CN111051028B - 具有在线化学计量控制的多组分混合和计量设备 - Google Patents

具有在线化学计量控制的多组分混合和计量设备 Download PDF

Info

Publication number
CN111051028B
CN111051028B CN201880055341.5A CN201880055341A CN111051028B CN 111051028 B CN111051028 B CN 111051028B CN 201880055341 A CN201880055341 A CN 201880055341A CN 111051028 B CN111051028 B CN 111051028B
Authority
CN
China
Prior art keywords
liquid
line
mixing
composite
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880055341.5A
Other languages
English (en)
Other versions
CN111051028A (zh
Inventor
D·厄瓦尔德
A·提哈亚
T·哈森
N·梅格戈尔
S·艾希霍尔兹
I·马祖茨克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West Lake Epoxy Resin Co
West Lake Olefin Co ltd
Original Assignee
Momentive Specialty Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momentive Specialty Chemicals Inc filed Critical Momentive Specialty Chemicals Inc
Publication of CN111051028A publication Critical patent/CN111051028A/zh
Application granted granted Critical
Publication of CN111051028B publication Critical patent/CN111051028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/32Mixing; Kneading continuous, with mechanical mixing or kneading devices with non-movable mixing or kneading devices
    • B29B7/325Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7457Mixing heads without moving stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/801Valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/06Feeding of the material to be moulded, e.g. into a mould cavity in measured doses, e.g. by weighting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/10Feeding of the material to be moulded, e.g. into a mould cavity of several materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/131Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7471Mixers in which the mixing takes place at the inlet of a mould, e.g. mixing chambers situated in the mould opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2663/00Use of EP, i.e. epoxy resins or derivatives thereof for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2701/00Use of unspecified macromolecular compounds for preformed parts, e.g. for inserts
    • B29K2701/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3055Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3097Cosmonautical vehicles; Rockets

Abstract

本发明描述使用在线分析工具的先进混合和计量技术,用于供应配制的液体热固性树脂至开放的或封闭的模具中。该应用解决了需要精确控制配制组分组成的应用。采用灌注或RTM工艺制造的主要和次要结构航空航天应用中使用的复合结构是可能的实例。

Description

具有在线化学计量控制的多组分混合和计量设备
技术领域
本发明描述使用在线分析工具产生先进混合和计量技术的构思,用于供应配制的液体热固性树脂至开放的或封闭的模具中。
背景技术
与热固性树脂组合的高性能纤维提供非常高的强度与重量比,并且用于制备轻质储存容器、压力容器和其它复合材料结构和制品是理想的。该构思解决了需要精确控制配制组分组成的应用。灌注以灌注、液体压缩成型(LLM)或RTM工艺制造的主要和次要结构航空航天和汽车应用中使用的复合结构是可能的实例。
结构航空航天部件是在精度和公差方面就品质而言最关键和要求最高的应用之一。目前,所有树脂以间歇工艺制造,包括关于确定每种成分和最终产品的正确品质和数量的每个批次的精确离线品质控制。那些应用目前是由单组分灌注树脂(例如RTM6,Cycom890或EPS600)提供,以5-10kg的包装供应。因为在过去几十年中大多数应用仅要求小体积的配制热固性材料进料(1-10kg),这种设置被视为适合于该工业。虽然供应链成本高且复杂,仍可使用单组分体系实现应用。然而,考虑到制造大规模产品的趋势,该市场要求从单组分树脂体系转向双组分树脂体系,因为:
-工艺安全性和稳固性
-供应链复杂性和成本
-在单组分树脂包装中不能实现的新的技术性能分布。
目前的常规实践是在5-10kg的包装规模下使用单组分树脂配制剂。要求限制包装尺寸至5-10kg,因为配制剂对温度不是稳定的,因为它们含有树脂和固化剂。运输和储存受公共机构的限制,取决于它们各自的分类。EPIKOTE System 600(目前的工业基准)被分类为UN3226Class 4.1类型D。这导致限制包装根据德国危险品条例(参考文献P520,OP7),最大质量为50kg 10kg。此外,所指出的单组分树脂体系要求冷储存和运输。由于在树脂和固化剂之间的化学交联,组合物性质随时间改变。这导致例如粘度的改变(提高),粘度是灌注过程中关键的性能特征。注射温度下低于200mPas的粘度被认为是加工窗口的上限。结果是,目前在-18℃下储存产品,否则产品将因此具有非常有限的货架期。
考虑那些体系的反应性,材料的制备和再填充还将产生品质和安全风险。为了制备大规模体积,必须预加热和再填充大量的小规模包装。目前,将材料预加热至60-80℃以便再填充它们。考虑到达到临界粘度的有限时间,不可能通过从小规模包装再填充进行工业过程。
为了实现从单组分树脂体系转向双组分树脂体系,需要通过引入静态或动态混合器来替代间歇工艺。现有技术给出用于供应共混物的一些仪器,例如在US 5382394或US5670203中。然而,这要求在任何制备时间混合物的精确在线分析以便在制备过程中确定缺陷从而避免高成本零件排斥和在操作操作过程中性能相关的安全事件。现有技术的多组分混合和计量设备创造了克服那些问题的机会。混合和计量装置的目的是将单个组分脱气并通过例如静态混合器以特定质量或体积分数在连续工艺中组合它们。这种设备可放置在“现场”,以便正好在灌注之前进行临界树脂-固化剂配制步骤。然而,该构思将要求在进入固化模具之前精确已知材料组成。结果是,在制备过程中必须持续地分析材料。目前,这种现场配制是不可能的,因为目前不能获得提供以可靠的方式在线地监测制造过程的可能性的工业过程,特别是在热固性材料的配制工艺过程中。虽然配制的产品在灌注/注射之后的离线分析将能够测定品质(配制剂),但是如果不满足对配制的要求,时间滞后将太高而不能调节工艺。结果是,那些零件将不满足所要求的机械、热性能,并且与结构部件的损失(超出规格)有关的显著成本将是巨大的。
发明概述
将在线分析工具实施到现有技术的多组分混合和计量(M&M)设备中实现了一种能能够使用户在需要精确监测和控制不同起始材料的质量和体积比的环境中操作该设备的功能。适当的在线测量装置可为IR、NIR(但是还为折射率或UV/VIS)。
附图简述
为了进一步理解本发明的本质和目的,可结合附图参考以下详述,其中:
图1是在注射区域之前的使用储存罐、混合区域和分析工具的工艺流程的示意横截面。
发明详述
本发明描述使用在线分析工具产生先进混合和计量技术的构思,用于供应配制的液体热固性体系至开放的或封闭的模具中。热固性树脂可为环氧树脂、异氰酸酯、氰酸酯树脂、酚树脂、酸或羟基官能树脂、双马来酰亚胺树脂、不饱和树脂。对于环氧树脂而言,典型实例是基于以下的树脂:双酚A、双酚F、双酚S、或缩水甘油胺衍生物(例如TGMDA、TGPAP、TGODA或TGDDS)。热固性体系的固化剂部分取决于热固性树脂的反应性化学官能。对于环氧树脂,固化剂可选自胺衍生物例如芳族多官能胺、或环脂族多官能胺、或它们的组合。另一类环氧树脂的固化剂是酸衍生物例如酸酐、或多酐、或多官能酸组分例如酸官能聚酯或丙烯酸类/甲基丙烯酸类树脂。
在用户加工之前设定质量/体积分数。该方法从开发用于“设定的配制剂”的IR分析模型(IR、NIR、折射率或UV/VIS)开始,包括允许的标准偏差阵列。模型连接分析测量(IR谱、NIR谱、折射率或UV吸收率)与样品中树脂或硬化剂的已知浓度。使用在不同已知浓度下的多次测量来建立在分析软件中编程的校准线。除了校准线之外,对于允许的分析值测定目标操作窗口。接下来以目标配制剂中使用的具体起始材料为基础建立软件模型。在混合工艺过程中,在材料离开混合装置(静态或动态混合器)之后通过在线测量技术在线分析材料。预先建立的模型用于将分析测量(IR/NIR谱、折射率值、UV吸收率)转化为用“设定的配制剂”产生配制剂的实际组成。该模型比较实际配制剂的波长的先前选择的吸收“强度”与“设定的配制剂”的“强度”。如果分析的组成在预先设定的窗口中(在规格中),通过压力或真空进一步将材料转移至模具中。如果分析的组成不在目标范围内,将材料泵入第二废物储存罐中或泵入增加剂量不足组分的比质量分数的再循环链中。
可在静态混合器上游的原材料管线中安装两种额外的在线测量探测器。原材料的连续分析产生以下可能性:
如果分析方法是UV/VIS或折射率,原材料的测量将帮助预计产品的目标窗口。原材料品质的微小改变将直接可见并且可相应地调节产品分析窗口。这将降低总测量误差。
如果分析方法是NIR或IR,原材料的测量可用作原材料品质的连续监测。需要事先建立适当的模型来连接测量的谱与关键原材料品质参数(例如粘度、环氧数)。
本发明的益处是:
-在供应链和储存过程中降低的成本,因为不再要求-18℃步骤
-由于自动化工艺所致显著降低的处理成本
-改进的安全性,因为没有运输和储存Cat.4.1材料
-改进的安全性,因为可避免热材料(60-80℃)的再填充步骤
-由于较低的热应力所致改进的品质,因为材料的混合步骤在几秒范围内(静态混合器中的停留时间)而不是间歇工艺中的几小时(间歇反应器中的停留时间)
-在灌注工艺过程中较高的品质,因为可在高真空下将材料脱气并且不发生再填充
-能够显著降低不符合规格的货物的品质监测
实施例
提供以下实施例和比较例来说明本发明的某些实施方案。
实施例1:
通过使用IR在线分析工具测定混合比。
图2显示在测试过程中在线IR测量的结果,其中有意地改变环氧树脂和固化剂的混合比。以红色显示树脂固化的设定点。以蓝色显示实际IR测量。仅可结合设备的准确性来评估测量的准确性:在这些测试过程中,没有单独校准混合单元本身。
从图2可看出该模型对样品的组成非常敏感:含有较少挥发物的脱气样品(从90min开始向前)具有比未脱气样品(0-90min)更小的标准偏差。另外,当流动速率在恒定混合比设定点处改变时(10-15min处所见)测量经历小的干扰。如果流动速率保持恒定,混合单元可提供均匀的混合品质,如在每个新设定点处在水平线中所见。
当混合比改变时,在线IR能够立即检测混合比中大的和小的改变。甚至可检测树脂含量中0.5-0.25%的改变(70-80min)。
最大观察到的标准偏差为0.4表明组合混合+计量准确性落入树脂含量的+/-1.2重量%内。
该记录清楚说明通过IR在线分析工具准确地测量了混合比环氧树脂/固化剂的改变。
实施例2:
混合比对热性能的作用
表1中的数据显示混合比对未固化配制剂以及固化配制剂的玻璃化转变温度(Tg)有强的作用。在规定水平中较高的环氧树脂量或较低的环氧树脂量(在该实施例中为54重量%的环氧树脂)对固化组合物的测量Tg有显著影响。
Figure BDA0002392136230000051
Figure BDA0002392136230000061
表1:未固化和固化配制剂的玻璃化转变温度Tg
从实施例和图2记录了可通过IR信号的变化在线精确地监测环氧树脂/固化剂比率的变化。测量的变化可引发阀打开以排出混合的组合物至废物罐中并且在制造复合材料零件之前。当测量到期望的比率时,该组合物可直接填充在模具中以制备复合材料结构。

Claims (14)

1.用于供应液体或熔融液体热固性组合物的仪器,包括
在模具中固化之前在腔室中混合的一种或多种树脂和一种或多种固化剂,
在线分析工具,其中所述在线分析工具包括用于在线测量在混合之前和/或之后所述一种或多种树脂和所述一种或多种固化剂的正确混合比的分析方法,
位于混合单元上游的材料管线,所述材料管线包含安装在其中的在线测量探测器,和
其中所述分析工具基于液体热固性组合物的照射。
2.根据权利要求1所述的仪器,其中该分析方法基于折射率差、或UV、或可见光、或红外波长。
3.根据权利要求2所述的仪器,其中该分析方法基于红外(IR)或近红外(NIR)。
4.根据权利要求1-3任一项所述的仪器,进一步包含在该分析工具之后的阀,其中所述阀调节热固性组合物被注射在模具中或被引导至废物桶。
5.根据权利要求1所述的仪器,其中将所述分析工具的所述分析方法模型化以加工热固性组合物,所述热固性组合物包含待在混合单元中共混的处于液体或熔融相的环氧树脂和处于液体或熔融相的至少一种环氧树脂固化剂的混合物。
6.根据权利要求1所述的仪器,其中将所述分析工具的所述分析方法模型化以加工液体热固性组合物,其中该热固性组合物包含环氧树脂,所述环氧树脂在室温或更高温度下为液体,并且具有80-250g/当量的环氧当量,并且该固化剂为低粘度液体或熔点低于160℃的固体。
7.根据权利要求6所述的仪器,其中该环氧树脂在室温或更高温度下为液体,并且具有80-200g/当量的环氧当量,并且该固化剂为低粘度液体或熔点低于160℃的固体。
8.根据权利要求1所述的仪器,其中该固化剂包含在混合室之前处于液体形式的胺衍生物或在混合室之前处于液体形式的酸衍生物。
9.根据权利要求1所述的仪器,其中所述混合单元包括静态或动态混合器。
10.根据权利要求1所述的仪器,其还包括泵并且还包括位于混合器之后的储存罐或再循环链。
11.固化组合物,其通过根据权利要求1所述的仪器获得,其处于复合材料或浇铸产品的形式。
12.根据权利要求11所述的固化组合物,其中该复合材料是用于航空航天部件的复合材料结构。
13.根据权利要求11所述的固化组合物,其中该复合材料是用于汽车部件的复合材料结构。
14.根据权利要求11所述的固化组合物,其中该复合材料是用于电气应用的固化浇铸件。
CN201880055341.5A 2017-09-01 2018-08-30 具有在线化学计量控制的多组分混合和计量设备 Active CN111051028B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17075017.8A EP3450126A1 (en) 2017-09-01 2017-09-01 Multi-component mixing and metering equipment with online stoichiometry control
EP17075017.8 2017-09-01
PCT/EP2018/000423 WO2019042583A1 (en) 2017-09-01 2018-08-30 MULTI-COMPONENT MIXING AND DOSING EQUIPMENT WITH ONLINE STOICHIOMETRY CONTROL

Publications (2)

Publication Number Publication Date
CN111051028A CN111051028A (zh) 2020-04-21
CN111051028B true CN111051028B (zh) 2022-08-12

Family

ID=59846308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880055341.5A Active CN111051028B (zh) 2017-09-01 2018-08-30 具有在线化学计量控制的多组分混合和计量设备

Country Status (9)

Country Link
US (1) US11173632B2 (zh)
EP (2) EP3450126A1 (zh)
JP (1) JP2020531674A (zh)
KR (2) KR20200046066A (zh)
CN (1) CN111051028B (zh)
AU (1) AU2018324555A1 (zh)
CA (1) CA3073774A1 (zh)
MX (1) MX2020002019A (zh)
WO (1) WO2019042583A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113334607B (zh) * 2021-06-09 2023-08-29 海德里希(厦门)真空机械制造有限公司 一种风电叶片生产用多组分混料装置及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158725A (en) * 1991-04-29 1992-10-27 The Goodyear Tire & Rubber Company Continuous mixing of elastomeric compounds
CN101828099A (zh) * 2007-10-18 2010-09-08 塑料控制有限公司 用于计量并混合可倾倒的材料成分的设备
US20110052379A1 (en) * 2008-03-07 2011-03-03 Aloys Wobben Method for monitoring a mixture of at least two components
CN106113397A (zh) * 2016-07-27 2016-11-16 肖海斌 一种可精确配比的液态硅胶送料机
US20170081487A1 (en) * 2014-03-28 2017-03-23 Huntsman Advanced Materials (Switzerland) Gmbh A process for the preparation of a fiber reinforced composite article, the composite articles obtained and the use thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232010A (ja) * 1988-03-12 1989-09-18 Toyoda Gosei Co Ltd 配合合成樹脂成分検査装置
DE4210241A1 (de) 1992-03-28 1993-09-30 Huebers Verfahrenstech Verfahren zum Vergießen von Bauteilen mit einer imprägnierenden Masse
DE4210687C2 (de) 1992-04-01 2002-01-17 Huebers Verfahrenstech Vorrichtung für die Abgabe zähflüssiger, aushärtender Stoffe, sowie Verfahren zum Betrieb einer derartigen Vorrichtung
US6050283A (en) * 1995-07-07 2000-04-18 Air Liquide America Corporation System and method for on-site mixing of ultra-high-purity chemicals for semiconductor processing
JP3545954B2 (ja) * 1998-11-25 2004-07-21 シャープ株式会社 樹脂配合比検出方法および樹脂注入装置
MXPA02007948A (es) 2000-02-17 2004-09-10 Astrazeneca Uk Ltd Metodo y aparato de mezclado.
JP4732681B2 (ja) * 2003-11-21 2011-07-27 旭サナック株式会社 多液混合装置及び混合状態判定方法
DK2427166T3 (da) * 2009-05-07 2014-01-27 Gea Pharma Systems Ltd Tabletfremstillingsmodul og fremgangsmåde til kontinuerlig fremstilling af tabletter
US20130292863A1 (en) * 2012-05-03 2013-11-07 Georgia-Pacific Chemicals Llc Methods and systems for adjusting the composition of a binder system for use in making fiberglass products
GB201611866D0 (en) * 2016-07-07 2016-08-24 Hexcel Composites Ltd Improvements in or relating to infusion moulding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158725A (en) * 1991-04-29 1992-10-27 The Goodyear Tire & Rubber Company Continuous mixing of elastomeric compounds
CN101828099A (zh) * 2007-10-18 2010-09-08 塑料控制有限公司 用于计量并混合可倾倒的材料成分的设备
US20110052379A1 (en) * 2008-03-07 2011-03-03 Aloys Wobben Method for monitoring a mixture of at least two components
US20170081487A1 (en) * 2014-03-28 2017-03-23 Huntsman Advanced Materials (Switzerland) Gmbh A process for the preparation of a fiber reinforced composite article, the composite articles obtained and the use thereof
CN106113397A (zh) * 2016-07-27 2016-11-16 肖海斌 一种可精确配比的液态硅胶送料机

Also Published As

Publication number Publication date
US11173632B2 (en) 2021-11-16
CN111051028A (zh) 2020-04-21
KR20230047500A (ko) 2023-04-07
EP3710213A1 (en) 2020-09-23
KR20200046066A (ko) 2020-05-06
EP3450126A1 (en) 2019-03-06
MX2020002019A (es) 2020-07-13
US20190351582A1 (en) 2019-11-21
AU2018324555A1 (en) 2020-03-19
JP2020531674A (ja) 2020-11-05
WO2019042583A1 (en) 2019-03-07
CA3073774A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
Ledru et al. Coupled visco-mechanical and diffusion void growth modelling during composite curing
Alonso et al. Gelation and isoconversional kinetic analysis of lignin–phenol–formaldehyde resol resins cure
CN111051028B (zh) 具有在线化学计量控制的多组分混合和计量设备
US20190202145A1 (en) Improvements in or relating to infusion moulding
AU2009221475B2 (en) Method for monitoring a mixture of at least two components
Du et al. Cure kinetics of epoxy resin used for advanced composites
US20160339649A1 (en) System and method for monitoring and controlling production of composite materials
Hadad Physical and chemical characterization of epoxy resins
Khaskov The using of thermal analysis methods for the construction of isothermal transformation diagrams of thermosets
Stark et al. Non-destructive evaluation (NDE) of composites: Using ultrasound to monitor the curing of composites
US20120326347A1 (en) System and method for monitoring and controlling production of composite materials
CN104191490A (zh) 一种人造板自动施胶系统
Etchells et al. Cure Monitoring of Highly reactive resin during high-pressure compression resin transfer moulding
Pantelelis et al. Industrial cure monitoring and control of the RTM production of a CFRP automotive component
Pedersen-Bjergaard et al. Interlayer mechanical properties of thermoset components produced by material extrusion additive manufacturing
CN204195928U (zh) 一种人造板自动施胶系统
Vashurkin et al. The method of the extent of epoxy-amine cure reaction determination by near infra-red spectroscopy
MXPA04006905A (es) Metodo para la preparacion y procesamiento de composiciones de moldeo de resina epoxi.
DE102019203365A1 (de) Verfahren und Vorrichtung zur Materialdatenanalyse
Salzmann et al. Near Infrared-spectroscopy in resin transfer molding–determination of the degree of cure
CN106525769B (zh) 一种检测复合材料基体树脂混合比例的方法
Gelic Characterisation of two-part resin mix for aerospace composite part production at various mix conditions
Wudy et al. Curing Behavior of Thermosets for the Use in a Combined Selective Laser Sintering Process of Polymers
Cole et al. Modelling the cure of Narmco 5208: A method for determining the chemical state of the prepreg
CN112592460A (zh) 光半导体密封用树脂成型物及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230810

Address after: Texas, USA

Patentee after: West Lake Epoxy Resin Co.

Address before: Texas, USA

Patentee before: West Lake Olefin Co.,Ltd.

Effective date of registration: 20230810

Address after: Texas, USA

Patentee after: West Lake Olefin Co.,Ltd.

Address before: Ohio, USA

Patentee before: MOMENTIVE SPECIALTY CHEMICALS Inc.