CN111048634A - Micro LED transferring method and backboard - Google Patents

Micro LED transferring method and backboard Download PDF

Info

Publication number
CN111048634A
CN111048634A CN201911371136.2A CN201911371136A CN111048634A CN 111048634 A CN111048634 A CN 111048634A CN 201911371136 A CN201911371136 A CN 201911371136A CN 111048634 A CN111048634 A CN 111048634A
Authority
CN
China
Prior art keywords
micro led
array
metal
crystal grain
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911371136.2A
Other languages
Chinese (zh)
Other versions
CN111048634B (en
Inventor
安金鑫
李刘中
林子平
肖守均
张雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Kangjia Photoelectric Technology Research Institute Co Ltd
Original Assignee
Chongqing Kangjia Photoelectric Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Kangjia Photoelectric Technology Research Institute Co Ltd filed Critical Chongqing Kangjia Photoelectric Technology Research Institute Co Ltd
Priority to CN201911371136.2A priority Critical patent/CN111048634B/en
Publication of CN111048634A publication Critical patent/CN111048634A/en
Application granted granted Critical
Publication of CN111048634B publication Critical patent/CN111048634B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays

Abstract

The invention discloses a Micro LED transfer method and a backboard, wherein the Micro LED transfer method comprises the following steps: manufacturing a Micro LED crystal grain array on a growth substrate, wherein the Micro LED crystal grain comprises an epitaxial layer and a metal layer arranged on the epitaxial layer, and the epitaxial layer is attached to the production substrate; bonding the Micro LED crystal grain array and a display back plate through metal; and peeling the Micro LED crystal grain array from the growth substrate. According to the invention, the Micro LED crystal grain array is directly manufactured by taking the growth substrate as a carrier, so that the Micro LED crystal grain array can be directly transferred to a display back plate to manufacture the display back plate; the Micro LED crystal grain array is only required to be transferred once in the whole process, so that the transfer times are reduced, the process flow is saved, and the production and manufacturing cost is reduced.

Description

Micro LED transferring method and backboard
Technical Field
The invention relates to the technical field of LED packaging, in particular to a Micro LED transferring method and a back plate.
Background
The Micro LED is a Micro light-emitting diode and is an LED with the size reaching the micron level; the Micro LED display back plate has the advantages of high efficiency, high brightness, high reliability, energy conservation, small size, small thickness and the like, and is a new generation display technology. The manufacturing process of the existing MicroLED display back plate comprises the following steps: growing epitaxy and metal on a growth substrate, transferring the epitaxy and the metal to a transient substrate, manufacturing a micro-component, picking up the micro-component, and transferring the micro-component to a target backboard, so that multiple times of transfer are needed, more process links are needed, and the manufacturing cost is high; accordingly, the prior art is yet to be improved and developed.
Disclosure of Invention
The invention provides a Micro LED transfer method and a backboard aiming at the defects in the prior art, and aims to solve the problem that Micro LEDs need to be transferred for multiple times in the manufacturing process of the existing Micro LED display backboard.
The technical scheme adopted by the invention for solving the technical problem is as follows:
a Micro LED transfer method comprises the following steps:
manufacturing a Micro LED crystal grain array on a growth substrate, wherein the Micro LED crystal grain comprises an epitaxial layer and a metal layer arranged on the epitaxial layer, and the epitaxial layer is attached to the production substrate;
bonding the Micro LED crystal grain array and a display back plate through metal;
and peeling the Micro LED crystal grain array from the growth substrate.
The Micro LED transferring method comprises the following steps of:
manufacturing an epitaxial base layer on the growth substrate, and manufacturing a metal base layer on the epitaxial base layer;
and processing the epitaxial base layer and the metal base layer to obtain the Micro LED crystal grain array.
The Micro LED transfer method, wherein the processing the epitaxial base layer and the metal base layer to obtain the Micro LED crystal grain array specifically includes:
patterning the metal base layer to obtain a metal layer array;
and dry etching the epitaxial base layer according to the metal layer array to obtain the Micro LED crystal grain array.
The Micro LED transfer method comprises the steps of coating glue, exposing, developing, etching and stripping.
The Micro LED transferring method comprises the following specific steps of carrying out metal bonding on the Micro LED crystal grain array and a display back plate:
manufacturing a bonding metal layer array corresponding to the Micro LED crystal grain array on the display back plate;
and aligning the Micro LED crystal grain array with the bonding metal layer array, and carrying out metal bonding on the metal layer and the bonding metal.
The Micro LED transferring method includes the following steps of:
plating a bonding metal base layer on the display back plate;
and patterning the bonding metal base layer according to the Micro LED crystal grain array to obtain the bonding metal layer array.
The Micro LED transferring method is characterized in that before the Micro LED crystal grain array is in metal bonding with a display back plate, the method further comprises the following steps:
detecting the Micro LED crystal grains to obtain qualified Micro LED crystal grains;
and adding a metal layer on the metal layer of the qualified Micro LED crystal grains to ensure that the height of the qualified Micro LED crystal grains is greater than that of the unqualified Micro LED crystal grains.
The Micro LED transfer method is characterized in that the metal bonding is eutectic alloy bonding, diffusion bonding or transient liquid phase bonding.
According to the Micro LED transferring method, the Micro LED grains are one of red Micro LED grains, green Micro LED grains and blue Micro LED grains.
A backplane comprising a display backplane made according to the Micro LED transfer method of any of the above.
Has the advantages that: according to the invention, after the epitaxial layer is extended on the growth substrate and the metal layer is manufactured, the Micro LED crystal grain array is directly manufactured by taking the growth substrate as a carrier, so that the Micro LED crystal grain array can be directly transferred to a display back panel to manufacture the display back panel; the Micro LED crystal grain array is only required to be transferred once in the whole manufacturing process of the display back plate, so that the transfer times of the Micro LED are reduced, the process flow is saved, and the production and manufacturing cost is reduced.
Drawings
FIG. 1 is a flow chart of a Micro LED transfer method according to the present invention;
FIG. 2 is a schematic structural diagram of the epitaxial base layer and the metal base layer formed on the growth substrate according to the present invention;
FIG. 3 is a schematic diagram of the distribution of the metal layer array on the epitaxial substrate in the present invention;
FIG. 4 is a schematic view of the distribution of the array of Micro LED dies on the production substrate in the present invention;
FIG. 5 is a schematic illustration of the distribution of an array of acceptable Micro LED dies on the production substrate after thickening the metal layer of the Micro LED dies in accordance with the present invention;
FIG. 6 is a schematic view of the distribution of the bonding metal base layer on the display backplane according to the present invention;
FIG. 7 is a schematic view of the distribution of the array of bonding metal layers on the display backplane of the present invention;
FIG. 8 is a reference view of the Micro LED die array of the present invention in use with the display backplane metal bonded thereto;
FIG. 9 is a reference view of the use state of the present invention when peeling a qualified Micro LED die from the production backplane;
fig. 10 is a schematic structural view of the back plate of the present invention.
Detailed Description
The invention provides a Micro LED transfer method and a backboard, and in order to make the purpose, technical scheme and advantages of the invention clearer and clearer, the invention is further described in detail by referring to the attached drawings and embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
The invention provides a Micro LED transferring method, as shown in FIG. 1, the Micro LED transferring method comprises the following steps:
s100, manufacturing a Micro LED crystal grain array on a growth substrate;
wherein, the production substrate is a low thermal conductivity substrate suitable for manufacturing Micro LED chips, such as: a spinel substrate, a silicon carbide SiC substrate, a zinc sulfide ZnS substrate, a zinc oxide ZnO substrate, a sapphire substrate, a gallium arsenide GaAs substrate, or the like; the production substrate is sapphire.
The Micro LED crystal grain array is an array consisting of a plurality of Micro LED crystal grains 2; micro LED die 2 includes epitaxial layer 211 and metal layer 212; the epitaxial layer 211 is attached to the production substrate, and the metal layer 212 is disposed on one side of the epitaxial layer 211, which is far away from the production substrate.
The manufacturing of the Micro LED crystal grain array on the growth substrate specifically comprises the following steps:
s101, manufacturing an epitaxial base layer on the growth substrate, and manufacturing a metal base layer on the epitaxial base layer;
specifically, the epitaxial base layer 3 is epitaxially grown on the growth substrate 1, wherein a process of epitaxially growing the epitaxial base layer 3 on the growth substrate 1 is a conventional process, and details of the present invention are not repeated herein. The epitaxial base layer 3 is tiled on the production substrate; epitaxial growth on growth substrate 1 epitaxial basic unit 3 is accomplished the back epitaxial basic unit 3 is kept away from one side of growth substrate 1 is plated metal basic unit 4, as shown in fig. 2, metal basic unit 4 is in tile on the epitaxial basic unit 3, and with epitaxial basic unit 3 overlaps completely.
One or more metal base layers 4 may be plated on the epitaxial base layer 3 according to actual requirements, and the thickness of the metal base layer 4 is not limited in the present invention.
S102, processing the epitaxial base layer and the metal base layer to obtain the Micro LED crystal grain array.
The growth substrate 1 becomes a carrier of the epitaxial base layer 3 and the metal base layer 4, and the epitaxial base layer 3 and the metal base layer 4 on the growth substrate 1 are processed to obtain the micro led crystal grain array with the growth substrate 1 as a carrier, as shown in fig. 4.
According to the invention, after the epitaxial base layer 3 is extended on the growth substrate 1 and the metal base layer 4 is manufactured, the Micro LED crystal grain array is directly manufactured by taking the growth substrate 1 as a carrier, and then the Micro LED crystal grain array can be directly transferred to a display back plate 5 to manufacture the display back plate 5; the Micro LED crystal grain array only needs to be transferred once in the whole manufacturing process of the display back plate 5, so that the transfer times of the Micro LED are reduced, the process flow is saved, and the production and manufacturing cost is reduced.
The processing the epitaxial base layer 3 and the metal base layer 4 to obtain the Micro LED die array specifically includes:
patterning the metal base layer to obtain a metal layer array;
specifically, patterning is performed on the metal base layer 4 tiled on the epitaxial base layer 3, wherein the patterning includes glue spreading, exposure, development, etching, and peeling; the metal base layer 4 is patterned to obtain a metal layer array formed by a plurality of metal layers 212 arranged at intervals and arranged periodically, as shown in fig. 3.
In the invention, the metal layer 212 is subjected to patterning treatment according to the number of the Micro LED crystal grain arrays required to be obtained on the target display back plate 5 and the positions of the Micro LED crystal grains 2, so that the metal layer array and the Micro LED crystal grain arrays required to be obtained have the same layout.
And dry etching the epitaxial base layer according to the metal layer array to obtain the Micro LED crystal grain array.
Specifically, the metal layer array includes a plurality of metal layers 212 arranged at intervals and arranged regularly in a period; dry etching is carried out on the epitaxial base layer 3 according to the edge and the position of each metal layer 212, and an epitaxial layer 211 array with the same layout as the metal layer array is obtained; each metal layer 212 and corresponding epitaxial layer 211 form a Micro LED die 2. In the Micro LED crystal grain array, all the Micro LED crystal grains 2 are equal in height.
After the epitaxial base layer 3 is dry etched, exposing a partial region of one side of the growth substrate 1 facing the epitaxial layer 211; and when the Micro LED array is transferred to a display back plate 5, peeling the epitaxial layer 211 and the growth substrate 1.
S200, bonding the Micro LED crystal grain array and a display back plate through metal;
specifically, the production substrate corresponds to the display backplane 5, the metal layer 212 is opposite to the display backplane 5, and then the Micro LED die array is metal-bonded to the display backplane 5, as shown in fig. 8, so as to complete the positioning of the Micro LED die array on the display backplane 5.
S300, stripping the Micro LED crystal grain array from the growth substrate.
After the Micro LED crystal grain array is bonded with the display back plate 5 through the contraposition metal, the Micro LED crystal grain array is only required to be peeled off from the growth substrate 1, and then the Micro LED crystal grain array can be transferred to the display back plate 5, so that the display back plate 5 with the Micro LED crystal grain array is manufactured.
The metal bonding of the Micro LED grain array and the display back plate specifically comprises;
s201, manufacturing a bonding metal layer array corresponding to the Micro LED crystal grain array on the display back plate;
specifically, a bonding metal layer array is manufactured on the display back panel 5 according to the same layout as the Micro LED die array, so that each Micro LED die 2 in the Micro LED die array can correspond to one bonding metal layer 6 in the bonding metal layer array.
S202, aligning the Micro LED crystal grain array with the bonding metal layer array, and carrying out metal bonding on the metal layer and the bonding metal layer.
Specifically, the Micro LED die array and the bonding metal layer array are aligned, so that each Micro LED die 2 has a bonding metal layer 6 corresponding to the bonding metal layer; then, contacting the Micro LED crystal grain 2 with a corresponding bonding metal layer 6; and applying a certain temperature to the display back plate 5, and preserving the temperature for a certain time to enable the Micro LED crystal grains 2 to generate metal bonding with the corresponding bonding metal layer 6.
The manufacturing of the bonding metal layer array corresponding to the Micro LED crystal grain array on the display back plate specifically comprises the following steps:
plating a bonding metal base layer on the display back plate;
specifically, the bonding metal base layer 7 is tiled on the display backplane 5, as shown in fig. 6, and completely attached and overlapped with the display backplane 5; the bonding metal base layer 7 is used for correspondingly performing metal bonding with the Micro LED crystal grain array, so that the Micro LED crystal grain array can be positioned on the display back plate 5.
And patterning the bonding metal base layer according to the Micro LED crystal grain array to obtain the bonding metal layer array.
Specifically, the position and size of each Micro LED die 2 in the Micro LED die array are determined, and then, region division is performed on the bonding metal base layer 7 to obtain the position and size of each bonding metal layer 6 in the bonding metal layer array, and it is ensured that the size of the bonding metal layer 6 is the same as the size of the metal layer 212; patterning the bonding metal base layer 7 to obtain a bonding metal layer array having the same layout as the Micro LED die array, as shown in fig. 7; each bonding metal layer 6 corresponds to one Micro LED die 2.
The metal bonding of the array of Micro LED dies and the display backplane 5 further comprises: all Micro LED crystal grains 2 are detected, and qualified Micro LED crystal grains 2101 obtained after detection are transferred; the unqualified Micro LED dies 2102 leave the qualified Micro LED dies 2101 along with the peeling between the growth substrate 1 and the qualified Micro LED dies 2101, thereby ensuring that only the qualified Micro LED dies 2101 are transferred to the display backplane 5.
When unqualified Micro LED grains 2102 exist, the vacancy corresponding to the position of the unqualified Micro LED grains 2102 exists in the Micro LED grain array on the display substrate, so that after the qualified Micro LED grains 2101 are transferred to the display backboard 5, the steps are repeated again until the qualified Micro LED grains 2101 are bonded with metal on each bonding metal layer 6 in the bonding metal layer array, and normal luminous display of the display backboard 5 is guaranteed.
Specifically, photoelectric performance detection is carried out on the Micro LED crystal grains to obtain qualified Micro LED crystal grains;
initially, as shown in fig. 4, the height of the qualified Micro LED die 2101 is consistent with the height of the unqualified Micro LED die 2102; in order to distinguish qualified Micro LED dies 2101 from unqualified Micro LED dies 2102 and ensure that only qualified Micro LED dies 2101 can be transferred, a metal layer 212 is additionally arranged on the metal layer 212 of the qualified Micro LED dies 2101, as shown in fig. 5, so that the height of the qualified Micro LED dies 2101 is larger than that of the unqualified Micro LED dies 2102, and the heights of the qualified Micro LED dies 2101 and the unqualified Micro LED dies 2102 are inconsistent.
When the Micro LED grain array is in aligned contact with the bonding metal layer array, only the qualified Micro LED grain 2101 can be correspondingly attached to the corresponding bonding metal layer 6, as shown in fig. 8, a gap is formed between the unqualified Micro LED grain 2102 and the corresponding bonding metal layer 6, so that the unqualified Micro LED grain 2102 is in a suspended state, and only the qualified Micro LED grain 2101 can be subjected to metal bonding when the metal bonding is performed in a pressurizing, heating and other modes, so that the unqualified Micro LED grain 2102 and the corresponding bonding metal are prevented from generating metal bonding. Finally, as shown in fig. 9, the qualified Micro LED dies 2101 are selectively laser-peeled from the growth substrate 1, and the qualified Micro LED dies 2101 are transferred onto the display backplane 5 without separating the unqualified Micro LED dies from the bonding metal.
The metal bonding is eutectic alloy bonding or diffusion bonding or transient liquid phase bonding; the bonding metal base layer 7 and the metal base layer 4 can adopt Sn/Au or Ag/In or In/Ni or Sn/Cu or Sn/Ag or Au/In.
Further, the Micro LED crystal grain 2 is one of a red Micro LED crystal grain, a green Micro LED crystal grain and a blue Micro LED crystal grain; all the Micro LED crystal grains 2 in the Micro LED crystal grain array are in the same color. After all the bonding metal layers 6 on the display backplane 5 are transferred to the qualified Micro LED dies 2101, coloring all the Micro LED dies 2 on the display backplane 5 with fluorescent powder according to the layout of the pixel areas required by the display backplane 5, so that a plurality of pixel areas 8 are periodically arranged on the display backplane 5, as shown in fig. 10. Wherein each pixel region 8 includes a red Micro LED die 81, a green Micro LED die 82, and a blue Micro LED die 83.
The invention also provides a back plate, as shown in fig. 10, which comprises a display back plate 5 prepared by the Micro LED transfer method described in any one of the above items.
In summary, the present invention provides a Micro LED transferring method and a backplane, where the Micro LED transferring method includes the steps of: manufacturing a Micro LED crystal grain array on a growth substrate, wherein the Micro LED crystal grain comprises an epitaxial layer and a metal layer arranged on the epitaxial layer, and the epitaxial layer is attached to the production substrate; bonding the Micro LED crystal grain array and a display back plate through metal; and peeling the Micro LED crystal grains from the growth substrate. According to the invention, after the epitaxial layer is extended on the growth substrate and the metal layer is manufactured, the Micro LED crystal grain array is directly manufactured by taking the growth substrate as a carrier, so that the Micro LED crystal grain array can be directly transferred to a display back panel to manufacture the display back panel; the Micro LED crystal grain array is only required to be transferred once in the whole manufacturing process of the display back plate, so that the transfer times of the Micro LED are reduced, the process flow is saved, and the production and manufacturing cost is reduced.
It is to be understood that the invention is not limited to the examples described above, but that modifications and variations may be effected thereto by those of ordinary skill in the art in light of the foregoing description, and that all such modifications and variations are intended to be within the scope of the invention as defined by the appended claims.

Claims (10)

1. A Micro LED transfer method is characterized by comprising the following steps:
manufacturing a Micro LED crystal grain array on a growth substrate, wherein the Micro LED crystal grain comprises an epitaxial layer and a metal layer arranged on the epitaxial layer, and the epitaxial layer is attached to the production substrate;
bonding the Micro LED crystal grain array and a display back plate through metal;
and peeling the Micro LED crystal grain array from the growth substrate.
2. The Micro LED transfer method of claim 1, wherein the fabricating an array of Micro LED dies on a growth substrate specifically comprises:
manufacturing an epitaxial base layer on the growth substrate, and manufacturing a metal base layer on the epitaxial base layer;
and processing the epitaxial base layer and the metal base layer to obtain the Micro LED crystal grain array.
3. The Micro LED transfer method of claim 2, wherein the processing the epitaxial base layer and the metal base layer to obtain the Micro LED die array specifically comprises:
patterning the metal base layer to obtain a metal layer array;
and dry etching the epitaxial base layer according to the metal layer array to obtain the Micro LED crystal grain array.
4. A Micro LED transfer method according to claim 3, wherein the patterning process comprises glue spreading, exposure, development, etching and lift-off.
5. The Micro LED transfer method of claim 1, wherein the metal bonding of the array of Micro LED dies to a display backplane specifically comprises:
manufacturing a bonding metal layer array corresponding to the Micro LED crystal grain array on the display back plate;
and aligning the Micro LED crystal grain array with the bonding metal layer array, and carrying out metal bonding on the metal layer and the bonding metal.
6. The Micro LED transfer method of claim 5, wherein the fabricating an array of bonding metal layers corresponding to the array of Micro LED dies on the display backplane specifically comprises:
plating a bonding metal base layer on the display back plate;
and patterning the bonding metal base layer according to the Micro LED crystal grain array to obtain the bonding metal layer array.
7. The Micro LED transfer method of claim 1, wherein said metal bonding said array of Micro LED dies to a display backplane further comprises:
detecting the Micro LED crystal grains to obtain qualified Micro LED crystal grains;
and adding a metal layer on the metal layer of the qualified Micro LED crystal grains to ensure that the height of the qualified Micro LED crystal grains is greater than that of the unqualified Micro LED crystal grains.
8. The Micro LED transfer method of claim 1, wherein the metal bond is a eutectic alloy bond or a diffusion bond or a transient liquid phase bond.
9. The Micro LED transfer method of claim 1, wherein the Micro LED dies are one of red, green and blue Micro LED dies.
10. A backplane, characterized in that it comprises a display backplane made by the Micro LED transfer process according to any of the claims 1 to 9.
CN201911371136.2A 2019-12-26 2019-12-26 Micro LED transferring method and backboard Active CN111048634B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911371136.2A CN111048634B (en) 2019-12-26 2019-12-26 Micro LED transferring method and backboard

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911371136.2A CN111048634B (en) 2019-12-26 2019-12-26 Micro LED transferring method and backboard

Publications (2)

Publication Number Publication Date
CN111048634A true CN111048634A (en) 2020-04-21
CN111048634B CN111048634B (en) 2021-11-23

Family

ID=70240303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911371136.2A Active CN111048634B (en) 2019-12-26 2019-12-26 Micro LED transferring method and backboard

Country Status (1)

Country Link
CN (1) CN111048634B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310252A (en) * 2020-10-16 2021-02-02 深圳市华星光电半导体显示技术有限公司 Micro LED crystal grain, Micro LED substrate and preparation method thereof
CN112968115A (en) * 2020-08-25 2021-06-15 重庆康佳光电技术研究院有限公司 Chip manufacturing and transferring method, display back plate and display device
CN112967982A (en) * 2020-09-10 2021-06-15 重庆康佳光电技术研究院有限公司 Transfer substrate, manufacturing method of transfer substrate, chip transfer method and display panel
CN112967969A (en) * 2020-05-21 2021-06-15 重庆康佳光电技术研究院有限公司 Mass transfer method and device
WO2021226945A1 (en) * 2020-05-14 2021-11-18 重庆康佳光电技术研究院有限公司 Transfer method and display device
WO2022000385A1 (en) * 2020-07-01 2022-01-06 重庆康佳光电技术研究院有限公司 Manufacturing method for display panel, display panel and display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174041A (en) * 2001-12-06 2003-06-20 Seiko Epson Corp Packaging method of element, electronic equipment, flat panel display, system-in-package-type ic, and optical electrical ic
CN103700736A (en) * 2013-12-20 2014-04-02 中国科学院半导体研究所 Selective laser lift-off method of gallium nitride-based epitaxial film
CN107425101A (en) * 2017-07-11 2017-12-01 华灿光电(浙江)有限公司 A kind of method of micro-led chip flood tide transfer
CN107910414A (en) * 2017-11-21 2018-04-13 歌尔股份有限公司 Light-emitting diode display preparation method and light-emitting diode display
US20180219005A1 (en) * 2017-01-26 2018-08-02 International Business Machines Corporation Micro-led array transfer
CN108365058A (en) * 2017-12-28 2018-08-03 映瑞光电科技(上海)有限公司 A kind of LED substrate transfer method and its application
CN109860092A (en) * 2019-01-02 2019-06-07 南京中电熊猫平板显示科技有限公司 A kind of method and display of micro-led flood tide transfer
CN109873060A (en) * 2019-04-18 2019-06-11 广东省半导体产业技术研究院 A kind of micro- light emitting diode matrix production method, bonding substrate and luminescence chip
CN110610931A (en) * 2019-09-20 2019-12-24 中国科学院长春光学精密机械与物理研究所 Multi-color Micro LED partitioned batch preparation method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174041A (en) * 2001-12-06 2003-06-20 Seiko Epson Corp Packaging method of element, electronic equipment, flat panel display, system-in-package-type ic, and optical electrical ic
CN103700736A (en) * 2013-12-20 2014-04-02 中国科学院半导体研究所 Selective laser lift-off method of gallium nitride-based epitaxial film
US20180219005A1 (en) * 2017-01-26 2018-08-02 International Business Machines Corporation Micro-led array transfer
CN107425101A (en) * 2017-07-11 2017-12-01 华灿光电(浙江)有限公司 A kind of method of micro-led chip flood tide transfer
CN107910414A (en) * 2017-11-21 2018-04-13 歌尔股份有限公司 Light-emitting diode display preparation method and light-emitting diode display
CN108365058A (en) * 2017-12-28 2018-08-03 映瑞光电科技(上海)有限公司 A kind of LED substrate transfer method and its application
CN109860092A (en) * 2019-01-02 2019-06-07 南京中电熊猫平板显示科技有限公司 A kind of method and display of micro-led flood tide transfer
CN109873060A (en) * 2019-04-18 2019-06-11 广东省半导体产业技术研究院 A kind of micro- light emitting diode matrix production method, bonding substrate and luminescence chip
CN110610931A (en) * 2019-09-20 2019-12-24 中国科学院长春光学精密机械与物理研究所 Multi-color Micro LED partitioned batch preparation method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021226945A1 (en) * 2020-05-14 2021-11-18 重庆康佳光电技术研究院有限公司 Transfer method and display device
US11695091B2 (en) 2020-05-14 2023-07-04 Chongqing Konka Photoelectric Technology Research Institute Co., Ltd. Transfer method, display device, and storage medium
CN112967969A (en) * 2020-05-21 2021-06-15 重庆康佳光电技术研究院有限公司 Mass transfer method and device
WO2022000385A1 (en) * 2020-07-01 2022-01-06 重庆康佳光电技术研究院有限公司 Manufacturing method for display panel, display panel and display device
CN112968115A (en) * 2020-08-25 2021-06-15 重庆康佳光电技术研究院有限公司 Chip manufacturing and transferring method, display back plate and display device
CN112967982A (en) * 2020-09-10 2021-06-15 重庆康佳光电技术研究院有限公司 Transfer substrate, manufacturing method of transfer substrate, chip transfer method and display panel
CN112967982B (en) * 2020-09-10 2022-04-19 重庆康佳光电技术研究院有限公司 Transfer substrate, manufacturing method of transfer substrate, chip transfer method and display panel
CN112310252A (en) * 2020-10-16 2021-02-02 深圳市华星光电半导体显示技术有限公司 Micro LED crystal grain, Micro LED substrate and preparation method thereof
CN112310252B (en) * 2020-10-16 2022-02-22 深圳市华星光电半导体显示技术有限公司 Micro LED crystal grain, Micro LED substrate and preparation method thereof

Also Published As

Publication number Publication date
CN111048634B (en) 2021-11-23

Similar Documents

Publication Publication Date Title
CN111048634B (en) Micro LED transferring method and backboard
CN109860092A (en) A kind of method and display of micro-led flood tide transfer
CN110838502B (en) Light emitting diode chip, manufacturing and transferring method, display device and manufacturing method
CN102709452A (en) Fluorescent transparent ceramic LED (light-emitting diode) sealing structure and sealing method thereof
CN101702401B (en) Preparation and batch processed encapsulation method of GaN-based LED thin film device
CN110610931A (en) Multi-color Micro LED partitioned batch preparation method
CN102709458A (en) LED (light-emitting diode) packaging structure using transparent oxide substrate and packaging method thereof
CN103887218A (en) Preparation method for GaN-based white-light flip chip
US9502609B2 (en) Simplified process for vertical LED manufacturing
KR100851403B1 (en) Light emitting device and method for manufacturing light emitting device
US20120261686A1 (en) Light-emitting element and the manufacturing method thereof
CN101587831B (en) Semiconductor component structure and method for manufacturing semiconductor component
TWI740212B (en) Method for manufacturing micro-led chip
CN104752589A (en) Preparation method and device for wafer grade white-light LED chip
CN104064639A (en) Vertical type led structure and manufacturing method thereof
TW202046381A (en) Method for transferring led chip and a led chip having magnetic substrate
CN210296404U (en) LED chip structure
CN102214746B (en) Method for manufacturing gallium nitride-based power LED (Light-Emitting Diode) chip
CN112768394B (en) Light-emitting element and transfer method of micro light-emitting diode
CN112133719A (en) Manufacturing method of micro light-emitting diode
CN106057993A (en) Film vertical light emitting assembly and preparation method thereof
CN202352720U (en) Packaging structure for white LED (Light-emitting diode) extension chip
WO2021183310A1 (en) Laser lift-off processing system including metal grid
CN111864016B (en) Manufacturing method of micro light-emitting diode
CN220041892U (en) Flip-chip thin-film LED chip with miniature conical structure and light-emitting device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant