CN111020630B - 具有疏气泡功能的超薄全氟羧酸离子交换膜及其制备方法 - Google Patents

具有疏气泡功能的超薄全氟羧酸离子交换膜及其制备方法 Download PDF

Info

Publication number
CN111020630B
CN111020630B CN201911423822.XA CN201911423822A CN111020630B CN 111020630 B CN111020630 B CN 111020630B CN 201911423822 A CN201911423822 A CN 201911423822A CN 111020630 B CN111020630 B CN 111020630B
Authority
CN
China
Prior art keywords
ion exchange
perfluorocarboxylic acid
exchange membrane
acid ion
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911423822.XA
Other languages
English (en)
Other versions
CN111020630A (zh
Inventor
张永明
刘烽
张恒
李志勇
张波
赵彬
雷建龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Dongyue Polymer Material Co Ltd
Original Assignee
Shandong Dongyue Polymer Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Dongyue Polymer Material Co Ltd filed Critical Shandong Dongyue Polymer Material Co Ltd
Priority to CN201911423822.XA priority Critical patent/CN111020630B/zh
Publication of CN111020630A publication Critical patent/CN111020630A/zh
Application granted granted Critical
Publication of CN111020630B publication Critical patent/CN111020630B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明属于离子交换膜技术领域,具体涉及一种具有疏气泡功能的超薄全氟羧酸离子交换膜及其制备方法。所述的具有疏气泡功能的超薄全氟羧酸离子交换膜,由全氟羧酸聚合物层、多孔无纺聚合物层和功能表面涂层组成,其中功能表面涂层位于全氟羧酸聚合物层的上下表面,多孔无纺聚合物层包埋在全氟羧酸聚合物层中;功能表面涂层是由全氟离子聚合物构成的多孔粗糙结构。本发明的具有疏气泡功能的超薄全氟羧酸离子交换膜,在新型高电流密度条件下的零极距电解槽中,能有效降低槽电压,减少电解能耗,降低生产成本;本发明还提供其制备方法。

