”方向上的间距小于源极1304B和1304C在“Y”方向上的间距。对于功率器件应用,图13所示的平面图图案根据期望在“X”和“Y”方向上重复多次。
虽然在光刻处理和扩散期间发生分段源极的边角圆化,但可以通过设计来强调边角圆化。圆角在FBSOA和RDS(on)之间提供了稍好的折衷。
图14是根据一个实施例的包括具有圆角的方格源极的功率器件的平面图。该功率器件包括两个多晶硅栅极条1402A和1402B、各个圆化源极1404A、1404B和1404C。圆化源极被示为具有圆角的矩形结构,但是如果需要的话,圆化的量可进一步加重,超过图14所示程度。对于功率器件应用,图14所示的平面图图案根据期望在“X”和“Y”方向上重复多次。
图15是根据一个实施例的包括具有圆角的阶梯源极的功率器件的平面图。该功率器件包括两个多晶硅栅极条1502A和1502B、各个圆化源极1504A、1504B和1504C。圆化源极被示为具有圆角的矩形结构,但如果需要,圆化的量可进一步加重,超过图15所示程度。对于功率器件应用,图15所示的平面图图案根据期望在“X”和“Y”方向上重复多次。
图16是根据一个实施例的用于评估分段源极器件的性能的仿真结果表。针对传统(100%源极)器件和分段源极(50%源极)器件比较源极分割。还针对50%分段源极器件和传统器件比较单元间距。仿真参数包括宽度(W)、温度发散度(Tm divg)和导通电阻(RonA)。较低W(对应于较低Gm)具有较低的Tm发散度,因此将具有更好的FBSOA。50%源极分割和双单元间距均给出相似的Tm发散度。然而,RDS(on)对于源极分割设计明显较低,因此在性能上优于传统器件。
图17是根据一个实施例的用于评估分段源极器件的性能的实验结果表。测量源极条周界的33.3%、50%、66.7%和100%分段源极覆盖的功率器件。对应的漏极-源极导通电阻RDS(on)测量为33.4mΩ、30.0mΩ、28.5mΩ和27.0mΩ,它们之间的变化率为5.4%、10.5%和21.2%。用9.5A、8.7A、7.5A和6.3A的漏极电流测量10ms的对应功率,它们之间的变化率为17.4%、32.0%和40.5%。较低的源极分割百分比(对应于较低Gm)在所有脉冲宽度下具有较高的FBSOA漏极电流。FBSOA改进在低于50%的源极分割百分比处开始逐渐减少,并且RDS(on)惩罚也随之增加。在这种特定情况下,50-67%的源极分割覆盖百分比范围在RDS(on)和FBSOA之间产生最佳的折衷。对于其他特定设计或情况,最佳源极覆盖百分比范围将有所不同。然而,在FBSOA中具有不同程度改进的实施例中,也可以使用诸如5-95%的其它更宽的源极分割百分比范围。
图18是根据一个实施例的包括源极分割的径向变化的功率器件1800的平面图。功率器件1800的管芯中心具有最高的热阻抗Rth,而功率器件1800的边缘具有最低的热阻抗Rth。这种热阻抗分布导致管芯中心附近的热不稳定性和FBSOA失效。源极分割覆盖百分比可径向变化以抵消固有Rth变化的影响。相对温度从管芯中心处约0.87732的最大值变化到管芯的第一边角中约0.67768的最小值以及管芯的第二边角中约0.67603的最小值。
因此,图18是包括多个同心源极分割区1818、1816、1814、1812、1810、1808、1806、1804和1802的功率器件1800的平面图,从器件的中心(分割区1818)延伸到器件边缘(分割区1812、1810、1808、1806、1804和1802),其中每个同心源极分割区包括:多个栅极条,形成在器件的上表面上,其中栅极条之间的共享周界限定源极条周界;以及分割源极,形成在栅极条之间,其中分割源极的边缘长度覆盖源极条周界的百分比,该百分比根据同心源极分割区与器件中心的距离而变化。例如,该百分比在最接近器件中心的同心源极分割区(分割区1818)内最小,并且在最接近器件边缘的同心源极分割区(分割区1802)内最大。
源极分割百分比(因此Gm)在管芯中心处保持最低,因为热阻抗Rth在中心最高。因此,理想地,源极分割百分比应该与热阻抗Rth成反比。理想的同心源极分割区图案基本上匹配图18所示的热阻抗Rth图案。圆形和矩形同心源极分割区图案近似于图18所示的椭圆或卵形源极分割区图案。可以使用其他图案变型,诸如具有圆角的矩形图案。也可以使用许多其他这样的图案。
图19是根据一个实施例的包括源极分割的圆形径向变化的功率器件1900的平面图。示出了圆形同心源极分割区1908、1906、1904和1902。源极分割百分比从管芯中心(区1908)变化到管芯边缘(区1902)。最小源极分割百分比在中心区1908中,并且在边缘区1902中增加到最大源极分割百分比。
图20是根据一个实施例的包括源极分割的矩形径向变化的功率器件的平面图。示出了矩形同心源极分割区2008、2006、2004和2002。源极分割百分比从管芯中心(区2008)变化到管芯边缘(区2002)。最小源极分割百分比在中心区2008中,并且在边缘区2002中增加到最大源极分割百分比。
在图18、图19和图20中,分段源极可包括部分单侧源极、方格源极或阶梯源极或者任何它们的组合。分段源极的类型可以在多个同心源极分割区中相同,或者可以从一个源极分割区变化到另一源极分割区,或者甚至在单个源极分割区内变化。
图21A是根据现有技术的在正方形单元2102中具有正方形源极2104A的蜂窝功率器件2100A的平面图。
图21B是根据一个实施例的具有在正方形单元2102中具有两个片段2104B的分段正方形源极的蜂窝功率器件2100B的平面图。
图21C是根据一个实施例的具有在正方形单元2102中具有单个片段2104C的分割正方形源极的蜂窝功率器件2100C的平面图。
因此,根据实施例,具有分段源极的蜂窝功率器件包括多个单元,其中每个单元均包括:栅极区域,位于器件的上表面上,其中栅极区域的内周界限定源极周界;以及分段源极,具有与源极周界相邻的外周界,其中分段源极的外周界在源极周界的5%到95%之间。分段源极包括一个或多个片段。在图21B中示出了两个源极片段2104B,并且在图21C中示出了单个源极片段2104C。
图22示出了根据一个实施例的适合于包括分段源极的各种功率器件单元配置的平面图。图22的表格2200中示出了通常用于功率器件的七种不同的蜂窝设计。表格2200示出了先前描述的线性单元2202和正方形单元2204中的正方形阱。表格2200还示出了正方形单元2206中的圆形阱、正方形单元2208中的六角形阱、六角形单元2210中的正方形阱、六角形单元2212中的圆形阱和六角形单元2214中的六角形阱。也使用矩形单元。先前尤其是关于图21B和图21C说明和描述的源极分割可应用于这些蜂窝布局中的任一个。例如,在单元包括正方形、矩形或六角形单元时,可以使用分段源极。在源极周界包括正方形、圆形、矩形或六边形周界时,可以使用分段源极。也可以使用先前相对于线性单元示出和描述的任何其他源极分割特征,例如使用均匀或不规则间隔的源极分割或使用具有圆角的源极分割。根据实施例,具有分段源极的蜂窝功率器件也可用于源极分割的径向变化。
对于本领域技术人员来说显而易见地,本文描述的源极分割可以扩展到任何其他功率器件结构,诸如平面、沟槽、常规和电荷平衡器件以及包括MOSFET、绝缘栅双极晶体管(“IGBT”)和注入增强栅晶体管(“IEGT”)器件的各种器件类型。上面列出的示例并不用于限制。例如,源极分割可用于下面参照图23A、图23B、图24A和图24B所述的沟槽器件。
图23A是根据现有技术的具有沟槽栅极的功率器件的平面图,其具有多晶硅沟槽栅极2302和两个相邻源极2304A和2304B。图23B是与图23A的平面图相对应的功率器件的截面图,包括沟槽栅极2302、掺杂源极2304A和2304B、沟道2306、本体2307和延伸到功率器件底表面的漏极2308。应注意,在图23A和图23B中,多晶硅栅极2302的两个边缘的整个长度与源极2304A和2304B的边缘接触。换句话说,100%的多晶硅栅极周界被对应的源极边缘包围。
图24A是根据一个实施例的具有沟槽栅极2402以及包括源极2404A和2404B的方格分段源极的功率器件的平面图。图24B是与图24A的平面图相对应的沿着线AA'的功率器件的第一截面图,包括沟槽栅极2402、掺杂源极2404A、沟道2406A、本体2407和延伸到功率器件底表面的漏极2408。图24C是与图24A的平面图相对应的沿线BB'的功率器件的第二截面图,包括沟槽栅极2402、掺杂源极2404G、沟道2406G、本体2407和延伸到功率器件底表面的漏极2408。
应注意,在图24A、图24B和图24C中,小于多晶硅栅极2402的两个边缘的整个长度与源极的边缘接触。在图24A、图24B和图24C所示情况中,小于50%的多晶硅栅极周界被对应的源极边缘包围。其中一个多晶硅栅极边缘与对应源极接触,而另一个没有。此外,还有不与任何对应源极接触的多晶硅栅极边缘。
虽然在图24A、图24B和图24C的沟槽器件示例中仅描述和示出了方格源极分割技术,但是也可以使用本文描述的任何其他源极分割技术。
虽然已经参照说明性实施例描述了本发明,但是这种描述并不用于限制。本领域技术人员在参考说明之后将理解说明性实施例的各种修改和组合以及本发明的其他实施例。因此,所附权利要求包括任何这种修改或实施例。

Claims (20)

1.一种器件,包括:
至少两个栅极条,形成在所述器件的上表面上;
源极条周界,包括所述至少两个栅极条和对应源极条之间的总可用共享周界;以及
分段源极,形成在所述至少两个栅极条之间,其中所述分段源极的边缘长度覆盖所述源极条周界的5%到95%之间。
2.根据权利要求1所述的器件,其中所述分段源极包括部分单侧源极。
3.根据权利要求1所述的器件,其中所述分段源极包括方格源极。
4.根据权利要求1所述的器件,其中所述分段源极包括不对称方格源极。
5.根据权利要求1所述的器件,其中所述分段源极包括圆化方格源极。
6.根据权利要求1所述的器件,其中所述分段源极包括阶梯源极。
7.根据权利要求1所述的器件,其中所述分段源极包括不对称阶梯源极。
8.根据权利要求1所述的器件,其中所述分段源极包括圆化阶梯源极。
9.一种器件,包括:
多个同心源极分割区,从所述器件的中心延伸到所述器件的边缘,其中每个同心源极分割区均包括:
多个栅极条,形成在所述器件的上表面上,源极条周界包括所述多个栅极条的两个栅极条与对应源极条之间的总可用共享周界;以及
分段源极,形成在所述多个栅极条的两个栅极条之间,其中所述分段源极的边缘长度覆盖所述源极条周界的百分比,所述百分比根据所述同心源极分割区与所述器件的中心的距离而变化。
10.根据权利要求9所述的器件,其中所述百分比在最接近所述器件的中心的同心源极分割区内最小,并且在最接近所述器件的边缘的同心源极分割区内最大。
11.根据权利要求9所述的器件,其中所述多个同心源极分割区包括多个椭圆或卵形的同心源极分割区。
12.根据权利要求9所述的器件,其中所述多个同心源极分割区包括多个圆形的同心源极分割区。
13.根据权利要求9所述的器件,其中所述多个同心源极分割区包括多个矩形的同心源极分割区。
14.根据权利要求9所述的器件,其中所述分段源极包括部分单侧源极。
15.根据权利要求9所述的器件,其中所述分段源极包括方格源极。
16.根据权利要求9所述的器件,其中所述分段源极包括阶梯源极。
17.一种器件,包括:
多个单元,其中每个单元均包括:
栅极区域,位于器件的上表面上,其中所述栅极区域的内周界限定源极周界;以及
分段源极,具有与所述源极周界相邻的外周界,其中所述分段源极的外周界在所述源极周界的5%至95%之间。
18.根据权利要求17所述的器件,其中所述分段源极包括一个或多个片段。
19.根据权利要求17所述的器件,其中所述单元包括正方形、矩形、六边形或多边形单元。
20.根据权利要求17所述的器件,其中所述源极周界包括正方形、圆形、矩形、六边形或任何多边形周界。
CN201911014151.1A 2018-10-23 2019-10-23 通过源极分割增加正向偏置安全操作区 Pending CN111092116A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/167,915 2018-10-23
US16/167,915 US10833671B2 (en) 2018-10-23 2018-10-23 Increasing forward biased safe operating area by source segmentation

Publications (1)

Publication Number Publication Date
CN111092116A true CN111092116A (zh) 2020-05-01

Family

ID=68342543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911014151.1A Pending CN111092116A (zh) 2018-10-23 2019-10-23 通过源极分割增加正向偏置安全操作区

Country Status (3)

Country Link
US (1) US10833671B2 (zh)
EP (1) EP3644376A1 (zh)
CN (1) CN111092116A (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998403B2 (en) * 2019-03-04 2021-05-04 Infineon Technologies Americas Corp. Device with increased forward biased safe operating area (FBSOA) through using source segments having different threshold voltages
US11217666B2 (en) 2019-09-17 2022-01-04 Infineon Technologies Americas Corp. Method of increasing forward biased safe operating area using different threshold voltage segments
EP4411829A1 (en) * 2023-01-31 2024-08-07 Hitachi Energy Ltd Power semiconductor device and method for producing a power semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02312280A (ja) 1989-05-26 1990-12-27 Mitsubishi Electric Corp 絶縁ゲート型バイポーラトランジスタ
DE69533134T2 (de) 1995-10-30 2005-07-07 Stmicroelectronics S.R.L., Agrate Brianza Leistungsbauteil hoher Dichte in MOS-Technologie
GB0208833D0 (en) * 2002-04-18 2002-05-29 Koninkl Philips Electronics Nv Trench-gate semiconductor devices
CN1812127A (zh) * 2004-12-14 2006-08-02 松下电器产业株式会社 纵型栅极半导体装置及其制造方法
JP4572795B2 (ja) 2005-02-10 2010-11-04 サンケン電気株式会社 絶縁ゲート型バイポーラトランジスタ
JP6507609B2 (ja) 2014-12-08 2019-05-08 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
US20200127656A1 (en) 2020-04-23
EP3644376A1 (en) 2020-04-29
US10833671B2 (en) 2020-11-10

Similar Documents

Publication Publication Date Title
US6906381B2 (en) Lateral semiconductor device with low on-resistance and method of making the same
US9461127B2 (en) Vertical power MOSFET having planar channel and its method of fabrication
US6621132B2 (en) Semiconductor device
KR101870552B1 (ko) 전력용 반도체 장치
CN111092116A (zh) 通过源极分割增加正向偏置安全操作区
US20080185643A1 (en) Semiconductor device having trench edge termination structure
US9818743B2 (en) Power semiconductor device with contiguous gate trenches and offset source trenches
CN105244381A (zh) 半导体装置
JP2011003609A (ja) 電力用半導体素子
KR101976914B1 (ko) 변조된 초 접합 파워 mosfet 디바이스들
US20100102381A1 (en) Power semiconductor device
CN112563319A (zh) 半导体装置
US7956409B2 (en) Semiconductor device having trench gate structure
CN114497219A (zh) 半导体装置
JP2021034528A (ja) スイッチング素子
US10957791B2 (en) Power device with low gate charge and low figure of merit
JP6458994B2 (ja) 半導体装置
US10998403B2 (en) Device with increased forward biased safe operating area (FBSOA) through using source segments having different threshold voltages
US11688770B2 (en) Method of increasing forward biased safe operating area using different threshold voltage segments
US20210242321A1 (en) Increasing forward biased safe operating area using different threshold voltage segments
US20220020875A1 (en) Semiconductor device
WO2022118509A1 (ja) 半導体装置
EP3817067A1 (en) Combined mcd and mos transistor semiconductor device
TWM544107U (zh) 具有平面通道的垂直功率金氧半導體場效電晶體

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination