CN111079987A - 基于遗传算法的半导体车间生产调度方法 - Google Patents

基于遗传算法的半导体车间生产调度方法 Download PDF

Info

Publication number
CN111079987A
CN111079987A CN201911188921.4A CN201911188921A CN111079987A CN 111079987 A CN111079987 A CN 111079987A CN 201911188921 A CN201911188921 A CN 201911188921A CN 111079987 A CN111079987 A CN 111079987A
Authority
CN
China
Prior art keywords
population
individuals
individual
workshop
scheduling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911188921.4A
Other languages
English (en)
Inventor
王振林
李迅波
吴胜鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201911188921.4A priority Critical patent/CN111079987A/zh
Publication of CN111079987A publication Critical patent/CN111079987A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Evolutionary Biology (AREA)
  • Development Economics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Physiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Health Care (AREA)
  • Educational Administration (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于遗传算法的半导体车间生产调度方法;(1)剖析半导体流水线车间调度问题;(2)根据车间的各工件工序加工时间表,结合本文编码方式确定每个个体矩阵的大小;(3)初始化在最优值不改进情况下的中间变量;(4)对种群中任意两个个体进行本文上面的交叉操作;(5)新旧种群合并,计算每个个体的适应度值;(6)判断Q′和Q是否相同;(7)对合并种群执行选择操作;(8)判断r或n是否满足终止准则;(9)判断个体是否满足变异操作;(10)另n=n+1,将变异后的种群返回步骤4操作;(11)输出种群的最优个体。本发明解决半导体行业复杂柔性流水生产车间调度问题;避免因为最大迭代次数设置过大,进行多次不必要的计算过程,能缩短算法计算时间,提高效率。

Description

基于遗传算法的半导体车间生产调度方法
技术领域
本发明涉及柔性流水车间调度领域,具体来讲是一种基于遗传算法的半导体车间生产调度方法。
背景技术
虽然国内关于半导体复杂柔性流水车间生产调度问题的算法的研究成果丰硕,但是这些调度算法只针对单一类型的车间问题,缺少对车间的多重柔性,不确定,实时性,模糊性等问题的综合考虑;并且很多这类算法没有在实际工程中应用,验证方法可行性。加上目前大多数算法解决的是作业型生产车间,流水型车间的应用很少。并且多内针对半导体生产车间调度问题研究不多。
发明内容
因此,为了解决上述不足,本发明在此提供一种基于遗传算法的半导体车间生产调度方法;解决半导体行业复杂柔性流水生产车间调度问题。
本发明是这样实现的,构造一种基于遗传算法的半导体车间生产调度方法,其特征在于:该方法的运行过程如下:
步骤1:剖析半导体流水线车间调度问题,获取整个车间不同工件所需要的加工工序和对应工序的加工时间表;运用编码方法、确定目标函数值、适应度函数值和相关参数;
步骤2:根据车间的各工件工序加工时间表,结合本文编码方式确定每个个体矩阵的大小;在n=0时刻,随机生成规模为N的初始种群;
步骤3:初始化在最优值不改进情况下的中间变量,设置计数器r=0,最优个体Q为空;
步骤4:对种群中任意两个个体进行交叉操作,产生规模为N的新种群;
步骤5:新旧种群合并,计算每个个体的适应度值,对最优个体进行标记,并表示为Q′;
步骤6:判断Q′和Q是否相同;若相同,则r=r+1;若不同,则将Q′赋值于Q,并将计数器清零;
步骤7:对合并种群执行选择操作,保留适应度高的N个个体,构成优秀种群;
步骤8:判断r或n是否满足终止准则,若其中任何一个满足,跳转步骤 11,若同时不满足,则继续执行以下操作;
步骤9:判断个体是否满足变异操作,若满足,则进行单点或者多点位基因变异操作;若不满足,则保持个体不变;
步骤10:另n=n+1,将变异后的种群返回步骤4操作;
步骤11:输出种群的最优个体,对最优个体矩阵进行解码操作;根据解码结果结合每道工序的时间就可以绘制生产车间对应的调度甘特图和算法收敛曲线,结束整个算法;
算法结束后,就可以获取整个车间所有工件的最优调度方案甘特图。
根据本发明所述一种基于遗传算法的半导体车间生产调度方法,其特征在于:编码解码的实现如下;
在此引入矩阵编码的概念,并设计是用于生产车间调度问题的矩阵元素编码方式;
对于有n个待加工工件,每个产品均需要一次流经m道工序,且每道工序上存在Mj(j=1,2,3,..,m)台并行机的柔性流水车间调度问题(Flexible Flow-shop SchedulingProblem,FFSP),构造的n×m维编码矩阵:
Figure RE-GDA0002406844390000021
式中,初始化种群Xn×m中的元素xij用随机生成的实数表示;xij的取值范围时:
Figure RE-GDA0002406844390000022
式中,i=1,2,…,n,j=1,2,…,m;
对于初始化种群Xn×m中的元素xij,整数部分表示工件选择的机台号,小数部分表示对应机台上待加工工件的加工顺序;因此,产品i的第j道工序在第 Int(xij)号机台上加工;当i≠j时,易存在Int(xij)=Int(xkj)的现象;这说明在工序j上工件i、k选择同一机台加工;对于选择同一机台加工的工件,在第一道工序按照xij的升序一次加工;在非第一道工序,则根据各个工件在上一道工序的完工时间确定加工顺序,基本规则是:本道工序在同一机台上加工的工件,按在上一道工序完工时间的先后顺序一次进行加工;若完工时间相同,则按照xij的升序一次加工;
解码是对编码结果的逆向处理过程,是根据求解问题获得的可行解给出对应的、合理的调度方案。
根据本发明所述一种基于遗传算法的半导体车间生产调度方法,其特征在于:步骤4中,交叉操作实现如下;
改进算法首先随机生成规模为N的初始种群,在对初始种群中的个体执行基于矩阵行/列的交叉操作;交叉操作的具体步骤如下:
步骤1:个体选择,在个体不可重复选择的前提下,随机选择两个个体;
步骤2:交叉方式选择,随机分配个体交叉方式,该操作有行交叉和列交叉两种交叉方式;
步骤3:交叉位置,选择行交叉,交叉位置可在[1,n-1]范围任意位置,选择列交叉,交叉位置可在[1,m-1]范围任意位置;
步骤4:交叉操作,对两个个体在交叉位置后面的行/列进行互换,组合生成两个新的个体;
步骤5:生成新种群,将个体交叉后生成的新个体存储到新种群中。
根据本发明所述一种基于遗传算法的半导体车间生产调度方法,其特征在于:步骤7中,选择操作实现如下;
将初始种群与交叉产生的新种群进行合并,生成规模数为2N的新种群;种群合并的目的不仅能增大种群规模,保持种群多样性,还能对父代精英个体进行保留;本文提出的选择操作是对种群中每两个领域个体的适应度值进行比较,适应度低的个体直接被淘汰,适应度高的个体被选择并成为下一次迭代的父代个体;对于2N规模种群依次进行选择操作,每次操作包括了N次数据比较过程;将选择得到的优秀个体存储到下一次迭代的父代种群中,并标注种群的最优个体。
根据本发明所述一种基于遗传算法的半导体车间生产调度方法,其特征在于:步骤9中,变异操作实现如下;
具体操作步骤如下:
步骤1:对种群每个个体的变异概率进行随机赋值,取值范围[0,1];
步骤2:对于某个个体,若随机生成的变异概率小于变异参数Pm,则对该个体一次执行步骤3,步骤4操作,反之结束该变异过程;
步骤3:随机生成个体变异点的数量及每个变异点的位置i×j。i×j表示矩阵的第i行,第j列;变异个体变异点数量较小,通常为1或2;
步骤4:对个体变异点进行随机赋值,新值是该工序可选择的并行机号范围内任意实数,但不可与变异前的值相同。
本发明具有如下优点:避免因为最大迭代次数设置过大,进行多次不必要的计算过程,能缩短算法计算时间,提高效率。
附图说明
图1是本发明具体算法流程图;
图2是改进的选择操作示意图。
具体实施方式
下面将结合附图1-图2对本发明进行详细说明,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明通过改进在此提供一种基于遗传算法的半导体车间生产调度方法,算法的运行过程如下:
步骤1:剖析半导体流水线车间调度问题,获取整个车间不同工件所需要的加工工序和对应工序的加工时间表。运用上面提出的编码方法、确定目标函数值、适应度函数值和相关参数。
步骤2:根据车间的各工件工序加工时间表,结合本文编码方式确定每个个体矩阵的大小。在n=0时刻,随机生成规模为N的初始种群。
步骤3:初始化在最优值不改进情况下的中间变量,设置计数器r=0,最优个体Q为空。
步骤4:对种群中任意两个个体进行本文上面的交叉操作,产生规模为N的新种群。
步骤5:新旧种群合并,计算每个个体的适应度值,对最优个体进行标记,并表示为Q′。
步骤6:判断Q′和Q是否相同。若相同,则r=r+1;若不同,则将Q′赋值于Q,并将计数器清零。
步骤7:对合并种群执行选择操作,保留适应度高的N个个体,构成优秀种群。
步骤8:判断r或n是否满足终止准则,若其中任何一个满足,跳转步骤 11,若同时不满足,则继续执行以下操作。
步骤9:判断个体是否满足变异操作,若满足,则进行单点或者多点位基因变异操作;若不满足,则保持个体不变。
步骤10:另n=n+1,将变异后的种群返回步骤4操作。
步骤11:输出种群的最优个体,对最优个体矩阵进行解码操作。根据解码结果结合每道工序的时间就可以绘制生产车间对应的调度甘特图和算法收敛曲线,结束整个算法;
算法结束后,就可以获取整个车间所有工件的最优调度方案甘特图。
本发明还具有如下方面的改进;
第一,编码解码的改进;
由于生产调度问题存在多种约束,这就要求算法求解过程中的所有个体均要满足约束条件,单传统的GA算法经过多次交叉,变异后,种群中部分个体不在是可行解,因此传统GA的编码方式对于生产车间调度问题不适用,在此本文引入矩阵编码的概念,并设计是用于生产车间调度问题的矩阵元素编码方式。
对于有n个待加工工件,每个产品均需要一次流经m道工序,且每道工序上存在Mj(j=1,2,3,..,m)台并行机的柔性流水车间调度问题(Flexible Flow-shop SchedulingProblem,FFSP)。构造的n×m维编码矩阵:
Figure RE-GDA0002406844390000061
式中,初始化种群Xn×m中的元素xij用随机生成的实数表示。xij的取值范围时:
Figure RE-GDA0002406844390000062
式中,i=1,2,…,n,j=1,2,…,m。
对于初始化种群Xn×m中的元素xij,整数部分表示工件选择的机台号,小数部分表示对应机台上待加工工件的加工顺序。因此,产品i的第j道工序在第 Int(xij)号机台上加工。当i≠j时,易存在Int(xij)=Int(xkj)的现象。这说明在工序 j上工件i、k选择同一机台加工。对于选择同一机台加工的工件,在第一道工序按照xij的升序一次加工。在非第一道工序,则根据各个工件在上一道工序的完工时间确定加工顺序,基本规则是:本道工序在同一机台上加工的工件,按在上一道工序完工时间的先后顺序一次进行加工;若完工时间相同,则按照xij的升序一次加工。
本文不再将编码矩阵展开成一串元素生成对应的染色体,而是将每个编码矩阵看作一个染色体,也是调度问题的一个可行解。采用该方法不仅能减少计算工作量,而且能确保子代个体基因在交叉、变异过程中的完整性。
解码是对编码结果的逆向处理过程,是根据求解问题获得的可行解给出对应的、合理的调度方案。
第二,交叉操作的改进;
根据对应的编码解码改进措施,现在将传统的遗传算法的交叉操作改进如下。改进算法首先随机生成规模为N的初始种群,在对初始种群中的个体执行基于矩阵行/列的交叉操作。交叉操作的具体步骤如下:
步骤1:个体选择。在个体不可重复选择的前提下,随机选择两个个体。
步骤2:交叉方式选择。随机分配个体交叉方式,该操作有行交叉和列交叉两种交叉方式。
步骤3:交叉位置。选择行交叉,交叉位置可在[1,n-1]范围任意位置,选择列交叉,交叉位置可在[1,m-1]范围任意位置。
步骤4:交叉操作;对两个个体在交叉位置后面的行/列进行互换,组合生成两个新的个体。
步骤5:生成新种群;将个体交叉后生成的新个体存储到新种群中。
第三,选择操作的改进;
根据传统遗传算法,本文的算法的选择操作,将初始种群与交叉产生的新种群进行合并,生成规模数为2N的新种群。种群合并的目的不仅能增大种群规模,保持种群多样性,还能对父代精英个体进行保留。本文提出的选择操作是对种群中每两个领域个体的适应度值进行比较,适应度低的个体直接被淘汰,适应度高的个体被选择并成为下一次迭代的父代个体。对于2N规模种群依次进行选择操作,每次操作包括了N次数据比较过程。将选择得到的优秀个体存储到下一次迭代的父代种群中,并标注种群的最优个体。改进的选择操作如图2。
第四,变异操作的改进;
本文提出以一定概率对染色体随机指定某一位或某几位基因进行变异的方法,具体操作步骤如下:
步骤1:对种群每个个体的变异概率进行随机赋值,取值范围[0,1]。
步骤2:对于某个个体,若随机生成的变异概率小于变异参数Pm,则对该个体一次执行步骤3,步骤4操作,反之结束该变异过程。
步骤3:随机生成个体变异点的数量及每个变异点的位置i×j。i×j表示矩阵的第i行,第j列。变异个体变异点数量较小,通常为1或2。
步骤4:对个体变异点进行随机赋值,新值是该工序可选择的并行机号范围内任意实数,但不可与变异前的值相同。
第五,适应度评价规则;
本文柔性流水车间调度问题的目标是最大完工时间最小。虽然在GA算法的适应度函数是非负、最大化问题,但由于生产车间调度问题的目标函数值能直观反映出染色体的优劣,在此直接选用目标函数作为评价适应度高低的标准。也就是说直接把目标函数看做适应度函数。个体的目标函数f,适应度函数fit 的表达式分别为:
Figure RE-GDA0002406844390000071
fit=f=Cmax
对于该方法适应度的评价规则是:个体的目标函数值越大,说明其适应度函数越低;反之,个体的目标函数值越小,说明其适应度越高。
第六,算法终止准则;
通常车间调度问题是目标函数的最大、最小值问题,所以不适合采用集集区间的方法来判定算法是否收敛。本文提出的改进方法需要设定两个参数:最大迭代次数MF,目标函数值不改进情况下最大迭代次数S。若算法满足以下任何一个条件:
(1)算法迭代次数大于MF。
(2)在最大迭代次数范围内,最优个体的目标值在S次连续迭代过程中没有得到任何改进。
该方法的有点在于:避免因为最大迭代次数设置过大,进行多次不必要的计算过程,能缩短算法计算时间,提高效率。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (5)

1.一种基于遗传算法的半导体车间生产调度方法,其特征在于:该方法的运行过程如下:
步骤1:剖析半导体流水线车间调度问题,获取整个车间不同工件所需要的加工工序和对应工序的加工时间表;运用编码方法、确定目标函数值、适应度函数值和相关参数;
步骤2:根据车间的各工件工序加工时间表,结合本文编码方式确定每个个体矩阵的大小;在n=0时刻,随机生成规模为N的初始种群;
步骤3:初始化在最优值不改进情况下的中间变量,设置计数器r=0,最优个体Q为空;
步骤4:对种群中任意两个个体进行交叉操作,产生规模为N的新种群;
步骤5:新旧种群合并,计算每个个体的适应度值,对最优个体进行标记,并表示为Q′;
步骤6:判断Q′和Q是否相同;若相同,则r=r+1;若不同,则将Q′赋值于Q,并将计数器清零;
步骤7:对合并种群执行选择操作,保留适应度高的N个个体,构成优秀种群;
步骤8:判断r或n是否满足终止准则,若其中任何一个满足,跳转步骤11,若同时不满足,则继续执行以下操作;
步骤9:判断个体是否满足变异操作,若满足,则进行单点或者多点位基因变异操作;若不满足,则保持个体不变;
步骤10:另n=n+1,将变异后的种群返回步骤4操作;
步骤11:输出种群的最优个体,对最优个体矩阵进行解码操作;根据解码结果结合每道工序的时间就可以绘制生产车间对应的调度甘特图和算法收敛曲线,结束整个算法;
算法结束后,就可以获取整个车间所有工件的最优调度方案甘特图。
2.根据权利要求1所述一种基于遗传算法的半导体车间生产调度方法,其特征在于:编码解码的实现如下;
在此引入矩阵编码的概念,并设计是用于生产车间调度问题的矩阵元素编码方式;
对于有n个待加工工件,每个产品均需要一次流经m道工序,且每道工序上存在Mj(j=1,2,3,..,m)台并行机的柔性流水车间调度问题(Flexible Flow-shop SchedulingProblem,FFSP),构造的n×m维编码矩阵:
Figure RE-FDA0002406844380000021
式中,初始化种群Xn×m中的元素xij用随机生成的实数表示;xij的取值范围时:
Figure RE-FDA0002406844380000022
式中,i=1,2,…,n,j=1,2,…,m;
对于初始化种群Xn×m中的元素xij,整数部分表示工件选择的机台号,小数部分表示对应机台上待加工工件的加工顺序;因此,产品i的第j道工序在第Int(xij)号机台上加工;当i≠j时,易存在Int(xij)=Int(xkj)的现象;这说明在工序j上工件i、k选择同一机台加工;对于选择同一机台加工的工件,在第一道工序按照xij的升序一次加工;在非第一道工序,则根据各个工件在上一道工序的完工时间确定加工顺序,基本规则是:本道工序在同一机台上加工的工件,按在上一道工序完工时间的先后顺序一次进行加工;若完工时间相同,则按照xij的升序一次加工;
解码是对编码结果的逆向处理过程,是根据求解问题获得的可行解给出对应的、合理的调度方案。
3.根据权利要求1所述一种基于遗传算法的半导体车间生产调度方法,其特征在于:步骤4中,交叉操作实现如下;
改进算法首先随机生成规模为N的初始种群,在对初始种群中的个体执行基于矩阵行/列的交叉操作;交叉操作的具体步骤如下:
步骤1:个体选择,在个体不可重复选择的前提下,随机选择两个个体;
步骤2:交叉方式选择,随机分配个体交叉方式,该操作有行交叉和列交叉两种交叉方式;
步骤3:交叉位置,选择行交叉,交叉位置可在[1,n-1]范围任意位置,选择列交叉,交叉位置可在[1,m-1]范围任意位置;
步骤4:交叉操作,对两个个体在交叉位置后面的行/列进行互换,组合生成两个新的个体;
步骤5:生成新种群,将个体交叉后生成的新个体存储到新种群中。
4.根据权利要求1所述一种基于遗传算法的半导体车间生产调度方法,其特征在于:步骤7中,选择操作实现如下;
将初始种群与交叉产生的新种群进行合并,生成规模数为2N的新种群;种群合并的目的不仅能增大种群规模,保持种群多样性,还能对父代精英个体进行保留;本文提出的选择操作是对种群中每两个领域个体的适应度值进行比较,适应度低的个体直接被淘汰,适应度高的个体被选择并成为下一次迭代的父代个体;对于2N规模种群依次进行选择操作,每次操作包括了N次数据比较过程;将选择得到的优秀个体存储到下一次迭代的父代种群中,并标注种群的最优个体。
5.根据权利要求1所述一种基于遗传算法的半导体车间生产调度方法,其特征在于:步骤9中,变异操作实现如下;
具体操作步骤如下:
步骤1:对种群每个个体的变异概率进行随机赋值,取值范围[0,1];
步骤2:对于某个个体,若随机生成的变异概率小于变异参数Pm,则对该个体一次执行步骤3,步骤4操作,反之结束该变异过程;
步骤3:随机生成个体变异点的数量及每个变异点的位置i×j;i×j表示矩阵的第i行,第j列;变异个体变异点数量较小,通常为1或2;
步骤4:对个体变异点进行随机赋值,新值是该工序可选择的并行机号范围内任意实数,但不可与变异前的值相同。
CN201911188921.4A 2019-11-28 2019-11-28 基于遗传算法的半导体车间生产调度方法 Pending CN111079987A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911188921.4A CN111079987A (zh) 2019-11-28 2019-11-28 基于遗传算法的半导体车间生产调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911188921.4A CN111079987A (zh) 2019-11-28 2019-11-28 基于遗传算法的半导体车间生产调度方法

Publications (1)

Publication Number Publication Date
CN111079987A true CN111079987A (zh) 2020-04-28

Family

ID=70312010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911188921.4A Pending CN111079987A (zh) 2019-11-28 2019-11-28 基于遗传算法的半导体车间生产调度方法

Country Status (1)

Country Link
CN (1) CN111079987A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724044A (zh) * 2020-05-29 2020-09-29 浙江汉脑数码科技有限公司 基于遗传算法的智能排产系统
CN111985647A (zh) * 2020-07-21 2020-11-24 西安理工大学 基于遗传算法的印刷装订作业调度优化方法
CN112232548A (zh) * 2020-09-14 2021-01-15 中国船舶重工集团公司第七一六研究所 基于遗传算法的机械加工车间智能排产优化方法及系统
CN112926837A (zh) * 2021-02-04 2021-06-08 郑州轻工业大学 基于数据驱动改进遗传算法求解作业车间调度问题的方法
CN113361813A (zh) * 2021-07-02 2021-09-07 武汉理工大学 一种圆晶设备排产系统优化调度方法
CN113379225A (zh) * 2021-06-07 2021-09-10 南京理工大学 一种基于矩阵编码遗传算法的作业调度方法
CN113505456A (zh) * 2021-06-29 2021-10-15 上海勘察设计研究院(集团)有限公司 一种测量控制网优化设计方法
CN113592168A (zh) * 2021-07-26 2021-11-02 华北电力大学(保定) 一种基于机器速度缩放的作业车间调度风险优化方法
CN113610332A (zh) * 2020-12-08 2021-11-05 联芯集成电路制造(厦门)有限公司 工艺调度方法及其工艺调度系统
CN115564146A (zh) * 2022-11-18 2023-01-03 吉林大学 一种以改进的粒子群算法为内核的分组车间作业调度方法
CN117114370A (zh) * 2023-10-23 2023-11-24 泉州装备制造研究所 一种适配设备故障的小产品生产车间调度方法
CN112232548B (zh) * 2020-09-14 2024-06-28 中国船舶集团有限公司第七一六研究所 基于遗传算法的机械加工车间智能排产优化方法及系统

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630380A (zh) * 2009-07-08 2010-01-20 西安电子科技大学 基于多种群进化机制的作业车间调度方法
CN101770615A (zh) * 2010-01-25 2010-07-07 重庆大学 基于混合智能优化算法的炼钢-连铸生产作业计划与实时调度优化方法与系统
CN102222274A (zh) * 2011-04-02 2011-10-19 西安电子科技大学 基于调度编码的免疫克隆选择作业车间调度方法
CN103870647A (zh) * 2014-03-14 2014-06-18 西安工业大学 一种基于遗传算法的作业车间调度建模的方法
US20140282586A1 (en) * 2013-03-15 2014-09-18 Advanced Elemental Technologies Purposeful computing
JP2015005085A (ja) * 2013-06-20 2015-01-08 Jfeスチール株式会社 スケジューリング方法及びスケジューリング装置
CN104504469A (zh) * 2014-12-19 2015-04-08 西安电子科技大学 基于三维移动模式序列与多智能体遗传算法的装箱方法
WO2016165392A1 (zh) * 2015-04-17 2016-10-20 华南理工大学 一种基于遗传算法的云计算资源调度方法
CN106611379A (zh) * 2016-02-22 2017-05-03 四川用联信息技术有限公司 一种改进文化基因算法求解多目标柔性作业车间调度问题
US20170124531A1 (en) * 2014-04-04 2017-05-04 Mark Jonathon Joseph McCormack Scheduling System and Method
CN106971236A (zh) * 2017-02-20 2017-07-21 上海大学 一种基于遗传算法的柔性作业车间分批调度方法
CN107944748A (zh) * 2017-12-11 2018-04-20 河北工业大学 柔性作业车间人员配置及作业排序方法
CN108805403A (zh) * 2018-05-02 2018-11-13 上海大学 一种基于改进遗传算法的单件车间调度方法
US20180357584A1 (en) * 2017-06-12 2018-12-13 Hefei University Of Technology Method and system for collaborative scheduling of production and transportation in supply chains based on improved particle swarm optimization
CN109034633A (zh) * 2018-08-04 2018-12-18 郑州航空工业管理学院 改进遗传算法求解带移动时间的柔性作业车间调度方法
CN109886588A (zh) * 2019-02-28 2019-06-14 长安大学 一种基于改进鲸鱼算法求解柔性作业车间调度的方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630380A (zh) * 2009-07-08 2010-01-20 西安电子科技大学 基于多种群进化机制的作业车间调度方法
CN101770615A (zh) * 2010-01-25 2010-07-07 重庆大学 基于混合智能优化算法的炼钢-连铸生产作业计划与实时调度优化方法与系统
CN102222274A (zh) * 2011-04-02 2011-10-19 西安电子科技大学 基于调度编码的免疫克隆选择作业车间调度方法
US20140282586A1 (en) * 2013-03-15 2014-09-18 Advanced Elemental Technologies Purposeful computing
JP2015005085A (ja) * 2013-06-20 2015-01-08 Jfeスチール株式会社 スケジューリング方法及びスケジューリング装置
CN103870647A (zh) * 2014-03-14 2014-06-18 西安工业大学 一种基于遗传算法的作业车间调度建模的方法
CN107209878A (zh) * 2014-04-04 2017-09-26 马克·乔纳森·麦考马克 调度系统和方法
US20170124531A1 (en) * 2014-04-04 2017-05-04 Mark Jonathon Joseph McCormack Scheduling System and Method
CN104504469A (zh) * 2014-12-19 2015-04-08 西安电子科技大学 基于三维移动模式序列与多智能体遗传算法的装箱方法
WO2016165392A1 (zh) * 2015-04-17 2016-10-20 华南理工大学 一种基于遗传算法的云计算资源调度方法
CN106611379A (zh) * 2016-02-22 2017-05-03 四川用联信息技术有限公司 一种改进文化基因算法求解多目标柔性作业车间调度问题
CN106971236A (zh) * 2017-02-20 2017-07-21 上海大学 一种基于遗传算法的柔性作业车间分批调度方法
US20180357584A1 (en) * 2017-06-12 2018-12-13 Hefei University Of Technology Method and system for collaborative scheduling of production and transportation in supply chains based on improved particle swarm optimization
CN107944748A (zh) * 2017-12-11 2018-04-20 河北工业大学 柔性作业车间人员配置及作业排序方法
CN108805403A (zh) * 2018-05-02 2018-11-13 上海大学 一种基于改进遗传算法的单件车间调度方法
CN109034633A (zh) * 2018-08-04 2018-12-18 郑州航空工业管理学院 改进遗传算法求解带移动时间的柔性作业车间调度方法
CN109886588A (zh) * 2019-02-28 2019-06-14 长安大学 一种基于改进鲸鱼算法求解柔性作业车间调度的方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
光熠;刘心报;程浩;: "求解车间作业调度问题的一种改进遗传算法", 计算机技术与发展, no. 11, pages 171 - 174 *
安晶等: "一种基于遗传算法的车间调度算法求解", 《盐城工学院学报(自然科学版)》 *
安晶等: "一种基于遗传算法的车间调度算法求解", 《盐城工学院学报(自然科学版)》, no. 01, 20 March 2007 (2007-03-20) *
张国辉等: "改进遗传算法求解柔性作业车间调度问题", 《机械工程学报》 *
张国辉等: "改进遗传算法求解柔性作业车间调度问题", 《机械工程学报》, no. 07, 15 July 2009 (2009-07-15) *
田?等: "分层混合遗传算法求解柔性作业车间调度问题", 《工业工程与管理》 *
田?等: "分层混合遗传算法求解柔性作业车间调度问题", 《工业工程与管理》, no. 05, 10 October 2017 (2017-10-10) *
聂书志等: "DNA遗传算法在Job Shop调度优化中的应用", 《机械设计与制造》 *
聂书志等: "DNA遗传算法在Job Shop调度优化中的应用", 《机械设计与制造》, no. 05, 8 May 2010 (2010-05-08) *
鞠全勇;朱剑英;: "双资源多工艺路线作业车间模糊调度问题研究", 机械科学与技术, no. 12, pages 1425 - 1427 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724044A (zh) * 2020-05-29 2020-09-29 浙江汉脑数码科技有限公司 基于遗传算法的智能排产系统
CN111985647A (zh) * 2020-07-21 2020-11-24 西安理工大学 基于遗传算法的印刷装订作业调度优化方法
CN112232548A (zh) * 2020-09-14 2021-01-15 中国船舶重工集团公司第七一六研究所 基于遗传算法的机械加工车间智能排产优化方法及系统
CN112232548B (zh) * 2020-09-14 2024-06-28 中国船舶集团有限公司第七一六研究所 基于遗传算法的机械加工车间智能排产优化方法及系统
CN113610332A (zh) * 2020-12-08 2021-11-05 联芯集成电路制造(厦门)有限公司 工艺调度方法及其工艺调度系统
CN113610332B (zh) * 2020-12-08 2024-05-14 联芯集成电路制造(厦门)有限公司 工艺调度方法及其工艺调度系统
CN112926837B (zh) * 2021-02-04 2023-09-12 郑州轻工业大学 基于数据驱动改进遗传算法求解作业车间调度问题的方法
CN112926837A (zh) * 2021-02-04 2021-06-08 郑州轻工业大学 基于数据驱动改进遗传算法求解作业车间调度问题的方法
CN113379225A (zh) * 2021-06-07 2021-09-10 南京理工大学 一种基于矩阵编码遗传算法的作业调度方法
CN113505456A (zh) * 2021-06-29 2021-10-15 上海勘察设计研究院(集团)有限公司 一种测量控制网优化设计方法
CN113505456B (zh) * 2021-06-29 2022-03-01 上海勘察设计研究院(集团)有限公司 一种测量控制网优化设计方法
CN113361813A (zh) * 2021-07-02 2021-09-07 武汉理工大学 一种圆晶设备排产系统优化调度方法
CN113592168B (zh) * 2021-07-26 2023-07-04 华北电力大学(保定) 一种基于机器速度缩放的作业车间调度风险优化方法
CN113592168A (zh) * 2021-07-26 2021-11-02 华北电力大学(保定) 一种基于机器速度缩放的作业车间调度风险优化方法
CN115564146B (zh) * 2022-11-18 2023-04-07 吉林大学 一种以改进的粒子群算法为内核的分组车间作业调度方法
CN115564146A (zh) * 2022-11-18 2023-01-03 吉林大学 一种以改进的粒子群算法为内核的分组车间作业调度方法
CN117114370A (zh) * 2023-10-23 2023-11-24 泉州装备制造研究所 一种适配设备故障的小产品生产车间调度方法
CN117114370B (zh) * 2023-10-23 2023-12-26 泉州装备制造研究所 一种适配设备故障的小产品生产车间调度方法

Similar Documents

Publication Publication Date Title
CN111079987A (zh) 基于遗传算法的半导体车间生产调度方法
CN107862411B (zh) 一种大规模柔性作业车间调度优化方法
CN107301473B (zh) 基于改进遗传算法的同类平行机批调度方法及系统
CN108320057B (zh) 一种基于有限制稳定配对策略的柔性作业车间调度方法
CN108416488B (zh) 一种面向动态任务的多智能机器人任务分配方法
CN108460463B (zh) 基于改进遗传算法的高端装备流水线生产调度方法
CN109636011B (zh) 一种基于改进的变邻域遗传算法的多班制计划排程法
CN110543151A (zh) 基于改进nsga-ⅱ求解车间节能调度问题的方法
CN105629927A (zh) 一种基于混合遗传算法的mes生产计划排产方法
CN104751297A (zh) 一种混流生产线产能分配方法
CN102608916A (zh) 一种基于元胞机的大型零件柔性作业车间的动态调度方法
CN110909787A (zh) 基于聚类的进化算法进行多目标批调度优化的方法和系统
CN113379087A (zh) 一种基于改进遗传算法的生产制造排产优化方法
CN110414863A (zh) 一种智能制造车间资源调度方法
CN104572297A (zh) 一种基于遗传算法的Hadoop作业调度方法
CN109816262A (zh) 采用改良免疫遗传算法的柔性作业车间调度方法
CN104636871A (zh) 一种基于数据的单阶段多产品批处理的控制方法
CN106611275A (zh) 针对作业车间生产问题的排产算法
CN105373845A (zh) 制造企业车间的混合智能调度优化方法
CN112686474A (zh) 一种基于改进的水波优化算法的可并行装配线平衡方法
CN101256648A (zh) 一种应用在生产排程系统的基于订单结构的遗传操作算子
CN112699544A (zh) 一种多目标柔性作业车间调度方法
CN115952896A (zh) 一种基于物料过程齐套的柔性作业车间调度方法
CN108053152A (zh) 基于多色集合的改进遗传算法求解动态车间调度的方法
CN114266509A (zh) 随机贪婪初始种群遗传算法求解柔性作业车间调度方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
AD01 Patent right deemed abandoned

Effective date of abandoning: 20240322