CN111040452A - 一种超疏液三维自支撑体及其制备方法 - Google Patents

一种超疏液三维自支撑体及其制备方法 Download PDF

Info

Publication number
CN111040452A
CN111040452A CN201911216176.XA CN201911216176A CN111040452A CN 111040452 A CN111040452 A CN 111040452A CN 201911216176 A CN201911216176 A CN 201911216176A CN 111040452 A CN111040452 A CN 111040452A
Authority
CN
China
Prior art keywords
supporting body
dimensional self
continuous phase
ultralyophobic
dispersed phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911216176.XA
Other languages
English (en)
Other versions
CN111040452B (zh
Inventor
廖景文
雷厉
杨明瑾
陈勃旭
石智
梁玲铃
袁海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Advanced Technology of CAS
Original Assignee
Guangzhou Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Advanced Technology of CAS filed Critical Guangzhou Institute of Advanced Technology of CAS
Priority to CN201911216176.XA priority Critical patent/CN111040452B/zh
Publication of CN111040452A publication Critical patent/CN111040452A/zh
Application granted granted Critical
Publication of CN111040452B publication Critical patent/CN111040452B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/283Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum a discontinuous liquid phase emulsified in a continuous macromolecular phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08J2433/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明属于高分子材料技术领域,具体涉及一种超疏液三维自支撑体及其制备方法。本发明所述的方法包括:分别配制连续相和分散相;将所述连续相和所述分散相混合形成乳液;将所述乳液注入容器;排泡,固化,脱水。本发明还提供一种由本发明的制备方法制得的超疏液三维自支撑体。本发明的方法易操作,非常适于工业应用,所制备的超疏液三维自支撑体无需基底,可独立使用,耐磨性强,对水和油类液体有优异的排斥铺展效果。

Description

一种超疏液三维自支撑体及其制备方法
技术领域
本发明属于高分子材料技术领域,具体涉及一种超疏液三维自支撑体及其制备方法。
背景技术
超疏液指对液态介质产生强烈排斥铺展行为,液态介质包括水性到油性、小分子到大分子、流体到非流体、单组份到多组份、非生物类到生物类。低表面能和多级微结构协同作用形成超疏液表面,在生活、医学、工业、海洋等领域具有广泛的应用前景,如自清洁服饰、防粘连医疗导管、油水分离、轨道交通防腐、船舶防污。在如上述的应用中,超疏液表面以二维涂层的形式依附于应用场景基底,但因基底结合力弱和耐磨性差等缺点制约着长期使用。为突破二维超疏液表面的难题,Chaohua Xue(Journal of Materials Chemistry A,2015,DOI:10.1039/c5ta01014d)和Shouwei Gao(Chemical Engineering Journal,2018,DOI:10.1016/j.cej.2017.10.006)两人发表的期刊论文涉及通过将低表面能物质聚硅氧烷的四氢呋喃溶液进行极性相(水或乙醇)分离的方法,涂覆在基底上自粗化形成具有一定结合力和耐磨性的超疏水涂层,并应用于油水分离。
Chaohua Xue和Shouwei Gao两人发表的期刊论文涉及通过相分离制备超疏液表面,该技术方案大量使用四氢呋喃非环保有机溶剂,且仍需依附于基底,基底结合力和耐磨性不理想的缺点并未从根本上解决,且只适用于超疏水表面的制备。
发明内容
鉴于此,有必要针对上述问题提供一种超疏液三维自支撑体及其制备方法。
本发明是通过以下技术方案实现的:
一种超疏液三维自支撑体的制备方法,包括:
分别配制连续相和分散相;将所述连续相和所述分散相混合形成乳液;将所述乳液注入容器;排气泡,固化,脱水,脱离容器后即得超疏液三维自支撑体。
进一步的,所述“分别配制连续相和分散相”中连续相的配制包括:
(1)将聚二甲基硅氧烷和其衍生物按质量比5:2~9混匀形成连续相;
(2)将步骤(1)所得的连续相与固化剂按100:5~15(优选9:1)的质量比混匀。
进一步的,所述的聚二甲基硅氧烷的封端为三甲基硅氧烷、乙烯基、甲氧基、氨丙基或羟基中的一种。
进一步的,所述的聚二甲基硅氧烷的衍生物为聚二甲基硅氧烷-异佛尔酮二异氰酸酯、聚二甲基硅氧烷-4,4'-二苯基甲烷二异氰酸酯、聚二甲基硅氧烷-聚芳醚或聚二甲基硅氧烷-聚乙酸乙烯酯中的一种。
进一步的,所述的固化剂为二丁基二月硅酸锡、含氢硅油、正硅酸乙酯、多烷氧基硅烷或多氨基硅烷中的一种。
进一步的,所述“分别配制连续相和分散相”中分散相的配制包括:将极性介质与纳米颗粒按质量比10:1~7混匀形成分散相。
进一步的,所述的极性介质为水、质量浓度为7~15%的阳离子型含氟聚丙烯酸酯水溶液、质量浓度为6~35%的阴离子型含氟聚丙烯酸酯水溶液或质量浓度为5~15%的非离子型含氟聚丙烯酸酯水溶液中的一种。
进一步的,所述的纳米颗粒为二氧化硅纳米颗粒、二氧化钛纳米颗粒或三氧化二铝纳米颗粒中的一种。
进一步的,所述的“将所述连续相和所述分散相混合形成乳液”具体操作包括:将所述分散相在搅拌下逐滴加入所述连续相中形成乳液。
进一步的,所述连续相和所述分散相的质量比20:3~15。
进一步的,所述的逐滴加入速度为10~120秒/滴。
进一步的,所述的乳化搅拌速度为500~3000rpm。
进一步的,所述乳液可根据自支撑体应用所需的形状注入对应形状的模具容器中。
进一步的,所述“排泡”操作包括:保持容器开放,室温下抽真空排泡。
进一步的,所述抽真空的操作时间为20~120min。
进一步的,所述“固化”操作包括:保持容器封闭,热固化乳液。
进一步的,所述的热固化的操作条件为:温度为50~80℃,热固化时间为30~150min。
进一步的,所述“脱水”操作包括:保持容器开放,热脱除分散相中的水。
进一步的,所述的热脱除水的操作条件为:温度为100~180℃,热脱除时间为1.5~5h。
一种由上述方法制得的超疏液三维自支撑体,具有多孔微结构,所述微孔结构的单个微孔直径小于20微米,可储存大量空气,降低与液体的接触面积,从而实现对水和油类液体优异的排斥铺展效果。
本发明有益效果:
本发明开发一种绿色方法制备超疏液三维自支撑体,克服了现有二维超疏液表面须依附于基底、不宜独立使用,且存在基底结合力弱和耐磨性差的缺点,无需基底,即无基底结合力问题,且可独立使用。本发明制得的超疏液三维自支撑体具有三维的柔性聚合物结构,使其具备了强耐磨性。
本发明的技术方案以聚二甲基硅氧烷/聚二甲基硅氧烷衍生物为连续相和环保型介质为分散相,通过乳化方式热固化/脱水后形成超疏液三维自支撑体。此方法易操作,非常适于工业应用,所制备的超疏液三维自支撑体无需基底,可独立使用,耐磨性强,对水和油类液体有优异的排斥铺展效果。
附图说明
图1为超疏油三维自支撑体表面的扫描电子显微镜图。
具体实施方式
为了更好的说明本发明技术方案所要解决的问题、采用的技术方案和达到的有益效果,现结合具体实施方式进一步阐述。值得说明的是,本发明技术方案包含但不限于以下实施方式。
本发明实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购等途径获得的常规产品。
实施例一
将乙烯基封端的聚二甲基硅氧烷和聚二甲基硅氧烷-4,4'-二苯基甲烷二异氰酸酯按5:3的质量比混匀形成连续相,将所述连续相按质量比100:9与固化剂二丁基二月硅酸锡混匀;将质量浓度为11%的阳离子型含氟聚丙烯酸酯水溶液与二氧化硅纳米粒按质量比10:1混匀形成分散相;
以10s/滴速度将分散相在1500rpm搅拌下滴入连续相形成乳液,连续相和分散相的质量比20:7;
将乳液转入带玻璃试管;无盖状态,室温下抽真空30min排泡;有盖状态,80℃固化乳液60min;无盖状态,120℃脱水3h,从玻璃试管脱离得到超疏油三维自支撑体,其表面的扫描电子显微镜图如图1所示,通过扫描电子显微镜可以看到其表面的具有高密度的多孔微结构,可储存大量空气,由此降低了与液体的接触面积,从而实现对水和油类液体优异的排斥铺展效果。
实施例二
将甲氧基封端的聚二甲基硅氧烷和聚二甲基硅氧烷-聚芳醚按5:6的质量比混匀形成连续相,将所述连续相按质量比100:7与固化剂多烷氧基硅烷混匀;将水与三氧化二铝纳米粒按质量比10:3搅拌混合形成分散相;
以30s/滴速度将分散相在1000rpm搅拌下滴入连续相形成乳液,连续相和分散相的质量比20:15;
将乳液转入带玻璃试管;无盖状态,室温下抽真空20min排泡;有盖状态,65℃固化乳液100min;无盖状态,150℃脱水2h,从玻璃试管脱离得到超疏水三维自支撑体。
实施例三
将氨丙基封端的聚二甲基硅氧烷和聚二甲基硅氧烷-异佛尔酮二异氰酸酯按5:2的质量比混匀形成连续相,将所述连续相按质量比100:9与固化剂正硅酸乙酯混匀;将质量浓度为15%的阴离子型含氟聚丙烯酸酯水溶液与二氧化钛纳米颗粒按质量比10:7搅拌混合形成分散相;
以120s/滴速度将分散相在3000rpm搅拌下滴入连续相形成乳液,连续相和分散相的质量比20:3;
将乳液转入带玻璃试管;无盖状态,室温下抽真空120min排泡;有盖状态,50℃固化乳液150min;无盖状态,180℃脱水1.5h,从玻璃试管脱离得到超疏水三维自支撑体。
实施例四
将三甲基硅氧烷封端的聚二甲基硅氧烷和聚二甲基硅氧烷-聚乙酸乙烯酯按5:9的质量比混匀形成连续相,将所述连续相按质量比100:9与固化剂多氨基硅烷混匀;将质量浓度为8%的非离子型含氟聚丙烯酸酯水溶液与二氧化硅纳米粒按质量比10:3混匀形成分散相;
以40s/滴速度将分散相在500rpm搅拌下滴入连续相形成乳液,连续相和分散相的质量比20:10;
将乳液转入带玻璃试管;无盖状态,室温下抽真空50min排泡;有盖状态,80℃固化乳液30min;无盖状态,100℃脱水5h,从玻璃试管脱离得到超疏液三维自支撑体。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种超疏液三维自支撑体的制备方法,其特征在于,所述方法包括:分别配制连续相和分散相;将所述连续相和所述分散相混合形成乳液;将所述乳液注入容器;排泡,固化,脱水。
2.根据权利要求1所述的超疏液三维自支撑体的制备方法,其特征在于,所述“分别配制连续相和分散相”中连续相的配制包括:
(1)将聚二甲基硅氧烷和其衍生物按质量比5:2~9混匀形成连续相;
(2)将步骤(1)所得的连续相与固化剂按100:5~15的质量比混匀。
3.根据权利要求2所述的超疏液三维自支撑体的制备方法,其特征在于,所述的聚二甲基硅氧烷的封端为三甲基硅氧烷、乙烯基、甲氧基、氨丙基或羟基中的一种;
所述的聚二甲基硅氧烷的衍生物为聚二甲基硅氧烷-异佛尔酮二异氰酸酯、聚二甲基硅氧烷-4,4'-二苯基甲烷二异氰酸酯、聚二甲基硅氧烷-聚芳醚或聚二甲基硅氧烷-聚乙酸乙烯酯中的一种;
所述的固化剂为二丁基二月硅酸锡、含氢硅油、正硅酸乙酯、多烷氧基硅烷或多氨基硅烷中的一种。
4.根据权利要求2所述的超疏液三维自支撑体的制备方法,其特征在于,所述“分别配制连续相和分散相”中分散相的配制包括:将极性介质与纳米颗粒按质量比10:1~7混匀形成分散相;
所述的极性介质为水、质量浓度为7~15%的阳离子型含氟聚丙烯酸酯水溶液、质量浓度为6~35%的阴离子型含氟聚丙烯酸酯水溶液或质量浓度为5~15%的非离子型含氟聚丙烯酸酯水溶液中的一种;
所述的纳米颗粒为二氧化硅纳米颗粒、二氧化钛纳米颗粒或三氧化二铝纳米颗粒中的一种。
5.根据权利要求1所述的超疏液三维自支撑体的制备方法,其特征在于,所述“将所述连续相和所述分散相混合形成乳液”的具体操作包括:将所述分散相在搅拌条件下逐滴加入所述连续相中形成乳液;所述连续相和所述分散相的质量比20:3~15。
6.根据权利要求6所述的超疏液三维自支撑体的制备方法,其特征在于,所述的逐滴加入速度为10~120秒/滴;所述的乳化搅拌速度为500~3000rpm。
7.根据权利要求1所述的超疏液三维自支撑体的制备方法,其特征在于,所述“排泡”操作包括:保持容器开放,室温下抽真空排泡;
所述抽真空的操作时间为20~120min。
8.根据权利要求1所述的超疏液三维自支撑体的制备方法,其特征在于,所述“固化”操作包括:保持容器封闭,热固化乳液;
所述的热固化的操作条件为:温度为50~80℃,热固化时间为30~150min。
9.根据权利要求1所述的超疏液三维自支撑体的制备方法,其特征在于,所述“脱水”操作包括:保持容器开放,热脱除分散相中的水;
所述的热脱除水的操作条件为:温度为100~180℃,热脱除时间为1.5~5h。
10.一种超疏液三维自支撑体,其特征在于,所述超疏液三维自支撑体的表面具有微孔结构,所述微孔结构的单个微孔直径小于20微米,所述微孔结构用于储存气体。
CN201911216176.XA 2019-12-02 2019-12-02 一种超疏液三维自支撑体及其制备方法 Active CN111040452B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911216176.XA CN111040452B (zh) 2019-12-02 2019-12-02 一种超疏液三维自支撑体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911216176.XA CN111040452B (zh) 2019-12-02 2019-12-02 一种超疏液三维自支撑体及其制备方法

Publications (2)

Publication Number Publication Date
CN111040452A true CN111040452A (zh) 2020-04-21
CN111040452B CN111040452B (zh) 2022-04-05

Family

ID=70234227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911216176.XA Active CN111040452B (zh) 2019-12-02 2019-12-02 一种超疏液三维自支撑体及其制备方法

Country Status (1)

Country Link
CN (1) CN111040452B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534012A (zh) * 2011-04-08 2014-01-22 道康宁公司 使用环氧官能硅氧烷制备气体选择性膜的方法
CN104136543A (zh) * 2011-11-08 2014-11-05 道康宁公司 有机聚硅氧烷组合物和固化的有机硅弹性体的表面改性
US20180118957A1 (en) * 2016-10-28 2018-05-03 Ohio State Innovation Foundation Liquid impregnated surfaces for liquid repellancy
CN110022967A (zh) * 2016-11-04 2019-07-16 香港大学 全疏性多孔膜及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534012A (zh) * 2011-04-08 2014-01-22 道康宁公司 使用环氧官能硅氧烷制备气体选择性膜的方法
CN104136543A (zh) * 2011-11-08 2014-11-05 道康宁公司 有机聚硅氧烷组合物和固化的有机硅弹性体的表面改性
US20180118957A1 (en) * 2016-10-28 2018-05-03 Ohio State Innovation Foundation Liquid impregnated surfaces for liquid repellancy
CN110022967A (zh) * 2016-11-04 2019-07-16 香港大学 全疏性多孔膜及其制造方法

Also Published As

Publication number Publication date
CN111040452B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
Zhu et al. One-pot preparation of fluorine-free magnetic superhydrophobic particles for controllable liquid marbles and robust multifunctional coatings
Charcosset et al. The membrane emulsification process—a review
Buddingh et al. Liquid and liquid-like surfaces/coatings that readily slide fluids
CN103962074B (zh) 一种中空亚微米球、其制备方法与应用
Chen et al. Fabrication of novel superhydrophilic and underwater superoleophobic hierarchically structured ceramic membrane and its separation performance of oily wastewater
CN111170323B (zh) 一种包裹/释放油性物质的二氧化硅气凝胶微球及其制备方法
CN110449035B (zh) 一种油水分离膜及其制备方法
CN105879719B (zh) 一种基于乳液成膜的硅橡胶/二氧化硅渗透汽化膜绿色制备方法
CN110002452B (zh) 一种中空多孔二氧化硅微球、制备方法及应用
CN104448168B (zh) 一种有机无机杂化中空微球的制备方法及其产物和应用
WO2021107048A1 (ja) 二酸化炭素を用いた原油回収のためのシリカナノ粒子及び原油回収方法
CN112126101B (zh) 一种具有各向异性亲水超滑表面的制备方法
CN113800938B (zh) 一种氧化钛陶瓷超滤膜的制备方法
CN111040452B (zh) 一种超疏液三维自支撑体及其制备方法
Wang et al. Comparison of micro-/nano-hierarchical and nano-scale roughness of silica membranes in terms of wetting behavior and transparency
CN112755805B (zh) 一种水下超疏油二维纳米级云母片油水分离膜及其制备方法与应用
CN108439420A (zh) 单分散多孔二氧化硅球材料的制备方法
CN106582314A (zh) 一种用于膜蒸馏的小孔径疏水复合膜制备方法
CN112500793A (zh) 一种超疏水氟硅树脂陶瓷防污剂的应用方法
CN113509847A (zh) 一种通过水面铺展制备多孔纳米粒子/聚二甲基硅氧烷膜的方法
Gao et al. Superhydrophilic polyethersulfone (PES) membranes with high scale inhibition properties obtained through bionic mineralization and RTIPS
Li et al. Ordered macroporous titania photonic balls by micrometer-scale spherical assembly templating
JP3469223B2 (ja) 複合化粒子の製造法
CN109796601A (zh) 一种二氧化硅改性的有机硅消泡剂及其制备方法
JP6038688B2 (ja) セラミック膜複合体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant