CN111029164A - 磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用 - Google Patents

磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用 Download PDF

Info

Publication number
CN111029164A
CN111029164A CN201911294338.1A CN201911294338A CN111029164A CN 111029164 A CN111029164 A CN 111029164A CN 201911294338 A CN201911294338 A CN 201911294338A CN 111029164 A CN111029164 A CN 111029164A
Authority
CN
China
Prior art keywords
polymer
phosphomolybdic acid
carbon nanotube
conductive hydrogel
composite conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911294338.1A
Other languages
English (en)
Other versions
CN111029164B (zh
Inventor
王美玲
崔明珠
刘旭光
刘伟峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Yide Yichuang Cultural Media Co.,Ltd.
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201911294338.1A priority Critical patent/CN111029164B/zh
Publication of CN111029164A publication Critical patent/CN111029164A/zh
Application granted granted Critical
Publication of CN111029164B publication Critical patent/CN111029164B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明属多酸基复合水凝胶新材料技术领域,提供一种磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用。以带正电的聚合物导电水凝胶作为桥梁,将带负电的磷钼酸一步原位负载在带负电的酸化碳纳米管上,通过静电自组装作用实现三元复合水凝胶的构建,磷钼酸纳米颗粒均匀的锚定或镶嵌在被3D网格结构的聚合物导电水凝胶包裹的酸化碳纳米管表面。直接作无粘合剂的超级电容器电极材料,实现电化学柔性储能。利于PMo12的均匀扎钉及反应活性位点的暴露,加快了电子传输,优异的延展性及溶胀性促成了其在柔性器件中的应用。当弯曲较大角度,显示了极高的电容保持率,在集成柔性电子器件领域显示出极大的实用性。

Description

磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全 固态柔性超级电容器中的应用
技术领域
本发明属于多酸基水凝胶复合新材料技术领域,具体涉及一种磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用。
背景技术
多金属氧酸盐(POMs)是由前过渡金属离子通过氧连接而形成的一类多金属氧簇化合物,因具有良好的多电子及质子传输能力,高的热稳定性及晶格氧的不稳定性在储能领域得到了广泛的应用。其中 Keggin 型磷钼酸 (PMo12) 因具有很强的电子转移能力而被称为“电子海绵”。不过,PMo12存在易溶于水和极性溶剂等缺点,导致其不可直接用作电极材料,限制了其在储能领域的应用。
为解决上述问题,科学家们通过将PMo12均匀分散或负载在具有较大比表面积的纳米碳表面,如石墨烯或碳纳米管。碳纳米管具有大的比表面积、优异的导电性、利于离子传输的独特孔结构、良好的机械和热稳定性,是负载PMo12的极佳基体之一。然而,其极易团聚,因此,在实际应用中常常需要通过强酸处理来增加碳管表面的功能基团以提高其分散性。然而酸化CNT与PMo12均带负电,会因静电排斥作用降低负载量。近年来,科学家们提出了通过引入带有正电的聚离子液或带正电的导电聚合物作为中介来实现碳材料和POMs的结合。然而,传统导电聚合物的全面包覆不利于活性位点的暴露,限制了POMs本征电容的发挥;同时聚合物为刚性结构,电极在测试时因体积变化使得材料的电化学性能降低。新型三维网络结构且正电性的导电聚合物水凝胶因具有丰富的分级孔道结构及高的导电性,成为了实现具有双电层电容的酸化CNT负载赝电容材料POMs的最佳桥梁。
发明内容
本发明为了解决上述问题,提供了一种磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用。本发明利用一步静电自组装及原位聚合策略制备磷钼酸/聚合物/碳纳米管三元复合水凝胶,实现磷钼酸纳米颗粒的均匀负载。
本发明还提供了该导电水凝胶在全固态柔性超级电容器中的应用,制备的柔性超级电容器能够在弯曲条件下保持性能稳定,可以应用于柔性显示器和可穿戴电子器件。
本发明由如下技术方案实现的:一种磷钼酸/聚合物/碳纳米管复合导电水凝胶,所述磷钼酸/聚合物/碳纳米管复合导电水凝胶是以带正电的聚合物导电水凝胶作为桥梁,将带负电的磷钼酸一步原位负载在带负电的酸化碳纳米管上,通过静电自组装作用实现三元复合水凝胶的构建,磷钼酸纳米颗粒均匀的锚定或镶嵌在被3D网格结构的聚合物导电水凝胶包裹的酸化碳纳米管表面。
所述磷钼酸纳米颗粒大小<1 nm;所述聚合物导电水凝胶中的聚合物单体为吡咯、苯胺或吲哚。
制备所述的磷钼酸/聚合物/碳纳米管复合导电水凝胶的方法,具体步骤如下:
(1)A溶液的制备:0.08-1.28 g PMo12粉末、0.05-0.8 g无水氯化铁、0.06-0.096 g交联剂混合,超声均匀分散在去离子水中,制备成0.5-8 mL混合溶液即可;
(2)B溶液的制备:5-30 mg酸化碳纳米管先分散在0.25-4 mL溶剂中,然后再将21-336μL聚合物单体加入到酸化碳纳米管溶液中,超声均匀后即为B液;所述溶剂为去离子水;
(3)磷钼酸/聚合物/碳纳米管复合导电水凝胶的制备:将步骤(1)制备的A溶液和步骤(2)制备的聚B溶液均置于4℃冰箱中,静置10-30min,然后将二者迅速混合,0.5 min中内即可得到黑色的磷钼酸/聚合物/碳纳米管复合导电水凝胶。
步骤(1)中所述的交联剂为常规带多个羧基的交联剂。所述的交联剂优选为TCPP。
步骤(1)中的磷钼酸用磷钨酸替换。
步骤(1)中超声条件为 超声10-30分钟。
所述磷钼酸/聚合物/碳纳米管复合导电水凝胶在全固态柔性超级电容器中的应用,所述柔性超级电容器为:将磷钼酸/聚合物/碳纳米管复合导电水凝胶配成10 mg/mL的分散液,均匀滴涂在柔性基底上,形成1-3 mm厚的无粘合剂的超级电容器电极,然后以PVA/H2SO4凝胶固体电解质作为固态电解质,刮涂在磷钼酸/聚合物复合导电水凝胶电极表面,厚度为2-5 mm,制成柔性超级电容器器件。
所述柔性基底为商业碳布或碳纳米管纸或常规柔性导电基底。
所述PVA/H2SO4凝胶固体电解质为H2SO4酸性电解质材料、PVA加入到去离子水中,在90-95℃搅拌制得;所述H2SO4酸性电解质、PVA以及去离子水的质量比为1:1:10。
本发明所述的磷钼酸/聚合物/碳纳米管复合导电水凝胶,多孔结构的聚合物水凝胶包覆在酸化碳纳米管的表面,磷钼酸纳米颗粒均匀地分布于被聚合物水凝胶包覆的碳纳米管的体相与表面层,磷钼酸颗粒大小小于1 nm。
构成柔性超级电容器的基底电极表面刮涂有如上述的磷钼酸/聚合物/碳纳米管复合导电水凝胶;以及PVA/H2SO4固体凝胶电解质。其中,PVA/H2SO4凝胶电解质是将硫酸、PVA加入到去离子水中,在 90-95 ℃搅拌制得;电解质材料、PVA以及去离子水的质量比为1:1:10。
本发明一步制得磷钼酸/聚合物/碳纳米管复合材导电水凝胶,该复合水凝胶结构的设计实现了磷钼酸颗粒的均匀负载。与传统三元复合物(磷钼酸/聚合物/碳纳米管传统复合物)相比,该三元复合水凝胶为磷钼酸纳米颗粒在碳纳米管表面的负载提供了更多的孔道结构,它可以为电极及电解质之间提供更大的界面接触面积,显示了更高的导电性和离子电导率,更强的亲水性,更好的生物相容性及优异的韧性和可加工性,可以实现活性纳米颗粒的最大化利用。与现有负载磷钼酸的技术相比,该方法中磷钼酸分散效果更好,可以实现其最大化利用,且操作简单,成本低,应用前景广阔。
本发明提供的柔性超级电容器,具有良好的力学柔性,在弯曲状态下,器件的性能仍能够保持较高稳定性,这一特性使其有望应用于柔性显示设备及可穿戴电子器件。该器件还可以实现提升电容和输出电压的串、并联器件的构建,三个串联器件可以点亮LED灯泡30分钟。
附图说明
图1为本发明实施例提供的聚吡咯/磷钼酸/碳纳米管复合导电水凝胶被用作导线点亮灯泡;
图2为本发明实施例提供的聚吡咯/磷钼酸/碳纳米管复合导电水凝胶的扫描电子显微照片;
图3为本发明实施例提供的聚吡咯/磷钼酸/碳纳米管复合导电水凝胶的透射电子显微照片;
图4本发明实施例提供的聚吡咯/磷钼酸/碳纳米管复合导电水凝胶的STEM照片及C(a),O (b),N (c),Mo (d)和的EDX元素分布图;
图5 本发明实施例提供的聚吡咯/磷钼酸/碳纳米管复合导电水凝胶的高倍透射照片;
图6为本发明实施例提供的固态超级电容器单个器件与三个串联器件的充放电曲线(A);
图7为本发明实施例提供的固态超级电容器单个器件与三个并联器件的GCD曲线 (B);
图 8为本发明试试案例中柔性器件的实物图;
图9为本发明实施例提供的柔性超级电容器的在无形变状态、弯曲60°120 、180及完全扭曲下的循环伏安曲线;
图10为本发明实施例提供的柔性超级电容器在不同电流密度下的恒流充放电曲线图;
图11 为本发明实施例提供的三个串联超级电容器点亮LED灯泡的数码图片。
具体实施方式
现在结合附图和以下实施例对本发明作进一步详细的说明,但应了解的是,这些实施例仅为例示说明之用,而不应被解释为本发明实施的限制。
实施例1:一种磷钼酸/聚吡咯/碳纳米管复合导电水凝胶,在一步原位聚合过程中,以聚合物水凝胶作为桥梁,将带负电的磷钼酸,带正电的磷钼酸及带负电的酸化碳纳米管实现一步原位静电自组装,磷钼酸纳米颗粒均匀的锚定或镶嵌在相互连接的被3D网格结构的聚合物导电水凝胶包覆的碳纳米管表面。
制备方法如下:5-30 mg 酸化碳纳米管预先分散在0.25-4 mL去离子水中,接着将21-336微升吡咯(Py)单体加进去,超声均匀标记为A液。接着称取0.08 g PMo12粉末溶解在1mL去离子水中,并超声20 min,接着加入0.05-0.8 g无水氯化铁粉末,继续超声20 min,然后加入0.06-0.096 g TCPP交联剂并剧烈搅拌至均匀分散,标记为B液。将制得的A和B液均置于4℃冰箱中,冰箱中放置10-30分钟以后,将A液迅速加入B液中,半分钟内获得黑色的复合水凝胶。所述磷钼酸纳米颗粒大小<1nm。
实施例2:本实施例提供的一种磷钼酸/聚合物/碳纳米管复合导电水凝胶,制备方法与实施例1的基本步骤相同,所不同之处在于,本实施例中的单体是苯胺。
实施例3:本实施例提供的一种磷钼酸/聚吡咯/碳纳米管复合导电水凝胶,制备方法与实施例1的基本步骤相同,所不同之处在于,本实施例中的PMo12粉末的质量是0.64 g。
实施例4:本实施例提供的一种磷钼酸/聚吡咯/碳纳米管复合导电水凝胶,制备方法与实施例1的基本步骤相同,所不同之处在于,本实施例中的碳纳米管的质量是20mg。
实施例5:本实施例制备的一种柔性超级电容器,制备方法如下:
选取厚度为0.33 mm的商业化碳纳米管纸,裁剪成2×1 cm的长方形,用去离子水和乙醇超声清洗几次,烘干待用。将磷钼酸/聚吡咯/碳纳米管复合水凝胶活性材料配成10 mg/mL的分散液,然后将其均匀涂覆在1×2 cm的碳布上 (工作面积为1 cm2) 并烘干备用。将1g浓硫酸溶于10 mL H2O中,随后加入1 g PVA,然后将整个混合物加热至95℃,同时剧烈搅拌直至溶液变澄清制得凝胶电解质。将热的电解质均匀刮涂在修饰好的电极上,并刮涂成均匀的厚度,以具有相同载量的两片电极对称组装,待电解质冷却凝固,最外层再用聚四氟乙烯(PTFE)进行封装,即可得到基于磷钼酸/聚吡咯/碳纳米管复合导电水凝胶的柔性超级电容器。
实施例6:本实施例提供的一种柔性超级电容器,制备方法与实施例5的基本步骤相同,所不同之处在于,本实施例中的电解质选择[BmimHSO4],水浴温度选90℃。
下面结合试验例考察实施例1-4提供的磷钼酸/聚吡咯/碳纳米管复合导电水凝胶的性能。
试验例1:将制得的复合水凝胶用作导线,如图1 所示,体现了该复合水凝胶的可塑性和延展性及导电性,将其切断再愈合以后,灯泡继续被点亮,在柔性器件应用方面展示了一定的潜力。
试验例2:采用扫描电镜和透射电镜对实施例1-4制备得到的磷钼酸/聚吡咯/碳纳米管复合导电水凝胶的形貌进行检测。检测结果如图2和3所示。从SEM和TEM照片中可以看出,它表现出具有互连纳米管状形貌,这是由于聚吡咯水凝胶沿着酸化碳纳米管模板生长的原因。这种结构有利于电解液的浸润和离子传输。采用元素映射图(图4)表征PMo12在水凝胶中的分布情况。元素映射图中PPy的C,N和PMo12的Mo,和O的存在清楚地证实PMo12在整个被聚合物水凝胶包覆的碳纳米管表面的均匀分布。如图5所示,高倍透射电子显微镜图像表明大量PMo12纳米颗粒确实均匀地锚定在被聚合物水凝胶包覆的碳纳米管上。
试验例3:对实施例5-6提供的固态超级电容器可以设计成三个串联或并联的结构。结果见图6和图7。三个串联器件的GCD曲线显示了从1.4 V(1个器件)到4.2 V的逐步电压扩张;且与单个器件相比,三个并联的器件放电时间显示了三倍的增长,证明该全固态超级电容器可以串并联连接而不改变其本身的电容性能,在一定程度上可满足集成电子产品的需求。
试验例4:图8为制得的柔性器件的实物图。图9为施例5-6提供的柔性超级电容器的柔性测试结果图。柔性超级电容器在弯曲不同角度的状态下的循环伏安曲线和无形变状态下的测试曲线的形状基本保持一致,证明了组装的全固态柔性超级电容器在具有一定的抗机械变形性,可在一定程度上满足柔性电子皮肤和可穿戴电子器件对储能装置的需求。
试验例5:对实施例5-6提供的柔性超级电容器考察恒流充放电,结果见图10。如图10所示,在恒流充放电曲线中,充电曲线和放电曲线呈对称的形状,说明器件的库仑效率很高。
试验例6:图11提供了串联三个器件点亮一额定电压为2.2 V的小灯泡实物图。持续点亮近30 min,表明该器件具有优异的储能性。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种磷钼酸/聚合物/碳纳米管复合导电水凝胶,其特征在于:所述磷钼酸/聚合物/碳纳米管复合导电水凝胶是以带正电的聚合物导电水凝胶作为桥梁,将带负电的磷钼酸一步原位负载在带负电的酸化碳纳米管上,通过静电自组装作用实现三元复合水凝胶的构建,磷钼酸纳米颗粒均匀的锚定或镶嵌在被3D网格结构的聚合物导电水凝胶包裹的酸化碳纳米管表面。
2.根据权利要求1所述的一种磷钼酸/聚合物/碳纳米管复合导电水凝胶,其特征在于:所述磷钼酸纳米颗粒大小<1nm;所述聚合物导电水凝胶中的聚合物单体为吡咯、苯胺或吲哚。
3.制备权利要求1或2所述的磷钼酸/聚合物/碳纳米管复合导电水凝胶的方法,其特征在于:具体步骤如下:
(1)A溶液的制备:0.08-1.28 g PMo12粉末、0.05-0.8 g无水氯化铁、0.06-0.096 g交联剂混合,超声均匀分散在去离子水中,制备成0.5-8 mL混合溶液即可;
(2)B溶液的制备:5-30 mg酸化碳纳米管及21-336 μL聚合物单体先后分散在0.25-4mL溶剂,所述溶剂为水;
(3)磷钼酸/聚合物/碳纳米管复合导电水凝胶的制备:将步骤(1)制备的A溶液和步骤(2)制备的聚B溶液均置于4℃冰箱中,静置10-30min,然后将二者混合,0.5 min中内即可得到黑色的磷钼酸/聚合物/碳纳米管复合导电水凝胶。
4.根据权利要求3所述的制备磷钼酸/聚合物/碳纳米管复合导电水凝胶的方法,其特征在于:步骤(1)中所述的交联剂为带多个羧基的交联剂。
5.根据权利要求4所述的制备磷钼酸/聚合物/碳纳米管复合导电水凝胶的方法,其特征在于:步骤(1)中所述的交联剂为TCPP。
6.根据权利要求3所述的制备磷钼酸/聚合物/碳纳米管复合导电水凝胶的方法,其特征在于:步骤(1)中的磷钼酸用磷钨酸替换。
7.根据权利要求3所述的制备磷钼酸/聚合物/碳纳米管复合导电水凝胶的方法,其特征在于:步骤(1)中超声条件为超声10-30分钟。
8.一种如权利要求1或2所述的磷钼酸/聚合物/碳纳米管复合导电水凝胶在全固态柔性超级电容器中的应用,其特征在于:所述柔性超级电容器为:将磷钼酸/聚合物/碳纳米管复合导电水凝胶配成10 mg/mL的分散液,均匀滴涂在柔性基底上,形成1-3 mm厚的无粘合剂的超级电容器电极材料,然后以PVA/H2SO4凝胶固体电解质作为固态电解质,刮涂在磷钼酸/聚合物复合导电水凝胶电极表面,厚度为2-5 mm,制成柔性超级电容器器件。
9.根据权利要求8所述的一种磷钼酸/聚合物/碳纳米管复合导电水凝胶在全固态柔性超级电容器中的应用,其特征在于:所述柔性基底为碳布、碳纳米管纸或常规柔性导电基底,基底厚度为30-100 mm。
10.根据权利要求8所述的一种磷钼酸/聚合物/碳纳米管复合导电水凝胶在全固态柔性超级电容器中的应用,其特征在于:所述PVA/H2SO4凝胶固体电解质为H2SO4酸性电解质材料、PVA加入到去离子水中,在90-95℃搅拌制得;所述H2SO4酸性电解质、PVA以及去离子水的质量比为1:1:10。
CN201911294338.1A 2019-12-16 2019-12-16 磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用 Active CN111029164B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911294338.1A CN111029164B (zh) 2019-12-16 2019-12-16 磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911294338.1A CN111029164B (zh) 2019-12-16 2019-12-16 磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用

Publications (2)

Publication Number Publication Date
CN111029164A true CN111029164A (zh) 2020-04-17
CN111029164B CN111029164B (zh) 2021-06-04

Family

ID=70210925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911294338.1A Active CN111029164B (zh) 2019-12-16 2019-12-16 磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用

Country Status (1)

Country Link
CN (1) CN111029164B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112863889A (zh) * 2021-01-13 2021-05-28 吉林大学 一种以杂多酸复合导电胶为电极的柔性超级电容器
CN114824318A (zh) * 2022-05-23 2022-07-29 山东师范大学 一种同轴碳纳米管/多金属氧酸盐/导电聚合物电催化剂及制备方法
CN115805093A (zh) * 2022-11-25 2023-03-17 太原理工大学 一种精准限域路径制备不同尺寸的过渡金属Mo基材料的方法及其应用
CN115954530A (zh) * 2022-12-31 2023-04-11 广东微电新能源有限公司 固态电解质、固态电解质膜及全固态锂电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244189A (zh) * 2015-10-21 2016-01-13 山东科技大学 一种碳纳米管增强导电聚合物水凝胶的制备方法
CN106449128A (zh) * 2016-09-28 2017-02-22 东南大学 一体化杂多酸修饰聚苯胺/氮化钛核壳纳米线阵列复合材料及其制备方法和应用
CN106770552A (zh) * 2016-12-16 2017-05-31 哈尔滨理工大学 一种基于双金属纳米粒子掺杂的含钒杂多酸/碳纳米管的多巴胺电化学传感电极
EP3299338A1 (en) * 2015-05-20 2018-03-28 Consejo Superior de Investigaciones Cientificas (CSIC) Graphene-based electroactive nanofluids as liquid electrodes in flow cells
CN110156118A (zh) * 2019-04-16 2019-08-23 天津城建大学 一种新型复合电极及其制备方法和应用
CN110423348A (zh) * 2019-07-19 2019-11-08 太原理工大学 磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3299338A1 (en) * 2015-05-20 2018-03-28 Consejo Superior de Investigaciones Cientificas (CSIC) Graphene-based electroactive nanofluids as liquid electrodes in flow cells
CN105244189A (zh) * 2015-10-21 2016-01-13 山东科技大学 一种碳纳米管增强导电聚合物水凝胶的制备方法
CN106449128A (zh) * 2016-09-28 2017-02-22 东南大学 一体化杂多酸修饰聚苯胺/氮化钛核壳纳米线阵列复合材料及其制备方法和应用
CN106770552A (zh) * 2016-12-16 2017-05-31 哈尔滨理工大学 一种基于双金属纳米粒子掺杂的含钒杂多酸/碳纳米管的多巴胺电化学传感电极
CN110156118A (zh) * 2019-04-16 2019-08-23 天津城建大学 一种新型复合电极及其制备方法和应用
CN110423348A (zh) * 2019-07-19 2019-11-08 太原理工大学 磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUYUN CHEN等: ""Polypyrrole–polyoxometalate/reduced graphene oxide ternary nanohybrids for flexible,all-solid-state supercapacitors"", 《CHEMCOMM》 *
高洪成等: ""碳纳米管/杂多酸/聚吡咯复合催化剂的制备及催化烯烃环氧化性"", 《高等学校化学学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112863889A (zh) * 2021-01-13 2021-05-28 吉林大学 一种以杂多酸复合导电胶为电极的柔性超级电容器
CN114824318A (zh) * 2022-05-23 2022-07-29 山东师范大学 一种同轴碳纳米管/多金属氧酸盐/导电聚合物电催化剂及制备方法
CN114824318B (zh) * 2022-05-23 2023-12-29 山东师范大学 一种同轴碳纳米管/多金属氧酸盐/导电聚合物电催化剂及制备方法
CN115805093A (zh) * 2022-11-25 2023-03-17 太原理工大学 一种精准限域路径制备不同尺寸的过渡金属Mo基材料的方法及其应用
CN115954530A (zh) * 2022-12-31 2023-04-11 广东微电新能源有限公司 固态电解质、固态电解质膜及全固态锂电池
CN115954530B (zh) * 2022-12-31 2023-12-15 广东微电新能源有限公司 固态电解质、固态电解质膜及全固态锂电池

Also Published As

Publication number Publication date
CN111029164B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
CN111029164B (zh) 磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用
Bavio et al. Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline-carbon nanotubes
CN110034279B (zh) 一种柔性锂离子电池负极材料的制备方法
Khosrozadeh et al. A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles
Zhou et al. Highly stable multi-wall carbon nanotubes@ poly (3, 4-ethylenedioxythiophene)/poly (styrene sulfonate) core–shell composites with three-dimensional porous nano-network for electrochemical capacitors
CN105470576B (zh) 一种高压锂电池电芯及其制备方法、锂离子电池
Sun et al. A freestanding polypyrrole hybrid electrode supported by conducting silk fabric coated with PEDOT: PSS and MWCNTs for high-performance supercapacitor
US20170174872A1 (en) Aqueous composite binder of natural polymer derivative-conducting polymer and application thereof
Ji et al. All-in-one energy storage devices supported and interfacially cross-linked by gel polymeric electrolyte
Sun et al. Effect of poly (acrylic acid)/poly (vinyl alcohol) blending binder on electrochemical performance for lithium iron phosphate cathodes
Tian et al. Engineering the volumetric effect of Polypyrrole for auto-deformable supercapacitor
CN111934030B (zh) 柔性平面微型储能器件及其制备方法
Li et al. Three-dimensional stretchable fabric-based electrode for supercapacitors prepared by electrostatic flocking
CN110323445B (zh) Paa-ca复相粘结剂及其制备方法
Malik et al. Electrochemical behavior of composite electrode based on sulphonated polymeric surfactant (SPEEK/PSS) incorporated polypyrrole for supercapacitor
CN108630462A (zh) 一种纳米纤维基一体化薄膜超级电容器及其制备方法
KR20160097706A (ko) 가역적인 산-염기 상호작용을 통해 물리적으로 가교된 실리콘 음극용 고분자 바인더
Vu et al. Hybrid carbon nanofiller/polymer composites as self-healable current collector electrodes for use in high-performance flexible metal-free supercapacitors
Bai et al. High ion transport within a freeze-casted gel film for high-rate integrated flexible supercapacitors
Kuang et al. A double cross-linked hydrogel electrolyte with high mechanical strength and excellent electrochemical performance for flexible supercapacitor and zinc ion capacitor
CN107742695B (zh) 一种用于柔性锂离子电池的三维多孔复合极片的制备方法
CN110423348B (zh) 磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用
Feng et al. Sponge integrated highly compressible all-solid-state supercapacitor with superior performance
Hina et al. Fabrication of aqueous solid-state symmetric supercapacitors based on self-healable poly (acrylamide)/PEDOT: PSS composite hydrogel electrolytes
JP2013135223A (ja) 電極活物質/導電材の複合体及びその製造方法並びにこれを含む電気化学キャパシタ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231109

Address after: 030600 Commercial Building 2-103, Phase I, Hongxing Tianbo, Wenhua Street, Anning Street, Yuci District, Jinzhong City, Shanxi Province

Patentee after: Shanxi Yide Yichuang Cultural Media Co.,Ltd.

Address before: 030024 No. 79 West Main Street, Taiyuan, Shanxi, Yingze

Patentee before: Taiyuan University of Technology