CN111088202B - 一种通过生物成膜连续化发酵生产赖氨酸的重组谷氨酸棒杆菌及其构建方法 - Google Patents

一种通过生物成膜连续化发酵生产赖氨酸的重组谷氨酸棒杆菌及其构建方法 Download PDF

Info

Publication number
CN111088202B
CN111088202B CN201911354539.6A CN201911354539A CN111088202B CN 111088202 B CN111088202 B CN 111088202B CN 201911354539 A CN201911354539 A CN 201911354539A CN 111088202 B CN111088202 B CN 111088202B
Authority
CN
China
Prior art keywords
corynebacterium glutamicum
fermentation
ftsh
recombinant
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911354539.6A
Other languages
English (en)
Other versions
CN111088202A (zh
Inventor
应汉杰
柳东
雷鸣
张迪
杨雨晗
吴诗诗
陈勇
刘庆国
牛欢青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201911354539.6A priority Critical patent/CN111088202B/zh
Publication of CN111088202A publication Critical patent/CN111088202A/zh
Priority to GB2018956.9A priority patent/GB2586114B/en
Priority to US17/117,870 priority patent/US11118171B2/en
Priority to JP2020207458A priority patent/JP6877622B2/ja
Application granted granted Critical
Publication of CN111088202B publication Critical patent/CN111088202B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种通过生物成膜连续化发酵生产赖氨酸的重组谷氨酸棒杆菌及其构建方法,所述的重组谷氨酸棒杆菌是通过在谷氨酸棒杆菌中过表达蛋白酶基因FtsH构建得到的;所述的构建方法包括如下步骤:(1)对谷氨酸棒杆菌的基因组进行PCR,扩增FtsH基因,得到扩增的FtsH基因片段;(2)将FtsH基因片段克隆到过表达质粒上,得到重组质粒;(3)将重组质粒导入谷氨酸棒杆菌中,筛选得到过重组谷氨酸棒杆菌。有益效果:本发明构建了一株过表达蛋白酶FtsH的谷氨酸棒杆菌,加强了谷氨酸棒杆菌的成膜能力,使得谷氨酸棒杆菌固定化连续发酵的产量比游离发酵的原始菌提高了38.2%,且发酵周期缩短了26.4%。

Description

一种通过生物成膜连续化发酵生产赖氨酸的重组谷氨酸棒杆 菌及其构建方法
技术领域
本发明属于微生物及发酵工程技术领域,具体涉及到一种通过生物成膜连续化发酵生产赖氨酸的重组谷氨酸棒杆菌及其构建方法。
背景技术
L~赖氨酸属于天冬氨酸家族氨基酸,为人类和动物所必需的自身不能合成的氨基酸之一,被广泛用于饲料添加剂、食品强化剂和医药产品等方面,其中90%以上的赖氨酸产品用作饲料添加剂。
生物膜广泛存在于自然界,在生物膜形成过程中,细菌自身分泌产生的的胞外聚合物(EPS)是生物膜形成的物质基础,具有分层分布的特点,对细菌的粘附及聚集特性起到了关键作用。
固定化连续发酵技术现如今已经投入到生产当中,其中用生物膜的方式进行固定化连续发酵已初见成效。然而,在谷氨酸棒杆菌中,基于生物膜的方式经行固定化连续发酵却鲜有报道。
谷氨酸棒杆菌作为重要的工业菌株,其成膜能力非常弱,难以连续化发酵,因此我们需要对该菌株进行分子改造,使其成膜效果增强,以实现后期固定化连续发酵。
连续连续在谷氨酸棒杆菌(Corynebacterium glutamicum)中,已知蛋白酶FtsH(EC3.4.24.-)由Ngcl 2603基因编码。FtsH(Filamentation temperature-sensitive H)属于AAA蛋白酶家族,是一种膜结合蛋白酶。在生物体内,FtsH通过寡聚化形成一个六聚环形结构,将蛋白水解活性位点埋在六聚复合体空穴中央。FtsH蛋白的保守模块包括N-端跨膜域、AAA结构、锌离子结合模块等。FtsH具有ATP酶活性,蛋白水解活性和分子伴侣活性,参与生物膜的形成,蛋白质质量平衡控制,还与热激、高渗、光胁迫等响应有联系。
发明内容
发明目的:本发明所要解决的技术问题是针对现有技术的不足,提供一种重组谷氨酸棒杆菌,以提高了谷氨酸棒杆菌的成膜能力,解决现有技术中谷氨酸棒杆菌成膜能力弱,不能用于固定化连续发酵的问题。
本发明还要解决的技术问题是,提供上述重组谷氨酸棒杆菌的构建方法。
本发明最后要解决的技术问题是,提供上述重组谷氨酸棒杆菌通过生物成膜连续化发酵生产赖氨酸的应用。
为了解决上述技术问题,本发明公开了一种重组谷氨酸棒杆菌,其中,所述的重组谷氨酸棒杆菌是通过在谷氨酸棒杆菌中过表达蛋白酶基因FtsH构建得到的。
其中,所述蛋白酶基因FtsH的核苷酸序列如SEQ ID NO.1所示。
其中,所述谷氨酸棒杆菌为ATCC13032。
其中,所述的过表达蛋白酶基因FtsH是指通过在表达载体上导入蛋白酶FtsH基因序列,提高蛋白酶FtsH的拷贝数,从而增强蛋白酶FtsH活性。
上述重组谷氨酸棒杆菌的构建方法,包括如下步骤:
(1)对谷氨酸棒杆菌ATCC13032的基因组进行PCR,扩增FtsH基因,得到FtsH基因片段,其核苷酸序列如SEQ ID NO.2所示;
(2)将步骤(1)得到的FtsH基因片段克隆到过表达质粒pXMJ19上,得到重组质粒pXMJ19*FtsH;
(3)将步骤(2)得到的重组质粒pXMJ19*FtsH导入谷氨酸棒杆菌中,筛选得到过重组谷氨酸棒杆菌;
步骤(1)中,扩增FtsH基因设计的引物的序列如下:引物1的核苷酸序列如SEQ IDNO.3所示;引物2的核苷酸序列如SEQ ID NO.4所示。
步骤(1)中,所述PCR扩增的方法为:94℃变性30秒,55℃退火30秒,72℃延伸2分钟,进行30个循环。
步骤(2)中,所述的过表达质粒为pXMJ19。
上述过表达蛋白酶FtsH的谷氨酸棒杆菌在产赖氨酸中的应用也在本发明的保护范围之内,其包括如下步骤:
(i)将重组谷氨酸棒杆菌接种到种子培养基中,培养,得到种子液;
(ii)将预处理后的固定化载体置于发酵培养基中,与发酵培养基一起灭菌,再向发酵培养基中接入种子液,批次发酵,得到发酵液。
其中,每一批发酵结束后,用新的发酵培养基替换得到的发酵液,培养至糖耗尽,结束发酵,约70h,即得到赖氨酸;其中,所述的糖为糖为葡萄糖、糖蜜和蔗糖的三种组合。
步骤(i)中,种子培养基中各组分的浓度为:蔗糖15~35g/L、蛋白胨5~15g/L、酵母粉1~10g/L、硫酸铵5~10g/L、七水硫酸镁0.1~1g/L、磷酸二氢钾1~5g/L、磷酸氢二钾5~15g/L、尿素1~5g/L,溶剂为水;所述的培养为在28~34℃,200~250rpm条件下培养10~14h。
步骤(ii)中,所述的固定化载体为棉纤维织物、无纺布、聚酯纤维、聚乙烯醇纤维、沸石、细菌纤维素膜、丝绸、甘蔗渣和玉米秸秆中的任意一种或几种的组合;所述的预处理为将固定化载体剪成2~8cm×2~8cm的正方形(优选5cm×5cm),用纯水洗净烘干后于乙醇中浸泡1h,再用纯水清洗后沸水浴10~40min(优选20min)后干燥;固定化载体的用量为1~10g/500mL发酵培养基;所述的灭菌为115℃灭菌15min。
步骤(ii)中,发酵培养基中各组分的浓度为:葡萄糖80~120g/L、硫酸铵30~50g/L、硫酸镁0.5~1.5g/L、糖蜜10~25g/L、玉米浆10~25g/L、磷酸二氢钾1~5g/L、硫酸亚铁100~300mg/L、硫酸锰100~200mg/L、烟酰胺40~80mg/L、泛酸钙5~15mg/L、VB1 5~15mg/L、硫酸铜0.5~2mg/L、硫酸锌0.5~2mg/L、生物素0.5~2mg/L、碳酸钙10~50g/L,溶剂为水;
步骤(ii)中,每500mL的摇瓶加入50mL的发酵培养基,接入10%~30%(v/v)的种子液,在28~34℃,200~250rpm/min条件下发酵60~90h(优选72h)。
有益效果:与现有技术相比,本发明具有如下的优势:
1、本发明发明了一种谷氨酸棒杆菌固定化发酵产赖氨酸的方法,利用纤维(棉纤维织物、无纺布、聚酯纤维、聚乙烯醇纤维、细菌纤维素膜、丝绸、甘蔗渣和玉米秸秆)作为固定化材料,固定的菌体可以反复利用,能够进行连续发酵。
2、本发明构建了一株过表达蛋白酶FtsH的谷氨酸棒杆菌,加强了谷氨酸棒杆菌的成膜能力,使得谷氨酸棒杆菌固定化连续发酵的产量比游离发酵的原始菌提高了38.2%,且发酵周期缩短了26.4%。
附图说明
图1为pXMJ19/*FtsH质粒琼脂糖凝胶电泳图。其中,泳道1为原始质粒pXMJ19,泳道2为重组质粒pXMJ19/*FtsH,泳道3为Marker。
图2为谷氨酸棒状杆菌ATCC13032原始菌和重组菌的电镜图。
图3为谷氨酸棒状杆菌ATCC13032原始菌和重组菌发酵周期图。
图4为谷氨酸棒状杆菌ATCC13032原始菌和重组菌结晶紫染色法半定量测生物膜量的实验数据。
图5为谷氨酸棒状杆菌ATCC13032原始菌和重组菌固定化批次发酵与游离发酵的赖氨酸产量对比图。
具体实施方式
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
以下实施例使用的质粒pXMJ19从武汉淼灵生物科技有限公司购买。如无特别说明,所有酶均从TAKARA购买,质粒提取及胶回收试剂盒从天根购买。
实施例1:构建蛋白酶FtsH过表达质粒。
使用谷氨酸棒状杆菌ATCC13032的染色体进行PCR,扩增FtsH基因。
具体而言,使用下述引物1和引物2,在以下反应条件下进行PCR:94℃变性30秒,55℃退火30秒,72℃延伸2分钟,进行30个循环:扩增了2614bp的基因片段(SEQ ID NO.2)
扩增的序列含有FtsH编码序列,以及20bp与载体同源的序列。此外,引物1具有BamHI的限制酶识别位点,引物2具有BamHI的限制酶识别位点。BamHI限制酶识别位点用粗体标出。
表1
引物1 5’~gcctgcaggtcgactctagaggatccatgaaaaacaagaaatacct~3’(SEQ ID NO.3)
引物2 5’~aattcgagctcggtacccggggatccttatccacggttgtctcctt~3’(SEQ ID NO.4)
将获得的多核苷酸与用限制酶BamHI处理的pXMJ19质粒进行一部克隆,得到用于过表达蛋白酶FtsH基因的重组质粒pXMJ19/*FtsH,琼脂糖凝胶电泳见图1,泳道1是原始pXMJ19质粒,泳道2是构建好的质粒pXMJ19/*FtsH,泳道3是Marker。其中,原始的pXMJ19质粒大小为6601bp,而重组质粒pXMJ19/*FtsH的大小为9169bp。从图中可以看出FtsH基因片段已经插入表达质粒pXMJ19。
实施例2:构建蛋白酶FtsH过表达菌株
将得到的pXMJ19/*FtsH重组质粒导入谷氨酸棒状杆菌ATCC13032感受态细胞中,在含有6.5ug/mL氯霉素的LB平板上进行筛选,培养2~3天后挑出转化子,然后进行菌落PCR验证,得到过表达蛋白酶FtsH的重组菌株。使用引物3和引物4进行PCR,以证实基因是否插入到重组质粒中。
表2
引物3 5’~ggaattgtgagcggataaca~3’(SEQ ID NO.5)
引物4 5’~gtatcaggctgaaaatcttc~3’(SEQ ID NO.6)
改造菌株构造成功后进行96孔板以及SEM电镜实验。电镜照片见图2,可以直观具体的看出重组菌生物膜比原始菌生物更多。成膜效果提升之后进行固定化连续发酵。
实施例3:重组菌赖氨酸发酵实验(重组菌固定)
活化培养基成分如下:葡萄糖10g/L、蛋白胨10g/L、酵母粉5g/L、氯化钠10g/L。
所述种子培养基是:蔗糖25g/L、蛋白胨10g/L、酵母粉5g/L、硫酸铵5g/L、七水硫酸镁1g/L、磷酸二氢钾5g/L、磷酸氢二钾12g/L、尿素5g/L。
发酵培养基配方:葡萄糖100g/L、硫酸铵40g/L、硫酸镁1g/L、糖蜜20g/L、玉米浆20g/L、磷酸二氢钾1g/L、硫酸亚铁150mg/L、硫酸锰100mg/L、烟酰胺50mg/L、泛酸钙10mg/L、VB1 10mg/L、硫酸铜1mg/L、硫酸锌1mg/L、生物素2mg/L、碳酸钙40g/L。
每50mL离心管加5mL活化培养基,接入重组菌,在30℃,220rpm条件下活化20h。
活化完成后分别倒入装有50mL种子培养基的500mL摇瓶中,在30℃,220rpm条件下培养12h。
每500mL的摇瓶倒入50mL的发酵培养基,将载体也放入发酵培养基中一起灭菌,115℃,15min。
向在发酵培养基中接入5mL种子液,在30℃,220rpm条件下发酵72h。
固定化连续发酵:在发酵过程中,第一批时菌体已经吸附到固定化载体上,此时摇瓶培养已经过约72h,第二批时倒掉发酵液,留下吸附着菌的固定化载体,再倒入新的50mL发酵培养基,培养至糖耗尽,糖为葡萄糖、糖蜜、和蔗糖三种的组合,约60h,测得发酵周期数据,见图3;赖氨酸产量见图5。随后批次固定化连续发酵均采用此法。
棉纤维载体材料的预处理:将棉纤维载体剪成5cm×5cm的正方形,用纯水洗净烘干后于乙醇中浸泡1h,再用纯水清洗2遍后沸水浴20min后放入烘箱烘干,称重1.5g,然后放入倒有发酵液的摇瓶当中一起灭菌,115℃,15min。
对比例1:原始菌固定
将实施例3中接入的重组菌更换为原始出发菌(谷氨酸棒状杆菌ATCC13032),其余步骤同实施例3,得发酵周期数据见图3;赖氨酸产量见图5。
对比例2:重组菌的游离发酵(重组菌)
发酵培养基中不加入载体,其余步骤同实施例3,测得发酵周期数据见图3;赖氨酸产量见图5。
对比例3:原始菌的游离发酵(原始菌)
将实施例3中接入的重组菌更换为原始出发菌(谷氨酸棒状杆菌ATCC13032),发酵培养基中不加入载体,其余步骤同实施例3,测得发酵周期数据见图3;赖氨酸产量见图5。
从图3可以看出,相比于游离发酵,固定化发酵的周期均缩短,其中,重组菌固定化发酵周期比原始菌缩短26.4%;从图5可以看出,相比于游离发酵,固定化发酵所得赖氨酸的产量均有提升,且重组菌固定化产量比原始菌高38.2%。上述发酵周期的缩短以及赖氨酸产量的提高均是因为采用固定化发酵和重组菌加强了谷氨酸棒杆菌的成膜能力。
实施例4:还原糖的测定方法
运用DNS(二硝基水杨酸)在碱性条件下,与还原糖发生氧化还原反应,生成3~氨基~5~硝基水杨酸,该产物在煮沸条件下显棕红色,且在一定浓度范围内颜色深浅与还原糖含量成比例,用紫外分光光度计(OD540)测定还原糖含量。
样品适当稀释后,使预计含糖量在0.1~1.0mg/mL之间,取稀释后的0.5mL样品于10mL刻度试管中,再加入0.5mL DNS,沸水煮沸5min,立即冷却5min,加8mL纯水混匀,另设0.5mL纯水和0.5mL DNS样品为空白样。事先做好本次实验使用的DNS还原糖含量标准曲线,用紫外分光光度计在540nm波长下检测吸光值,作为还原糖含量的量度。
实施例5:赖氨酸含量的测定
每瓶发酵液取样100μL用0.1M盐酸溶液稀释50倍,再将每个样品分别取400μL稀释液,接着进行PITC柱前衍生,用RP~HPLC法进行赖氨酸含量检测,计算出每个样品的赖氨酸浓度。
利用出发菌和本发明构建的重组菌进行固定化连续发酵实验,通过10批次发酵实验,发酵结果见表3。从图5可以看出,改造后的菌株固定化连续发酵的赖氨酸产量比游离发酵的原始菌高出38.2%。从图3可以看出,改造后的菌株固定化发酵周期比原始菌缩短26.4%。
表3固定化菌株连续发酵10次的赖氨酸的产量(g/L)
Figure BDA0002335540370000071
实施例6:结晶紫染色法半定量测生物膜量
在无色96孔板中加入200uL发酵培养基(不加固定化载体与碳酸钙),再分别加入20uL的原始菌与重组菌,培养到12h、24h、36h、48h时用结晶紫染色法和酶标仪测OD 570nm。从图4中可以看出过表达蛋白酶FtsH的重组菌成膜能力明显提高。
本发明提供了一种过表达蛋白酶FtsH的谷氨酸棒杆菌及其构建方法和在产赖氨酸中的应用的思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。
序列表
<110> 南京工业大学
<120> 一种通过生物成膜连续化发酵生产赖氨酸的重组谷氨酸棒杆菌及其构建方法
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2562
<212> DNA
<213> 蛋白酶(FTSH)
<400> 1
atgaaaaaca agaaatacct gcagttcggc ggtatcgcag ccgtaatcct catcgttctg 60
ttcttggtgt ccctgtttag cagtgacacc aggaacttcc aggaggtcga tacctctgtt 120
gcgatggcac agcttgacgc cggaaacgtc gccgaagctc aaatcgatga cagggaacag 180
cgcgtccgac tgaccttgcg tgaacccatc acggtggatg aacgcgaagg cgttgaagag 240
atcctcgcgc agtacccagc tcgtaccgcg ccagcgatct ttgagaaggt ggaagcatcc 300
aacactgatt cctataccac caatgtgacg caggagagct tcctgatgtc catgctgagc 360
ttcatcctgc cgatggtgat catcttcggt ttgctgatgt tcttcctcac ccgcatgcag 420
ggtggtggca tgtttggcat cggtggatcc aaggccaagc agctgaccaa ggatatgccc 480
accaacacct tcgcggatgt tgctggcgct gaagaagcag tggatgaact ccatgagatc 540
aaggacttcc tggaagaccc cacccgctac gaagccctcg gagcgaaaat ccctcgtggt 600
gtgctgcttt acggccctcc cggtactggt aaaaccctgc tggctcgtgc cgtagctggt 660
gaggctggcg tgccgttcta ctcaatttcc ggttctgact ttgtggaaat gttcgtcggt 720
gttggtgcct cgcgtgtgcg tgatctgttt aagcaggcca aggaaaacag tccctgcatc 780
atcttcgtcg atgagatcga tgcggttggt cgcgcccgtg gctcaggaat gggtggcgga 840
cacgatgagc gtgaacagac cctgaaccag ttgctcgttg agatggatgg ctttggtgat 900
cgtcaaggcg tcattctgat ggctgctacc aaccgcccag atgttcttga cccagcgctg 960
ctgcgtcctg gccgtttcga ccgccagatc ccagtcacca accctgacct acgcggccgt 1020
gaacagatcc tggaagttca cgccaagggt aagcctttcg cacccgatgc agatatcaag 1080
gcattggcaa agcgcaccgc cggcatgtcc ggcgctgacc tggcaaacgt gcttaacgaa 1140
gccgcgctgc taaccgcccg cgtgggtggc aacgtgatca ccgccgacgc tctggaagaa 1200
gcaaccgacc gcgttgtcgg tggaccacgt cgctccggca aggtgatttc cgagaaggaa 1260
aagaaggtca ccgcctacca cgaaggtgga cacaccctgt ccgcatgggc gttggaagac 1320
atcgagcgcg tctacaaggt caccatcttg gcccgcggtc gcaccggcgg tcacgccatg 1380
actgcccaag aagatgacaa gggcatgtac aaccgcaacg aattgttcgc ccgcctggtc 1440
tttgccatgg gtggacgctc cgcggaagaa ctagtcttcg gcgaacccac caccggcgcc 1500
tccgccgata ttgaaatggc caccaagatc gcccgatcca tggtgaccga atatggcatg 1560
tccccagctg tcggcatggt gaaatacggc caagaacagg gcgacccatt ctccggacgc 1620
ggtggcggtg gaaacttgga ccactcccaa gaagtcgcag caaccatcga caccgaagtc 1680
cagttcctcc tggacaaagc ccatgaagtg tcctactcca tcctggctga ataccgcgac 1740
cacctggacc gcctcgcgga aaaactcctg gaaaaggaaa ccctgcgacg cccagacctc 1800
gaagcgcttt tcgacgacat cgtcccacgc aaggtcgccg aagtcttccc cgacgagtcc 1860
acacgattcc ctcgccaaga aaaccgcgaa ccagtaaaaa ccccagtgga gctcgcactg 1920
gaacgtggcg aagaaccacc aaagaagttc tccattcttg aggcctcccg cgcaacccgc 1980
gaacgccgtc gcaaggaatt ggaagctcag ggtaagttgc cggtgcagcc tgcgtcttct 2040
gccggcgtgg cacctgcggc cggagcagct gccggatcct atggcacccc acctccagct 2100
gattggagcg tgcccggttc cgctggaaag caccgctcac gtgcagaaga acagccagct 2160
gagcagggct tcccggctca gaccccggca caagctcctg agcagtcccc tgattcaagt 2220
ggcggccgcc ccaaccctta cgcgactcca accgcatccg gtgagcaccc tggtatgaag 2280
gcctatggct tcggcgattc cgaactcatg gaccaatcaa caggtgcgga acatacccca 2340
ggtaacgttt cacaggaatc cccaaccgaa atgatcgggt tccgtttgcc ggatcatgaa 2400
cgttcggact acccagaaaa ggcgcaaaaa gagtcggtgc tggatgcttc tgaaaccaca 2460
gaaatgcctg tcgttccaga tcagcccatc gatggtgatt ccgggaagtc cgctgagggc 2520
acacaggaga atccggaaaa tgaaggagac aaccgtggat aa 2562
<210> 2
<211> 2614
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
gcctgcaggt cgactctaga ggatccatga aaaacaagaa atacctgcag ttcggcggta 60
tcgcagccgt aatcctcatc gttctgttct tggtgtccct gtttagcagt gacaccagga 120
acttccagga ggtcgatacc tctgttgcga tggcacagct tgacgccgga aacgtcgccg 180
aagctcaaat cgatgacagg gaacagcgcg tccgactgac cttgcgtgaa cccatcacgg 240
tggatgaacg cgaaggcgtt gaagagatcc tcgcgcagta cccagctcgt accgcgccag 300
cgatctttga gaaggtggaa gcatccaaca ctgattccta taccaccaat gtgacgcagg 360
agagcttcct gatgtccatg ctgagcttca tcctgccgat ggtgatcatc ttcggtttgc 420
tgatgttctt cctcacccgc atgcagggtg gtggcatgtt tggcatcggt ggatccaagg 480
ccaagcagct gaccaaggat atgcccacca acaccttcgc ggatgttgct ggcgctgaag 540
aagcagtgga tgaactccat gagatcaagg acttcctgga agaccccacc cgctacgaag 600
ccctcggagc gaaaatccct cgtggtgtgc tgctttacgg ccctcccggt actggtaaaa 660
ccctgctggc tcgtgccgta gctggtgagg ctggcgtgcc gttctactca atttccggtt 720
ctgactttgt ggaaatgttc gtcggtgttg gtgcctcgcg tgtgcgtgat ctgtttaagc 780
aggccaagga aaacagtccc tgcatcatct tcgtcgatga gatcgatgcg gttggtcgcg 840
cccgtggctc aggaatgggt ggcggacacg atgagcgtga acagaccctg aaccagttgc 900
tcgttgagat ggatggcttt ggtgatcgtc aaggcgtcat tctgatggct gctaccaacc 960
gcccagatgt tcttgaccca gcgctgctgc gtcctggccg tttcgaccgc cagatcccag 1020
tcaccaaccc tgacctacgc ggccgtgaac agatcctgga agttcacgcc aagggtaagc 1080
ctttcgcacc cgatgcagat atcaaggcat tggcaaagcg caccgccggc atgtccggcg 1140
ctgacctggc aaacgtgctt aacgaagccg cgctgctaac cgcccgcgtg ggtggcaacg 1200
tgatcaccgc cgacgctctg gaagaagcaa ccgaccgcgt tgtcggtgga ccacgtcgct 1260
ccggcaaggt gatttccgag aaggaaaaga aggtcaccgc ctaccacgaa ggtggacaca 1320
ccctgtccgc atgggcgttg gaagacatcg agcgcgtcta caaggtcacc atcttggccc 1380
gcggtcgcac cggcggtcac gccatgactg cccaagaaga tgacaagggc atgtacaacc 1440
gcaacgaatt gttcgcccgc ctggtctttg ccatgggtgg acgctccgcg gaagaactag 1500
tcttcggcga acccaccacc ggcgcctccg ccgatattga aatggccacc aagatcgccc 1560
gatccatggt gaccgaatat ggcatgtccc cagctgtcgg catggtgaaa tacggccaag 1620
aacagggcga cccattctcc ggacgcggtg gcggtggaaa cttggaccac tcccaagaag 1680
tcgcagcaac catcgacacc gaagtccagt tcctcctgga caaagcccat gaagtgtcct 1740
actccatcct ggctgaatac cgcgaccacc tggaccgcct cgcggaaaaa ctcctggaaa 1800
aggaaaccct gcgacgccca gacctcgaag cgcttttcga cgacatcgtc ccacgcaagg 1860
tcgccgaagt cttccccgac gagtccacac gattccctcg ccaagaaaac cgcgaaccag 1920
taaaaacccc agtggagctc gcactggaac gtggcgaaga accaccaaag aagttctcca 1980
ttcttgaggc ctcccgcgca acccgcgaac gccgtcgcaa ggaattggaa gctcagggta 2040
agttgccggt gcagcctgcg tcttctgccg gcgtggcacc tgcggccgga gcagctgccg 2100
gatcctatgg caccccacct ccagctgatt ggagcgtgcc cggttccgct ggaaagcacc 2160
gctcacgtgc agaagaacag ccagctgagc agggcttccc ggctcagacc ccggcacaag 2220
ctcctgagca gtcccctgat tcaagtggcg gccgccccaa cccttacgcg actccaaccg 2280
catccggtga gcaccctggt atgaaggcct atggcttcgg cgattccgaa ctcatggacc 2340
aatcaacagg tgcggaacat accccaggta acgtttcaca ggaatcccca accgaaatga 2400
tcgggttccg tttgccggat catgaacgtt cggactaccc agaaaaggcg caaaaagagt 2460
cggtgctgga tgcttctgaa accacagaaa tgcctgtcgt tccagatcag cccatcgatg 2520
gtgattccgg gaagtccgct gagggcacac aggagaatcc ggaaaatgaa ggagacaacc 2580
gtggataagg atccccgggt accgagctcg aatt 2614
<210> 3
<211> 46
<212> DNA
<213> 引物1(DNA)
<400> 3
gcctgcaggt cgactctaga ggatccatga aaaacaagaa atacct 46
<210> 4
<211> 46
<212> DNA
<213> 引物2(DNA)
<400> 4
aattcgagct cggtacccgg ggatccttat ccacggttgt ctcctt 46
<210> 5
<211> 20
<212> DNA
<213> 引物3(DNA)
<400> 5
ggaattgtga gcggataaca 20
<210> 6
<211> 20
<212> DNA
<213> 引物4(DNA)
<400> 6
gtatcaggct gaaaatcttc 20

Claims (8)

1.一种重组谷氨酸棒杆菌在产赖氨酸中的应用,其特征在于,所述的重组谷氨酸棒杆菌是通过在谷氨酸棒杆菌中过表达蛋白酶基因FtsH构建得到的;所述蛋白酶基因FtsH的核苷酸序列如SEQ ID NO.1所示;所述谷氨酸棒杆菌为ATCC13032。
2.根据权利要求1所述的应用,其特征在于,所述重组谷氨酸棒杆菌的构建方法包括如下步骤:
(1)对谷氨酸棒杆菌ATCC13032的基因组进行PCR,扩增FtsH基因,得到扩增的FtsH基因片段,其核苷酸序列如SEQ ID NO.2所示;
(2)将步骤(1)得到的FtsH基因片段克隆到过表达质粒上,得到重组质粒;
(3)将步骤(2)得到的重组质粒导入谷氨酸棒杆菌中,筛选得到重组谷氨酸棒杆菌;
步骤(1)中,扩增FtsH基因设计的引物的序列如下:引物1的核苷酸序列如SEQ ID NO.3所示;引物2的核苷酸序列如SEQ ID NO.4所示。
3.根据权利要求2所述的应用,其特征在于,步骤(1)中,所述PCR扩增的方法为:94℃变性30秒,55℃退火30秒,72℃延伸2分钟,进行30个循环。
4.根据权利要求2所述的应用,其特征在于,步骤(2)中,所述的过表达质粒为pXMJ19。
5.根据权利要求1所述的应用,其特征在于,包括如下步骤:
(i)将重组谷氨酸棒杆菌接种到种子培养基中,培养,得到种子液;
(ii)将预处理后的固定化载体置于发酵培养基中,与发酵培养基一起灭菌,再向发酵培养基中接入种子液,批次发酵,得到发酵液;
其中,每一批发酵结束后,用新的发酵培养基替换得到的发酵液,培养至糖耗尽,结束发酵,即得到赖氨酸。
6.根据权利要求5所述的应用,其特征在于,步骤(i)中,种子培养基中各组分的浓度为:蔗糖15~35g/L、蛋白胨5~15g/L、酵母粉1~10g/L、硫酸铵5~10g/L、七水硫酸镁0.1~1g/L、磷酸二氢钾1~5g/L、磷酸氢二钾5~15g/L、尿素1~5g/L,溶剂为水;所述的培养为在28~34℃,200~250rpm条件下培养10~14h。
7.根据权利要求5所述的应用,其特征在于,步骤(ii)中,所述的固定化载体为棉纤维织物、无纺布、聚酯纤维、聚乙烯醇纤维、沸石、细菌纤维素膜、丝绸、甘蔗渣和玉米秸秆中的任意一种或几种的组合;所述的预处理为将固定化载体剪成2~8cm×2~8 cm的正方形,用纯水洗净干燥后于乙醇中浸泡,再用纯水清洗后沸水浴10~40min后干燥;固定化载体的用量为1~10g/500mL发酵培养基。
8.根据权利要求5所述的应用,其特征在于,步骤(ii)中,发酵培养基中各组分的浓度为:葡萄糖80~120g/L、硫酸铵30~50g/L、硫酸镁0.5~1.5g/L、糖蜜10~25g/L、玉米浆10~25g/L、磷酸二氢钾1~5g/L、硫酸亚铁100~300mg/L、硫酸锰100~200mg/L、烟酰胺40~80mg/L、泛酸钙5~15mg/L、VB1 5~15mg/L、硫酸铜0.5~2mg/L、硫酸锌0.5~2mg/L、生物素0.5~2mg/L、碳酸钙10~50g/L,溶剂为水;所述的发酵为在28~34℃,200~250rpm条件下发酵60~90h。
CN201911354539.6A 2019-12-25 2019-12-25 一种通过生物成膜连续化发酵生产赖氨酸的重组谷氨酸棒杆菌及其构建方法 Active CN111088202B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201911354539.6A CN111088202B (zh) 2019-12-25 2019-12-25 一种通过生物成膜连续化发酵生产赖氨酸的重组谷氨酸棒杆菌及其构建方法
GB2018956.9A GB2586114B (en) 2019-12-25 2020-12-01 Recombinant Corynebacterium glutamicum for producing lysine by biofilm continuous fermentation
US17/117,870 US11118171B2 (en) 2019-12-25 2020-12-10 Recombinant corynebacterium glutamicum for producing lysine by biofilm continuous fermentation and construction method thereof
JP2020207458A JP6877622B2 (ja) 2019-12-25 2020-12-15 生物的成膜によって連続的に発酵してリシンを生産する組換えコリネバクテリウム・グルタミカム、及びその構築方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911354539.6A CN111088202B (zh) 2019-12-25 2019-12-25 一种通过生物成膜连续化发酵生产赖氨酸的重组谷氨酸棒杆菌及其构建方法

Publications (2)

Publication Number Publication Date
CN111088202A CN111088202A (zh) 2020-05-01
CN111088202B true CN111088202B (zh) 2022-01-04

Family

ID=70397195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911354539.6A Active CN111088202B (zh) 2019-12-25 2019-12-25 一种通过生物成膜连续化发酵生产赖氨酸的重组谷氨酸棒杆菌及其构建方法

Country Status (4)

Country Link
US (1) US11118171B2 (zh)
JP (1) JP6877622B2 (zh)
CN (1) CN111088202B (zh)
GB (1) GB2586114B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111088202B (zh) * 2019-12-25 2022-01-04 南京工业大学 一种通过生物成膜连续化发酵生产赖氨酸的重组谷氨酸棒杆菌及其构建方法
CN113201552B (zh) * 2021-04-29 2024-03-22 江南大学 一种分子伴侣质粒系统及其应用
CN114806996B (zh) * 2022-06-09 2023-07-21 南京工业大学 一株高产戊二胺基因工程菌及构建方法与应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY113040A (en) * 1994-02-24 2001-11-30 Ajinomoto Kk Novel gene derived from coryneform bacteria and use thereof
US6822084B1 (en) * 1999-06-25 2004-11-23 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins
HUP0203340A2 (hu) * 1999-06-25 2003-01-28 Basf Ag Stressz-, rezisztencia- és toleranciafehérjéket kódoló Corynebacterium glutamicum gének
JP4623825B2 (ja) * 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド
KR100653742B1 (ko) * 2004-12-30 2006-12-05 씨제이 주식회사 신규한 l-라이신-유도성 프로모터
CN102618521B (zh) * 2012-04-11 2013-06-26 天津工业生物技术研究所 一种ATP-依赖的金属蛋白酶FtsH
KR101582008B1 (ko) * 2013-10-15 2015-12-31 씨제이제일제당 (주) 생물막 형성 억제 활성을 가지는 유전자 및 이 유전자가 불활성화된 균주를 이용한 l-라이신 생산 방법
CN106367432B (zh) * 2016-09-01 2017-07-18 宁夏伊品生物科技股份有限公司 发酵生产l‑赖氨酸的方法及改造的棒杆菌
CN107446909B (zh) * 2017-09-29 2020-09-29 南京工业大学 一种大肠杆菌的固定化方法及利用固定化大肠杆菌补料发酵生产l-赖氨酸的方法
CN110129245B (zh) * 2019-07-08 2020-12-04 南京工业大学 一株敲除胞外核酸酶ExeP的谷氨酸棒杆菌及其构建方法与应用
CN111088202B (zh) * 2019-12-25 2022-01-04 南京工业大学 一种通过生物成膜连续化发酵生产赖氨酸的重组谷氨酸棒杆菌及其构建方法

Also Published As

Publication number Publication date
US20210155917A1 (en) 2021-05-27
GB2586114B (en) 2021-09-22
GB202018956D0 (en) 2021-01-13
JP2021052783A (ja) 2021-04-08
GB2586114A (en) 2021-02-03
US11118171B2 (en) 2021-09-14
JP6877622B2 (ja) 2021-05-26
CN111088202A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
CN111088202B (zh) 一种通过生物成膜连续化发酵生产赖氨酸的重组谷氨酸棒杆菌及其构建方法
US8093019B2 (en) Method for cellulase production
Yassien et al. Production, purification and characterization of cellulase from Streptomyces sp
US10457925B2 (en) Process for the production of cellulolytic and/or hemicellulolytic enzymes
US20110177542A1 (en) Method for enhancing cellobiose utilization
CN101955952B (zh) 一种细菌漆酶基因及其表达与应用
CN114480205A (zh) 一株解淀粉芽孢杆菌及其在固态发酵食醋酿造中的应用
CN117721135A (zh) 一种表达α-淀粉酶的重组菌株及其构建方法和应用
CN112852859A (zh) 一种提高丝状真菌有机酸合成能力的方法
CN111172089A (zh) 一种利用重组海藻糖合成酶合成海藻糖的方法
US11098331B2 (en) Method for producing lysine by utilizing adsorption and immobilized fermentation of recombinant corynebacterium glutamicum
CN114107360B (zh) 一种通过干扰磷酸酶基因提高里氏木霉纤维素酶表达的方法
CN111088203B (zh) 一种产赖氨酸的重组谷氨酸棒杆菌及其构建方法和应用
KR101426441B1 (ko) 두날리엘라 유래의 탄산 무수화 효소 및 파이오덱틸룸 트리코뉴툼 ccmp637 유래의 포스포에놀피부르산 카르복실아제를 발현하는 재조합 미생물 및 이를 이용한 유기산의 생산방법
JP2011205992A (ja) グルコース存在下で活性を増加するβ−グルコシダーゼ
CN110343624A (zh) 一种重组菌及其在提高纤维素酶产量中的应用
CN111172090B (zh) 一种用离子转运蛋白促进钝齿棒杆菌合成l-精氨酸的方法
CN114644987A (zh) 一种提高l-苹果酸生产水平和发酵强度的黑曲霉菌株、方法及应用
CN110129245B (zh) 一株敲除胞外核酸酶ExeP的谷氨酸棒杆菌及其构建方法与应用
CN108350438A (zh) 新型葡萄糖脱氢酶
CN113151124A (zh) 一种重组嗜麦芽寡养单胞菌及其在降解多环芳烃废水中的应用
KR20150058274A (ko) 저온에서 강화된 베타-글루코시다아제 활성을 갖는 폴리펩티드
CN108676077A (zh) 翻译共转移信号肽及重组甲基对硫磷水解酶的制备方法
CN111718946B (zh) 一种密码子优化的脂肪酶基因、工程菌及其纺织应用
CN110373402B (zh) 一种提升耐热纤维素酶酶活力和热稳定性的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant