CN111082023B - 一种高导电管状网络结构的正极材料的制备方法及应用 - Google Patents

一种高导电管状网络结构的正极材料的制备方法及应用 Download PDF

Info

Publication number
CN111082023B
CN111082023B CN201911394548.8A CN201911394548A CN111082023B CN 111082023 B CN111082023 B CN 111082023B CN 201911394548 A CN201911394548 A CN 201911394548A CN 111082023 B CN111082023 B CN 111082023B
Authority
CN
China
Prior art keywords
dispersion
iron phosphate
network structure
lithium iron
premixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911394548.8A
Other languages
English (en)
Other versions
CN111082023A (zh
Inventor
陈萌
周会
李涛
王勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Goldencell Electronics Technology Co Ltd
Original Assignee
Shandong Goldencell Electronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Goldencell Electronics Technology Co Ltd filed Critical Shandong Goldencell Electronics Technology Co Ltd
Priority to CN201911394548.8A priority Critical patent/CN111082023B/zh
Publication of CN111082023A publication Critical patent/CN111082023A/zh
Application granted granted Critical
Publication of CN111082023B publication Critical patent/CN111082023B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/27Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a liquid or molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及化学电源技术领域,提供了一种高导电管状网络结构的正极材料的制备方法及应用,包括以下步骤:(1)PVDF与磷酸铁锂材料预混(2)高速分散预混材料(3)向预混材料中添加碳纳米管导电浆(CNTs),CNTs在高剪切作用下形成均一稳定的管状网络结构的正极材料。该管状网络结构的正极材料由多壁碳纳米管和磷酸铁锂材料构成,碳纳米管在磷酸铁锂表面分散均匀形成完整的立体三维导电网络。制备的导电网络结构的正极材料能够提高锂离子在正极材料中的扩散速率,实现优异的电化学性能,具有较高的导电性、比容量和倍率性能,可用于锂电池、电容器和电催化等应用领域。

Description

一种高导电管状网络结构的正极材料的制备方法及应用
技术领域
本发明属于化学电源技术领域,涉及一种高导电管状网络结构的正极材料的制备方法及应用。
背景技术
随着新能源产业快速发展,锂离子电池由于环境友好、成本低和热稳定性好等优势广泛受到关注。目前锂离子电池由于能量密度不够高、功率密度低、充放电速率低而不能满足市场对高比能量、高比功率等电池的需要。锂离子电池存在以上的缺点的主要原因是正极材料中活性物质导电性能差所产生缓慢的电化学反应动力学所致。由公式
Figure GDA0002946548970000011
(C为电池放电容量;L为电极厚度;ξ为多孔电极中活性物质体积分数;M为单位面积电池的质量;Rs为活性颗粒半径;Ds为锂离子固相扩散系数;α为多孔电极的有效体积比表面积;Ct为活性物质最大Li+浓度;
Figure GDA0002946548970000012
为活性物质初始Li+浓度;I为放电电流密度)可知放电容量随电流密度的增大而线性降低,当锂电池放电较大时由于Li+在固相扩散中扩散较慢产生电极极化从而使得电容下降较快。为提高活性物质与集流体以及活性颗粒之间的导电性需要向正极材料添加导电剂改善活性颗粒的导电能力。因此,开发高导电性高密度的锂离子电池正极材料对提高Li+的扩散速率十分重要。
专利申请号201711491004.4,专利名称:锂离子电池制浆方法,该专利详细介绍锂离子浆料的制备方法,在该专利的基础上,本专利进一步探究浆料分散的过程以及浆料的内部结构特点,是该专利的进一步深化。
本发明中采用CNTs作为导电剂在活性颗粒与导电剂之间形成有效的导电管状网络结构,加快Li+的扩散速率,减少电极的极化,改善电池的电化学性能。尽管CNTs具有优异的导电性能,但是CNTs本身存在较强的范德华力使其表面具有较强的表面惰性,在加工过程中容易团聚,因此需要对CNTs的加工过程进行优化。本发明中采用定转子对CNTs进行高剪切作用分散,CNTs受到的剪切、摩擦、冲击和碰撞的作用力越大,CNTs在浆料中分散的越均匀,有利于形成均一稳定的正极浆料,从而有效的提高锂离子电化学性能。
发明内容
本发明设计了一种管状网络结构的正极材料的制备方法及应用。通过采用定转子对加入CNTs浆料进行高剪切作用分散,形成均一稳定的正极浆料。CNTs在磷酸铁锂表面构建的管状网络结构,形成完整的立体三维导电网络,增加锂离子在层间空间的扩散通道,加快锂离子的扩散速率从而改善正极材料的电化学性能。
为了提高正极材料的导电性能,本发明采用的技术方案是:一种高导电管状网络结构的正极材料的制备方法,包括以下几个步骤:
步骤一:取PVDF与磷酸铁锂材料进行预混,预混后固体粉末呈现均匀分散状态;
步骤二:取预混后的固体粉末置于搅拌机中一级分散,浆料在高剪切作用力下被分散;
步骤三:调整转速,进行二级分散,向二级分散的浆料中添加碳纳米导电浆CNTs,所述CNTs在高剪切作用力下被分散形成均一稳定的正极浆料。
优选的,步骤一所述的预混,预混搅拌速度为15-25rpm,预混时间为25-35min。
优选的,步骤二所述的一级分散,分散转速为1600-1800rpm,分散时间为180-200min。
优选的,步骤三所述的二级分散,分散转速为2000-2200rpm,分散时间为180-200min
优选的,所述搅拌机设有定转子,所述定转子包括转子,所述转子外侧沿其周向均匀布设有若干个定子,所述定子呈两层环状设置。
一种高导电管状网络结构的正极材料的应用,所制备的正极材料呈管状网络结构可被用于锂电池、电容器和电催化。
本发明的高导电管状网络结构的正极材料的特点在于:
1、环境友好、操作简单、安全易控;
2、采用定转子对CNTs进行高剪切作用分散,有利于形成均一稳定的正极浆料;
3、碳纳米管在磷酸铁锂表面分散均匀形成完整的立体三维导电网络;
4、所形成的高导电管状网络结构有效的加快锂离子的扩散速率,提高锂离子的充放电速率;
5、该锂离子电池具有较高的导电性能、比容量及倍率性能。
附图说明
图1本发明实施例提供的定转子的结构示意图;
图2本发明实施例提供的的高导电管状网络结构的正极材料的扫描电镜图;
图3本发明实施例提供的的3400mAh磷酸铁锂电池的充放电图;
图4本发明实施例提供的的3400mAh磷酸铁锂电池的循环性能图;
图5为3600mAh磷酸铁锂电池的充放电曲线比较图;
图6为3600mAh磷酸铁锂电池的1C循环性能比较图;
图7为3800mAh磷酸铁锂电池的充放电曲线比较图;
图8为3800mAh磷酸铁锂电池的1C循环性能比较图。
图中:1-定转子,11-转子,12-定子。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,搅拌机设有定转子1,定转子1包括转子11,转子11外侧沿其周向均匀布设有若干个定子12,定子12呈两层环状设置。
以下实施例中的预混、一级分散、二级分散均采用搅拌机。
实施例1
本实施例为制备3400mAh的磷酸铁锂电池的高导电管状网络结构的正极浆料的具体实施例。
首先,取125-135kg磷酸铁锂材料与3-5kg的PVDF预混,预混转速为15-25rpm,预混时间为25-35min,预混时搅拌桨呈反转;待固体粉末添加结束后,搅拌桨呈正转;然后,将预混后的材料转移至搅拌机中一级分散,以1600-1800rpm的分散速度分散180-200min;最后,将17-19kg碳纳米导电浆加入搅拌机中二级分散,以2000-2200rpm的分散速度分散180-200min,二级分散过程中加入CNTs,使得CNTs在高剪切作用力下被均匀分散,最终高导电管状网络结构的3400mAh的磷酸铁锂电池正极浆料制备完成。
制备的高导电管状网络结构的3400mAh的磷酸铁锂电池正极浆料测试,采用上述高导电管状网络结构的3400mAh的磷酸铁锂电池正极浆料制备3400mAh磷酸铁锂电池,使用常规3200mAh磷酸铁锂电池做对比测试:
如图3和图4所示,图3为典型的充放电曲线,由图中可以观察到充电平台时3200mAh与3400mAh几乎没有差距,放电平台时3200mAh磷酸铁锂电池与3400mAh磷酸铁锂电池同时下降,但3200mAh磷酸铁锂电池平台下降幅度较大。图3中所产生的此种电化学现象的可能原因是Li+在正极材料中扩散较慢,发生电化学极化造成电压平台下降较快。
图4为3200mAh磷酸铁锂电池与3400mAh磷酸铁锂电池的1C循环性能比较图,常温条件下,3400mAh磷酸铁锂电池循环保持率高于3200mAh磷酸铁锂电池循环保持率,出现该现象的可能原因是3400mAh磷酸铁锂电池的正极材料中是分散均匀的管状导电网络,有利于Li+的脱嵌,电化学性能更好。
实施例2
本实施例为制备3600mAh的磷酸铁锂电池的高导电管状网络结构的正极浆料的具体实施例。
首先,取130-140kg磷酸铁锂材料与3-5kg的PVDF预混,预混转速为15-25rpm,预混时间为25-35min,预混时搅拌桨呈反转;待固体粉末添加结束后,搅拌桨呈正转;然后,将预混后的材料转移至搅拌机中一级分散,以1600-1800rpm的分散速度分散180-200min;最后,将17-19kg碳纳米导电浆加入搅拌机中二级分散,以2000-2200rpm的分散速度分散180-200min,二级分散过程中加入CNTs,使得CNTs在高剪切作用力下被均匀分散,最终高导电管状网络结构的3600mAh的磷酸铁锂电池正极浆料被制备完成。
制备的高导电管状网络结构的3600mAh的磷酸铁锂电池正极浆料测试,采用上述高导电管状网络结构的3600mAh的磷酸铁锂电池正极浆料制备3600mAh磷酸铁锂电池,使用常规3200mAh磷酸铁锂电池做对比测试。测试结果如图5和图6所示,图5为3600mAh磷酸铁锂电池的充放电曲线比较图,图6为3600mAh磷酸铁锂电池的1C循环性能比较图。
实施例3
本实施例为制备3800mAh的磷酸铁锂电池的高导电管状网络结构的正极浆料的具体实施例。
首先,取135-145kg磷酸铁锂材料与8-10kg的PVDF预混,预混转速为15-25rpm,预混时间为25-35min,预混时搅拌桨呈反转;待固体粉末添加结束后,搅拌桨呈正转;然后,将预混后的材料转移至搅拌机中一级分散,以1600-1800rpm的分散速度分散180-200min;最后,将18-20kg碳纳米导电浆加入搅拌机中二级分散,以2000-2200rpm的分散速度分散180-200min,二级分散过程中加入CNTs,使得CNTs在高剪切作用力下被均匀分散,最终高导电管状网络结构的3800mAh的磷酸铁锂电池正极浆料被制备完成。
制备的高导电管状网络结构的3800mAh的磷酸铁锂电池正极浆料测试,采用上述高导电管状网络结构的3800mAh的磷酸铁锂电池正极浆料制备3800mAh磷酸铁锂电池,使用常规3200mAh磷酸铁锂电池做对比测试。测试结果如图7和图8所示,图7为3800mAh磷酸铁锂电池的充放电曲线比较图,图8为3800mAh磷酸铁锂电池的1C循环性能比较图。
如图2所示,实施例1-3制备的高导电管状网络结构的磷酸铁锂电池正极浆料的扫描电镜图,可以观察到磷酸铁锂材料与碳纳米管CNTs形成分散均一的管状网络结构。
高导电管状网络结构的磷酸铁锂电池正极浆料应用于锂电池、电容器和电催化,锂电池循环保持率较高,分散均匀的管状导电网络,有利于Li+的脱嵌,电化学性能更好。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种高导电管状网络结构的正极材料的制备方法,其特征在于,包括以下几个步骤:
步骤一:取PVDF与磷酸铁锂材料进行预混,预混后固体粉末呈现均匀分散状态;
步骤二:取预混后的固体粉末置于搅拌机中一级分散,浆料在高剪切作用力下被分散;
步骤三:调整转速,进行二级分散,向二级分散的浆料中添加碳纳米导电浆CNTs,所述CNTs在高剪切作用力下被分散形成均一稳定的正极浆料;
步骤一所述的预混,预混搅拌速度为15-25rpm,预混时间为25-35min;
步骤二所述的一级分散,分散转速为1600-1800rpm,分散时间为180-200min;
步骤三所述的二级分散,分散转速为2000-2200rpm,分散时间为180-200min;
所述搅拌机设有定转子,所述定转子包括转子,所述转子外侧沿其周向均匀布设有若干个定子,所述定子呈两层环状设置。
CN201911394548.8A 2019-12-30 2019-12-30 一种高导电管状网络结构的正极材料的制备方法及应用 Active CN111082023B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911394548.8A CN111082023B (zh) 2019-12-30 2019-12-30 一种高导电管状网络结构的正极材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911394548.8A CN111082023B (zh) 2019-12-30 2019-12-30 一种高导电管状网络结构的正极材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN111082023A CN111082023A (zh) 2020-04-28
CN111082023B true CN111082023B (zh) 2021-07-20

Family

ID=70319559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911394548.8A Active CN111082023B (zh) 2019-12-30 2019-12-30 一种高导电管状网络结构的正极材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN111082023B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1990097A (zh) * 2005-12-28 2007-07-04 比亚迪股份有限公司 一种电极浆料的混合方法
CN104282933A (zh) * 2013-07-05 2015-01-14 福建博瑞特电机有限公司 一种低温磷酸铁锂动力电池及其制备方法
CN105390695A (zh) * 2015-12-01 2016-03-09 王立军 石墨烯超低温动力锂电池
CN107195979A (zh) * 2016-03-15 2017-09-22 深圳格林德能源有限公司 一种动力储能聚合物锂离子电池
CN109817896A (zh) * 2019-04-08 2019-05-28 珠海冠宇电池有限公司 一种磷酸铁锂二次电池用正极的制备方法及锂离子电池
WO2019135827A1 (en) * 2018-01-02 2019-07-11 Nanotek Instruments, Inc. Anode particulates or cathode particulates for alkali metal batteries

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202906613U (zh) * 2012-11-28 2013-04-24 无锡鸿声铝业有限公司 搅拌机用电机
CN105514424A (zh) * 2015-12-04 2016-04-20 深圳市沃特玛电池有限公司 一种锂离子电池及其制备方法
US10361423B2 (en) * 2016-01-18 2019-07-23 Grst International Limited Method of preparing battery electrodes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1990097A (zh) * 2005-12-28 2007-07-04 比亚迪股份有限公司 一种电极浆料的混合方法
CN104282933A (zh) * 2013-07-05 2015-01-14 福建博瑞特电机有限公司 一种低温磷酸铁锂动力电池及其制备方法
CN105390695A (zh) * 2015-12-01 2016-03-09 王立军 石墨烯超低温动力锂电池
CN107195979A (zh) * 2016-03-15 2017-09-22 深圳格林德能源有限公司 一种动力储能聚合物锂离子电池
WO2019135827A1 (en) * 2018-01-02 2019-07-11 Nanotek Instruments, Inc. Anode particulates or cathode particulates for alkali metal batteries
CN109817896A (zh) * 2019-04-08 2019-05-28 珠海冠宇电池有限公司 一种磷酸铁锂二次电池用正极的制备方法及锂离子电池

Also Published As

Publication number Publication date
CN111082023A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN110620237A (zh) 一种导电浆料及其制备方法和应用、电池
WO2017031885A1 (zh) 一种锂电池负极浆料的制备方法
WO2017031884A1 (zh) 一种锂电池正极浆料的制备方法
WO2017032154A1 (zh) 一种锂电池石墨负极浆料的制备方法
EP4080616A1 (en) Lithium compensation material and preparation method therefor, and negative electrode and lithium-ion battery
JP2007080652A (ja) リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
WO2017032155A1 (zh) 一种锂电池钛酸锂负极浆料的制备方法
CN111063872A (zh) 一种硅炭负极材料及其制备方法
CN111883736A (zh) 一种锂离子电池正极浆料的制备方法
WO2017032165A1 (zh) 一种锰酸锂正极浆料的制备方法
WO2016202168A1 (zh) 一种锂离子电池正极浆料及其制备方法
CN105098149A (zh) 包含具有核-壳结构的硫颗粒的二次电池
CN114843472B (zh) 一种无钴层状正极材料及其制备方法和应用
CN110957494A (zh) 一种石墨烯锂离子电池导电剂及其制备方法
CN105742695A (zh) 一种锂离子电池及其制备方法
CN110970619B (zh) 一种物理剥离法制备石墨烯纳米片的方法、锂离子电池负极用水性导电浆料及其制备方法
CN105870401A (zh) 石墨烯作为导电剂用于锂离子电池负极浆料的方法
CN105870454A (zh) 石墨烯作为导电剂用于锂离子电池正极浆料的方法
CN111082023B (zh) 一种高导电管状网络结构的正极材料的制备方法及应用
CN111129501A (zh) 一种耐高电压的锂离子电池用导电浆料、制得的电极极片和用途
CN110048123A (zh) 锂离子电池石墨烯少壁碳纳米管水性导电剂及其制备方法
CN111244456A (zh) 高倍率磷酸铁锂电池
CN115036510B (zh) 一种无添加石墨烯/炭黑复合导电剂及其制备方法和应用
CN107230780A (zh) 一种钛酸锂复合电极材料及其制备方法
CN106229480A (zh) 一种电池电容的电极材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 277800 No. x6699, Guangming Road, high tech Zone, Zaozhuang City, Shandong Province (north of the junction of Guangming Road and Huaxin Road)

Patentee after: Shandong Jinggong Electronic Technology Co.,Ltd.

Address before: 277800 west side of Fuyuan 5th Road, Zaozhuang high tech Zone, Zaozhuang City, Shandong Province

Patentee before: Shandong Seiko Electronic Technology Co.,Ltd.