Description

具有疏气泡功能的超薄全氟羧酸离子交换膜及其制备方法
技术领域
本发明属于离子交换膜技术领域,具体涉及一种具有疏气泡功能的超薄全氟羧酸离子交换膜及其制备方法。
背景技术
离子交换膜是一种含离子基团的、对溶液里的离子具有选择透过能力的高分子膜。因为一般在应用时主要是利用它的离子选择透过性,所以也称为离子选择透过性膜。
离子交换膜可装配成电渗析器而用于苦咸水的淡化和盐溶液的浓缩,也可应用于甘油、聚乙二醇的除盐,分离各种离子与放射性元素、同位素,分级分离氨基酸等。此外,在有机和无机化合物的纯化、原子能工业中放射性废液的处理与核燃料的制备,以及燃料电池隔膜与离子选择性电极中,也都采用离子交换膜。离子交换膜在膜技术领域中占有重要的地位,它对仿生膜研究也将起重要作用。
全氟离子交换膜在食盐电解工业上的应用,引起了氯碱工业的革命性变化。此外其在氯化钾电解制造碳酸钾、氯化钠电解制造碳酸钠、氯化钠电解制备亚硫酸钠、硫酸钠电解制烧碱和硫酸等领域均具有广泛应用。通过降低阳极与阴极之间的槽间距可有效降低槽电压。但当电极间的距离减少到一定距离时,由于膜紧贴在电极上,电解过程中产生的气泡极易粘附在膜表面难以释放。大量气泡聚集在膜表面阻碍了电流通道,使膜的有效电解面积减小,局部极化作用明显增加,反而使槽压升高。
专利CN103556178B中公开了一种用于超高电流密度氧阴极电解的离子交换膜及其制备方法。该离子交换膜是由全氟羧酸离子交换树脂层、含碳纳米管的全氟磺酸离子交换树脂层、增强网布、磺酸侧气体释放涂层和羧酸侧多功能涂层组成的多层复合膜;上述全氟离子交换膜的基膜总厚度在90-180微米之间,其中全氟磺酸树脂层厚80-160微米、全氟羧酸树脂层厚8-16微米,膜两侧表面涂层厚度均在3-12微米。该膜用于氧阴极电解工艺,尤其是采用超高电流密度的氧阴极电解工艺的离子交换膜法烧碱生产,具有较好的机械性能和电化学性能。但是该离子交换膜层数较多,制备工艺复杂,且成本较高,不适合工业推广。
CN101773788B中公开了一种带牺牲纤维网布增强的含氟离子交换膜,它包括含氟离子交换树脂基膜、带牺牲纤维的网布和亲水涂层;其中含氟离子交换树脂基膜包括5-10微米的全氟羧酸树脂膜层、90-120微米的全氟磺酸树脂膜层,和位于全氟羧酸膜层与全氟磺酸膜层之间的0-40微米的全氟磺酸/羧酸共聚或共混树脂膜层,带牺牲纤维的网布由增强纤维和牺牲纤维组成。本发明的带牺牲纤维网布增强的含氟离子交换膜可以提高膜的电化性能,有效降低膜电阻。但是该离子交换膜的表面疏气泡效果不佳,电解过程中产生的气泡极易粘附在膜表面难以释放,电流效率较低。
发明内容
针对现有技术的不足,本发明的目的是提供一种具有疏气泡功能的超薄全氟羧酸离子交换膜,在新型高电流密度条件下的零极距电解槽中,能有效降低槽电压,减少电解能耗,降低生产成本,适用于电解氯化钠、氯化钾领域;本发明还提供其制备方法。
本发明所述的具有疏气泡功能的超薄全氟羧酸离子交换膜,由全氟羧酸聚合物层、多孔无纺聚合物层和功能表面涂层组成,其中功能表面涂层位于全氟羧酸聚合物层的上下表面,多孔无纺聚合物层包埋在全氟羧酸聚合物层中;
所述全氟羧酸聚合物层的厚度为10-80μm,多孔无纺聚合物层的厚度为3-50μm,功能表面涂层的厚度为0.01-30μm;
所述功能表面涂层是由全氟离子聚合物构成的多孔粗糙结构。
优选地,全氟羧酸聚合物层的厚度为20-60μm,多孔无纺聚合物层的厚度为10-40μm,功能表面涂层的厚度为1-10μm。
全氟羧酸聚合物层的全氟羧酸树脂交换容量(IEC)为0.6-1.5mmol/g,优选为0.8-1.2mmol/g。
多孔无纺聚合物层的材质为聚四氟乙烯、聚偏氟乙烯、聚酰亚胺、聚醚醚酮中的一种或多种组合,孔隙率为20-99%,优选为60-80%。
功能表面涂层中的全氟离子聚合物为全氟磺酸聚合物和/或全氟磷酸聚合物;全氟离子聚合物的交换容量为0.5-1.5mmol/g,优选为0.8-1.1mmol/g。
功能表面涂层10μm×10μm范围内粗糙度Ra值为10nm-5μm,优选为50nm-2μm;240μm×300μm范围内粗糙度Ra值为300nm-10μm,优选为1μm-5μm。
功能表面涂层中孔的体积占涂层体积的5-95%,优选为50-80%。多孔粗糙结构的孔分布于涂层表面和涂层内部,也可以集中分布在指定区域,孔是有序或者无序排列的规则或不规则结构,如规则或不规则圆形、椭圆形、正方形、长方形等。
表面功能涂层在0-300g/L盐水中均具有极低的气泡粘附力,在0-300g/L盐水环境中,3μL体积气泡与涂层粘附力介于0-400μN,优选为0-120μN。
表面功能涂层在25℃下,250g/L的盐水环境中,5μL体积的气泡接触角≥130°。
本发明所述的具有疏气泡功能的超薄全氟羧酸离子交换膜的制备方法,包括以下步骤:
(1)将全氟羧酸树脂溶于溶剂中,形成全氟羧酸树脂溶液,然后将全氟羧酸树脂溶液涂布在聚四氟乙烯多孔无纺膜上下表面,最后进行干燥,形成全氟羧酸离子交换膜前体;
(2)将全氟羧酸离子交换膜前体先进行超压处理,再浸入碱性溶液中进行转型,转化为具备离子交换功能的全氟羧酸离子交换膜;
(3)将全氟离子聚合物加到溶剂中进行均一化处理,形成全氟离子聚合物溶液,再加入造孔剂,球磨得到分散液;
(4)将步骤(3)得到的分散液采用涂膜方式附着在步骤(2)得到的全氟羧酸离子交换膜上下表面,通过刻蚀表面形成多孔粗糙结构。
步骤(2)中超压处理条件为:温度150-180℃,压力为100-120t。
步骤(2)中碱性溶液为含有15-20wt%二甲基亚砜、15-20wt%NaOH的水溶液。
步骤(2)中转型处理温度为80-90℃,时间为60-120min。
步骤(1)、(3)中的溶剂由乙醇和异丙醇按1:1-2的重量比配制而成。
步骤(3)中造孔剂是氧化硅、氧化铝、氧化锌、氧化钛、碳酸钾、碳化硅、碳酸钠、聚对苯二甲酸丙二醇酯纤维、聚氨酯纤维、聚偏氟乙烯(PVDF)或聚对苯二甲酸乙二醇酯纤维(PET)中的一种或多种。
步骤(4)中涂膜方式为喷涂、刷涂、辊涂、转印、浸渍、旋涂中的一种。
步骤(4)中刻蚀是碱解、酸解或水解中的一种或多种工艺组合。
与现有技术相比,本发明具有以下有益效果:
(1)本发明采用单层全氟羧酸聚合物层,具有较小的离子通道,在电解氯化钠过程中能有效的阻碍阴极的氢氧根反向迁移,提高电解电流效率;
(2)本发明采用超薄多孔无纺聚合物作为增强材料,制备适合于电解用的超薄全氟羧酸离子交换膜,具有较好的机械性能的同时兼具更低的膜电阻;
(3)本发明使用具有离子传导功能的全氟离子聚合物能提高膜表面粗糙度,进而提升其抗起泡性能;
(4)本发明制备的超薄全氟羧酸离子交换膜在高电流密度条件下的零极距电解槽中运行,可使槽电压显著降低;
(5)本发明工艺简单合理,易于工业化生产。
具体实施方式
以下结合实施例对本发明做进一步说明,但本发明的保护范围不仅限于此,该领域专业人员对本发明技术方案所作的改变,均应属于本发明的保护范围内。
所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径而得。
实施例1
按以下方法制备具有疏气泡功能的超薄全氟羧酸离子交换膜:
(1)将IEC=0.8mmol/g的全氟羧酸树脂溶于乙醇和异丙醇按1:1的重量比配成的溶剂中,形成全氟羧酸树脂溶液,然后将5μm厚的聚四氟乙烯多孔无纺膜在超声处理过的三氟三氯乙烷溶剂中处理1.5h,取出干燥后,将全氟羧酸树脂溶液涂布在聚四氟乙烯多孔无纺膜上下表面,涂布总厚度为10μm,最后进行干燥,形成全氟羧酸离子交换膜前体;
(2)将全氟羧酸离子交换膜前体在180℃、120t压力下,以45m/min的速度使用超压机进行超压处理,超压处理后,再浸入85℃的碱性溶液(含有18wt%二甲基亚砜、20wt%NaOH的水溶液)中转型80min,转化为具备离子交换功能的全氟羧酸离子交换膜;
(3)将IEC=1.2mmol/g的全氟磺酸聚合物加入乙醇和异丙醇按1:1的重量比配成的溶剂中,在密闭反应釜中230℃处理3h得到质量分数为5%的均一全氟磺酸聚合物溶液,再按质量比2:1加入平均粒径为500nm的ZnO颗粒和平均粒径为1000nm的Na2CO3颗粒,球磨36h,得到质量分数为10%的分散液;
(4)采用喷涂的方法,将步骤(3)所得分散液附着在步骤(2)得到的全氟羧酸离子交换膜上下表面,涂层平均厚度为3.5μm,150℃干燥2h,再浸入10wt%的NaOH溶液中,常温处理3小时,干燥后即得具有疏气泡功能的超薄全氟羧酸离子交换膜。
性能测试:
经测试,膜表面10μm×10μm范围内粗糙度Ra值210nm,240μm×300μm范围粗糙度Ra值3.2μm。
在250g/L NaCl溶液中,用3μL空气气泡测粘附力为110μN。
将制备的具有疏气泡功能的超薄全氟羧酸离子交换膜在电解槽内进行氯化钠水溶液的电解测试,将300g/L的氯化钠水溶液供给阳极室,将水供给阴极室,保证从阳极室排出的氯化钠浓度为200g/L,从阴极室排出的氢氧化钠浓度为30%;测试温度为80℃,电流密度为5.5kA/m2
经过60天的电解实验,平均槽压为2.58V,平均电流效率为99.99%。
按照标准SJ/T 10171.5方法测试所得膜的面电阻为0.32Ω·cm-2
对比例1
本对比例按照实施例1的步骤(1)、(2)制备全氟羧酸离子交换膜,在全氟羧酸离子交换膜的上下表面不喷涂表面功能涂层。
性能测试:
经测试,膜表面10μm×10μm范围内粗糙度Ra值110nm,240μm×300μm范围粗糙度Ra值600nm。
在250g/L NaCl溶液中,用3μL空气气泡测粘附力为320μN。
在与实施例1相同的条件下进行氯化钠溶液的电解测试,经过60天的电解实验,平均槽压为2.98V,平均电流效率为98.49%。
按照标准SJ/T 10171.5方法测试所得膜的面电阻为0.3Ω·cm-2
实施例2
按以下方法制备具有疏气泡功能的超薄全氟羧酸离子交换膜:
(1)将IEC=1.2mmol/g的全氟羧酸树脂溶于乙醇和异丙醇按1:1的重量比配成的溶剂中,形成全氟羧酸树脂溶液,然后将50μm厚的聚四氟乙烯多孔无纺膜在超声处理过的三氟三氯乙烷溶剂中处理1.5h,取出干燥后,将全氟羧酸树脂溶液涂布在聚四氟乙烯多孔无纺膜上下表面,涂布总厚度为80μm,最后进行干燥,形成全氟羧酸离子交换膜前体;
(2)将全氟羧酸离子交换膜前体在180℃、120t压力下,以45m/min的速度使用超压机进行超压处理,超压处理后,再浸入85℃的碱性溶液(含有18wt%二甲基亚砜、20wt%NaOH的水溶液)中转型80min,转化为具备离子交换功能的全氟羧酸离子交换膜;
(3)将IEC=1.2mmol/g的全氟磺酸聚合物加入乙醇和异丙醇按1:1的重量比配成的溶剂中,在密闭反应釜中230℃处理3h得到质量分数为5%的均一全氟磺酸聚合物溶液,再加入平均粒径为700nm的ZrO2颗粒,球磨36h,得到质量分数为10%的分散液;
(4)采用喷涂的方法,将步骤(3)所得分散液附着在步骤(2)得到的全氟羧酸离子交换膜上下表面,涂层平均厚度为6μm,150℃干燥2h,再浸入10wt%的NaOH溶液中,常温处理3小时,干燥后即得具有疏气泡功能的超薄全氟羧酸离子交换膜。
性能测试:
经测试,膜表面10μm×10μm范围内粗糙度Ra值140nm,240μm×300μm范围粗糙度Ra值5.2μm。
在250g/L NaCl溶液中,用3μL空气气泡测粘附力为72μN。
将制备的具有疏气泡功能的超薄全氟羧酸离子交换膜在电解槽内进行氯化钾水溶液的电解测试,将250g/L的氯化钾水溶液供给阳极室,将水供给阴极室,保证从阳极室排出的氯化钾浓度为180g/L,从阴极室排出的氢氧化钾浓度为25%;测试温度为80℃,电流密度为4kA/m2
经过60天的电解实验,平均槽压为2.53V,平均电流效率为99.99%。
按照标准SJ/T 10171.5方法测试所得膜的面电阻为1.2Ω·cm-2
对比例2
本对比例与实施例2的制备方法基本相同,不同点仅在于步骤(1)中全氟羧酸离子交换树脂基膜不复合聚醚醚铜多孔无纺膜。
性能测试:
经测试,膜表面10μm×10μm范围内粗糙度Ra值140nm,240μm×300μm范围粗糙度Ra值5.2μm。
在250g/L NaCl溶液中,用3μL空气气泡测粘附力为78μN。
在与实施例2相同的条件下进行氯化钾溶液的电解测试,经过60天的电解实验,平均槽压为2.42V,平均电流效率为99.42%。
按照标准SJ/T 10171.5方法测试所得膜的面电阻为1.0Ω·cm-2
实施例1-2和对比例1-2所制备的离子交换膜的性能测试结果如表1所示。
表1实施例1-2和对比例1-2所制备的离子交换膜的性能测试结果
Figure BDA0002353057320000061

Claims (1)

1.一种具有疏气泡功能的超薄全氟羧酸离子交换膜,其特征在于:制备方法如下:
(1)将IEC=0.8mmol/g的全氟羧酸树脂溶于乙醇和异丙醇按1:1的重量比配成的溶剂中,形成全氟羧酸树脂溶液,然后将5μm厚的聚四氟乙烯多孔无纺膜在超声处理过的三氟三氯乙烷溶剂中处理1.5h,取出干燥后,将全氟羧酸树脂溶液涂布在聚四氟乙烯多孔无纺膜上下表面,涂布总厚度为10μm,最后进行干燥,形成全氟羧酸离子交换膜前体;
(2)将全氟羧酸离子交换膜前体在180℃、120t压力下,以45m/min的速度使用超压机进行超压处理,超压处理后,再浸入含有18wt%二甲基亚砜、20wt%NaOH的水溶液的85℃的碱性溶液中转型80min,转化为具备离子交换功能的全氟羧酸离子交换膜;
(3)将IEC=1.2mmol/g的全氟磺酸聚合物加入乙醇和异丙醇按1:1的重量比配成的溶剂中,在密闭反应釜中230℃处理3h得到质量分数为5%的均一全氟磺酸聚合物溶液,再按质量比2:1加入平均粒径为500nm的ZnO颗粒和平均粒径为1000nm的Na2CO3颗粒,球磨36h,得到质量分数为10%的分散液;
(4)采用喷涂的方法,将步骤(3)所得分散液附着在步骤(2)得到的全氟羧酸离子交换膜上下表面,涂层平均厚度为3.5μm,150℃干燥2h,再浸入10wt%的NaOH溶液中,常温处理3小时,干燥后即得具有疏气泡功能的超薄全氟羧酸离子交换膜。
CN201911423822.XA 2019-12-31 2019-12-31 具有疏气泡功能的超薄全氟羧酸离子交换膜及其制备方法 Active CN111020630B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911423822.XA CN111020630B (zh) 2019-12-31 2019-12-31 具有疏气泡功能的超薄全氟羧酸离子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911423822.XA CN111020630B (zh) 2019-12-31 2019-12-31 具有疏气泡功能的超薄全氟羧酸离子交换膜及其制备方法

Publications (2)

Publication Number Publication Date
CN111020630A CN111020630A (zh) 2020-04-17
CN111020630B true CN111020630B (zh) 2021-07-13

Family

ID=70201871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911423822.XA Active CN111020630B (zh) 2019-12-31 2019-12-31 具有疏气泡功能的超薄全氟羧酸离子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111020630B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114288855B (zh) * 2021-11-25 2023-03-10 国家电投集团氢能科技发展有限公司 一种水电解膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054445A (zh) * 2007-03-07 2007-10-17 山东东岳高分子材料有限公司 全氟离子交换溶铸增强膜及其制备方法
CN101728549A (zh) * 2009-12-10 2010-06-09 山东东岳神舟新材料有限公司 高温质子交换复合膜
CN101759864A (zh) * 2008-11-14 2010-06-30 杨玉生 一种液面流延法制备全氟羧酸离子膜的方法
CN101773788A (zh) * 2009-12-07 2010-07-14 山东东岳高分子材料有限公司 带牺牲纤维网布增强的含氟离子交换膜
CN102978654A (zh) * 2012-12-14 2013-03-20 山东东岳高分子材料有限公司 氯碱工业用低电阻高强度离子交换膜及其制备方法
CN103556178A (zh) * 2013-11-04 2014-02-05 山东东岳高分子材料有限公司 用于超高电流密度氧阴极电解的离子交换膜及其制备方法
CN104018181A (zh) * 2014-06-06 2014-09-03 山东东岳高分子材料有限公司 用于氯碱工业的新型离子传导膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054445A (zh) * 2007-03-07 2007-10-17 山东东岳高分子材料有限公司 全氟离子交换溶铸增强膜及其制备方法
CN101759864A (zh) * 2008-11-14 2010-06-30 杨玉生 一种液面流延法制备全氟羧酸离子膜的方法
CN101773788A (zh) * 2009-12-07 2010-07-14 山东东岳高分子材料有限公司 带牺牲纤维网布增强的含氟离子交换膜
CN101728549A (zh) * 2009-12-10 2010-06-09 山东东岳神舟新材料有限公司 高温质子交换复合膜
CN102978654A (zh) * 2012-12-14 2013-03-20 山东东岳高分子材料有限公司 氯碱工业用低电阻高强度离子交换膜及其制备方法
CN103556178A (zh) * 2013-11-04 2014-02-05 山东东岳高分子材料有限公司 用于超高电流密度氧阴极电解的离子交换膜及其制备方法
CN104018181A (zh) * 2014-06-06 2014-09-03 山东东岳高分子材料有限公司 用于氯碱工业的新型离子传导膜及其制备方法

Also Published As

Publication number Publication date
CN111020630A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
CN111188065A (zh) 用于氯化物电解的增强全氟磺酸离子交换膜及其制备方法
Wang et al. Superhydrophobic ceramic hollow fiber membrane planted by ZnO nanorod-array for high-salinity water desalination
CN111074295B (zh) 氯碱工业用新型低阻离子传导膜及其制备方法
CN111188060B (zh) 增强低阻氯碱电解槽隔膜及其制备方法
CN111020630B (zh) 具有疏气泡功能的超薄全氟羧酸离子交换膜及其制备方法
CN111188050B (zh) 碱金属氯化物电解用超薄全氟磺酸离子交换膜及其制备方法
CN111041514A (zh) 增强低阻氯碱全氟离子交换膜及其制备方法
KR950000713B1 (ko) 알칼리금속 수산화물의 제조방법 및 이 방법에 적합한 전해셀
CN111101152B (zh) 具有粗糙涂层的全氟羧酸离子交换膜及其制备方法
CN111188064B (zh) 碱金属氯化物电解用增强全氟磺酸离子交换膜及其制备方法
CN111074297A (zh) 用于氯碱工业的电解槽隔膜及其制备方法
CN111188063B (zh) 新型低阻氯碱工业用离子传导膜及其制备方法
CN111074296B (zh) 具有离子传导功能的疏气泡涂层及其制备方法
CN111188059B (zh) 氯碱工业用新型超薄低阻离子传导膜及其制备方法
CN111118543A (zh) 具有疏气泡功能的增强全氟羧酸离子交换膜及其制备方法
CN111118541B (zh) 超薄低阻氯碱全氟离子交换膜及其制备方法
CN111118542B (zh) 具有粗糙涂层的超薄全氟羧酸离子交换膜及其制备方法
CN111188061A (zh) 全氟磺酸离子交换膜及其制备方法
CN111074299B (zh) 用于碱金属氯化物电解的超薄全氟磺酸离子交换膜及其制备方法
CN112126355B (zh) 离子交换膜用涂层溶液的制备方法
CN111041524A (zh) 超薄低阻氯碱电解槽隔膜及其制备方法
CN111020629A (zh) 具有疏气泡功能的全氟羧酸离子交换膜及其制备方法
CN111074298B (zh) 氯化物电解用全氟磺酸离子交换膜及其制备方法
CN111041513A (zh) 用于氯碱工业的全氟离子膜及其制备方法
CN114959794B (zh) 一种用于电解生产化学品的隔膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 256401 Zibo Huantai County, Shandong Province, Tangshan town Dongyue Fluorosilicic Industrial Park

Applicant after: Shandong Dongyue future hydrogen energy materials Co.,Ltd.

Address before: 256401 Zibo Huantai County, Shandong Province, Tangshan town Dongyue Fluorosilicic Industrial Park

Applicant before: Shandong Dongyue future hydrogen energy materials Co.,Ltd.

CB02 Change of applicant information
TA01 Transfer of patent application right

Effective date of registration: 20201112

Address after: 256401 Tangshan Town, Huantai County, Zibo, Shandong

Applicant after: SHANDONG DONGYUE POLYMER MATERIAL Co.,Ltd.

Address before: 256401 Zibo Huantai County, Shandong Province, Tangshan town Dongyue Fluorosilicic Industrial Park

Applicant before: Shandong Dongyue future hydrogen energy materials Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant