CN111018538A - 一种氧氮化物中波红外窗口材料的制备方法 - Google Patents
一种氧氮化物中波红外窗口材料的制备方法 Download PDFInfo
- Publication number
- CN111018538A CN111018538A CN201911146617.3A CN201911146617A CN111018538A CN 111018538 A CN111018538 A CN 111018538A CN 201911146617 A CN201911146617 A CN 201911146617A CN 111018538 A CN111018538 A CN 111018538A
- Authority
- CN
- China
- Prior art keywords
- sample
- purity
- lialon
- taking
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/581—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5018—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with fluorine compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
- C04B2235/3222—Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9653—Translucent or transparent ceramics other than alumina
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明涉及一种氧氮化物中波红外窗口材料的制备方法,属于红外与光电制导材料技术领域。本发明提供了一种在中红外波段(3.5–4.0μm)具有极高透过率的LiAlON陶瓷窗口材料的制备方法,该方法获得的LiAlON窗口材料在中红外波段(3.5–4.0μm)具有极高的光学透过率(>88%),且兼具弯曲强度高(>300MPa)、耐热冲击温度高(>200℃)等特点,可望用作高速飞行器的中波红外制导窗口。
Description
技术领域
本发明属于红外与光电制导材料技术领域,具体涉及一种氧氮化物中波红外窗口材料的制备方法。
背景技术
红外制导具有精度高、抗干扰能力强等优势,因此受到世界各国高度重视。目前在全世界范围内,已发展有近百种红外光学材料,然而由于受限于制备技术水平和使用环境的要求,可用作红外窗口/头罩的材料并不多。在长波红外段有金刚石、Ge、ZnS和GaAs等,中波红外段有MgF2、蓝宝石、MgAl2O4、AlON和Y2O3等。中波红外制导方案是当前国内外红外制导系统的应用最多、也是最为成熟的方案。随着未来军事竞争日益加剧,超声速、高超声速武器必将成为未来精确制导光学系统领域竞争的主要角逐场地。这对红外窗口/头罩材料提出了苛刻要求。2009年,美国军方与TA&T公司通过系统论证后联合报道:“高马赫数飞行的红外制导飞行器,需要性能极其优异的窗口/头罩材料,现有的传统红外材料,如ZnS、MgF2等将难以满足其力学性能需求,目前可供选择的材料主要有蓝宝石、MgAl2O4、AlON等”。力学、光学性能综合优异的高性能中波红外材料是当前重要研究方向。
LiAlON透明陶瓷是一种力学、光学性能类似于AlON的材料。最早的报道是在2006年,Clay等人(J.Eu.Ceram.Soc.,26(2006),1351–1362)采用LiAl5O8、AlN、Al2O3为原料,通过反应烧结/热等静压方法,制备出LiAlON光学透明的陶瓷。2011年,武汉理工大学的王皓等人(ZL 201110125526.9)采用自主合成的LiAlON粉体,经过无压烧结方法,获得了LiAlON透明陶瓷,中红外波段(3.0–4.0μm)透过率可达到50%左右。2018年,Zhang等人(J.Eu.Ceram.Soc.,382018,5252-5256)采用反应烧结/热等静压方法,首次制备出可见光-中红外波段高透明的LiAlON陶瓷,其光学、力学性能方面与蓝宝石、AlON、MgAlON材料较为接近。鉴于其优异的性能,LiAlON透明陶瓷可望应用于高速飞行器的红外窗口/头罩。
通常来看,造成透明陶瓷透过率低的因素主要是:残余气孔、第二相等缺陷难以彻底排除,造成光散射,进而导致透过率降低。通过加入合适的烧结助剂,来提高材料的透过率,这是一种常用的方法,在多种透明陶瓷(AlON、YAG、MgAl2O4等)中都有报道。比如前面提到的Clay等人,虽然提到了采用BN、MgO、Y2O3等烧结助剂,但并没有给出具体参数或方案,也并没有取得好的实际效果,最高透过率也仅有65%,这可能是制备的材料内部仍存在大量缺陷所致。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:设计一种可以制备出具有高的光学透过率(>88%)、高的弯曲强度(>300MPa)及高的耐热冲击温度(>200℃)的LiAlON陶瓷中波红外(3.5–4.0μm)窗口材料的制备工艺方法,为高速飞行器红外窗口提供候选材料方案。
(二)技术方案
为了解决上述技术问题,本发明提供了一种氧氮化物中波红外窗口材料的制备方法,包括以下步骤:
1)以LiAl5O8、α-Al2O3、AlN为原料,以MgO和Y2O3为烧结助剂,并按照一定比例球磨混合,得样品A;
2)取样品A,经模压成型,再经冷等静压处理,得样品B;
3)取样品B,置于N2气体保护的烧结炉中,升温至1700–1800℃保温10–24h,自然冷却后,得样品C;
4)取样品C装入坩埚中,再一起置于Ar气作为穿压介质的热等静压炉中,升温至1800–1900℃并保温若干时间,然后降温至300度,再自然冷却至室温即取出,再经打磨抛光,得到样品D;
5)取样品D,外表面镀制一层厚度为0.5–1.0μm的MgF2作为减反射膜,得样品E,即LiAlON中波红外窗口。
优选地,步骤1中,以LiAl5O8、α-Al2O3、AlN为原料,以MgO和Y2O3为烧结助剂,并按照一定比例球磨混合,得样品A。
优选地,步骤1中,所述原料的配方是这样的:LiAl5O8、AlN、α-Al2O3的质量分数分别为6.0–20.0wt%、7.0–12.0wt%、70–85wt%;烧结助剂(MgO+Y2O3)的总质量与原料(LiAl5O8+AlN+α-Al2O3)的总质量的比例为1/50–1/20;MgO和Y2O3的比例为2/1–6/1。
优选地,步骤1中,所述球磨混合的方法是这样的:取混合粉体,以耐磨氧化铝为球磨介质,无水乙醇为分散介质,球料比为4/1–12/1,球磨时间为10–24h,得到浆料,再经50–100℃干燥处理去除分散介质.
优选地,步骤2中,所述模压成型时压力为10–30MPa,保压时间1–10min;冷等静压时压力为150–300MPa,保压时间5–15min.
优选地,步骤3中,样品B是盛于装有包埋粉的BN或石墨坩埚中的,包埋粉的成分为BN、LiAlON的混合物,混合物中LiAlON的质量比例为50–80wt%;烧结升、降温速率控制在5–10℃/min;所述N2的纯度不低于99.99vol%;LiAlON粉的纯度不低于99%。
优选地,步骤4中,保温时间为1–10h;保温期间热等静压时压强为150–200MPa;样品所用坩埚材料为高纯钨或者BN,纯度不低于99.99wt%;升、降温速率控制在5–10℃/min,高纯Ar气的纯度不低于99.99vol%。其中的表面抛光环节选择平均颗粒度低于2μm的金刚石悬浮液作为抛光介质。
优选地,所述原料的配方是这样的:LiAl5O8、AlN、α-Al2O3的质量分数分别为17.0wt%、10wt%、73wt%;烧结助剂(MgO+Y2O3)的总质量与原料(LiAl5O8+AlN+α-Al2O3)的总质量的比例为1/20;MgO和Y2O3的比例为2/1;所述球磨混合方法是这样的:取混合粉体,以耐磨氧化铝为球磨介质,无水乙醇为分散介质,球料比为6/1,球磨时间为24h,得浆料,再经80℃干燥处理去除分散介质;步骤2中,模压成型压力为15MPa,保压时间5min;冷等静压压力为200MPa,保压时间10min;步骤3中,样品B是盛于装有包埋粉的BN或石墨坩埚中,包埋粉的成分为BN、LiAlON的混合物,其中LiAlON的质量比例为70wt%;烧结升、降温速率控制为10℃/min;所述氮气纯度为99.995vol%;所述LiAlON粉的纯度为99%;步骤4中,保温期间热等静压压强为150MPa;所用钨坩埚的纯度99.99wt%;升、降温速率控制在5℃/min,所用Ar气纯度为99.99vol%;所述表面抛光环节,选择平均颗粒度为2μm的金刚石悬浮液作为抛光介质。
优选地,步骤1中,所述原料的配方是这样的:LiAl5O8、AlN、α-Al2O3的质量分数分别为10.0wt%、7.0wt%、83wt%;烧结助剂(MgO+Y2O3)的总质量与原料(LiAl5O8+AlN+α-Al2O3)的总质量的比例为1/50;MgO和Y2O3的比例为3/1,球磨混合方法是这样的:取上述混合粉体,以耐磨氧化铝为球磨介质,无水乙醇为分散介质,球料比为10/1,球磨时间为15h,得浆料,再经60℃干燥处理去除分散介质;取A2样品,经模压成型,再经冷等静压处理,得样品B;模压成型压力为30MPa,保压时间5min;冷等静压压力为150MPa,保压时间10min;步骤3中,取B2样品,置于N2气体保护的烧结炉中,升温至1750℃保温18h,自然冷却后,得样品C;B2样品是盛于装有包埋粉的BN或石墨坩埚中,包埋粉的成分为BN、LiAlON的混合物,其中LiAlON的质量比例为50wt%;烧结升、降温速率控制为5℃/min;所述氮气纯度99.995vol%;所述LiAlON粉纯度99.5%;步骤4中,保温期间热等静压压强为190MPa;所用BN坩埚的纯度99.99wt%;升、降温速率控制在9℃/min,所用Ar气纯度为99.99vol%;表面抛光环节,选择平均颗粒度为2μm的金刚石悬浮液作为抛光介质。
本发明还提供了一种利用所述的方法制备的氧氮化物中波红外窗口材料。
(三)有益效果
本发明提供了一种在中红外波段(3.0–4.0μm)具有极高透过率的LiAlON陶瓷窗口材料的制备方法,该方法获得的LiAlON窗口材料在中红外波段(3.5–4.0μm)具有极高的光学透过率(>88%),且兼具弯曲强度高(>300MPa)、耐热冲击温度高(>200℃)等特点,可望用作高速飞行器的中波红外制导窗口。
附图说明
图1为本发明实施例1、2所得LiAlON透明陶瓷样品D1、D2的XRD谱线图;
图2为本发明实施例1、2所得LiAlON陶瓷样品D1、D2及镀膜后所得样品(E1、E2)在中红外波段(3.5–4.0μm)的透过率。
具体实施方式
为使本发明的目的、内容、和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
本发明在前期工作(Zhang等人,J.Eu.Ceram.Soc.,38(2018),5252-5256)的基础上进一步研究发现,添加一定量的合适烧结助剂,可以有效提高LiAlON在中波红外段的透过率,并经镀制MgF2减反射膜后,材料的透过率得到进一步提高。此外,它兼具弯曲强度高(>300MPa)、耐热冲击温度高(>200℃)等特点,是一种性能优异的红外窗口材料,可望用作高速飞行器的红外窗口。
基于以上研究,本发明提供的一种氧氮化物中波红外头罩材料的制备方法,它包括以下步骤:
1)以LiAl5O8、α-Al2O3、AlN为原料,以MgO和Y2O3为烧结助剂,并按照一定比例球磨混合,得样品A;
其中,所述原料的配方是这样的:LiAl5O8、AlN、α-Al2O3的质量分数分别为6.0–20.0wt%、7.0–12.0wt%、70–85wt%;烧结助剂(MgO+Y2O3)的总质量与原料(LiAl5O8+AlN+α-Al2O3)的总质量的比例为1/50–1/20;MgO和Y2O3的比例为2/1–6/1。
所述球磨混合的方法是这样的:取混合粉体,以耐磨氧化铝为球磨介质,无水乙醇为分散介质,球料比为4/1–12/1,球磨时间为10–24h,得到浆料,再经50–100℃干燥处理去除分散介质;
2)取样品A,经模压成型,再经冷等静压处理,得样品B;
其中,所述模压成型时压力为10–30MPa,保压时间1–10min;冷等静压时压力为150–300MPa,保压时间5–15min;
3)取样品B,置于N2气体保护的烧结炉中,升温至1700–1800℃保温10–24h,自然冷却后,得样品C;
其中,所述样品B是盛于装有包埋粉的BN或石墨坩埚中的,包埋粉的成分为BN、LiAlON的混合物,混合物中LiAlON的质量比例为50–80wt%;烧结升、降温速率控制在5–10℃/min;所述N2的纯度不低于99.99vol%;LiAlON粉的纯度不低于99%。
4)取样品C装入坩埚中,再一起置于高纯Ar气作为穿压介质的热等静压炉中,升温至1800–1900℃并保温若干时间,然后降温至300度,再自然冷却至室温即取出,再经打磨抛光,得到样品D;
其中,保温时间为1–10h;保温期间热等静压时压强为150–200MPa;样品所用坩埚材料为高纯钨或者BN,纯度不低于99.99wt%;升、降温速率控制在5–10℃/min,高纯Ar气的纯度不低于99.99vol%。其中的表面抛光环节选择平均颗粒度低于2μm的金刚石悬浮液作为抛光介质。
5)取样品D,外表面镀制一层厚度为0.5–1.0μm的MgF2作为减反射膜,得样品E,即LiAlON中波红外窗口。
实施例1:
1)以LiAl5O8、α-Al2O3、AlN为原料,以MgO和Y2O3为烧结助剂,并按照一定比例球磨混合,得样品A1。
进一步地,所述原料的配方是这样的:LiAl5O8、AlN、α-Al2O3的质量分数分别为17.0wt%、10wt%、73wt%;
进一步地,烧结助剂(MgO+Y2O3)的总质量与原料(LiAl5O8+AlN+α-Al2O3)的总质量的比例为1/20;
进一步地,MgO和Y2O3的比例为2/1。
进一步地,所述球磨混合方法是这样的:取上述混合粉体,以耐磨氧化铝为球磨介质,无水乙醇为分散介质,球料比为6/1,球磨时间为24h,得浆料,再经80℃干燥处理去除分散介质。
2)取A1样品,经模压成型,再经冷等静压处理,得样品B1。
进一步地,所述的模压成型压力为15MPa,保压时间5min;冷等静压压力为200MPa,保压时间10min。
3)取B1样品,置于N2气体保护的烧结炉中,升温至1800℃保温10h,自然冷却后,得样品C1。
进一步地,B1样品是盛于装有包埋粉的BN或石墨坩埚中,包埋粉的成分为BN、LiAlON的混合物,其中LiAlON的质量比例为70wt%;
进一步地,烧结升、降温速率控制为10℃/min;
进一步地,所述氮气纯度为99.995vol%;
进一步地,所述LiAlON粉的纯度为99%。
4)取样品C1装入坩埚中,再一起置于高纯Ar气作为穿压介质的热等静压炉中,升温至1900℃并保温1h,然后降温至300℃,再自然冷却至室温即取出,再经打磨抛光至3mm厚,得到样品D1;
进一步地,保温期间热等静压压强为150MPa;
进一步地,所用钨坩埚的纯度99.99wt%;
进一步地,升、降温速率控制在5℃/min,
进一步地,所用Ar气纯度为99.99vol%。
进一步地,所述的表面抛光环节,选择平均颗粒度为2μm的金刚石悬浮液作为抛光介质。
5)取D1样品,外表面镀制一层厚度为1.0μm的MgF2作为减反射膜,得样品E1,即LiAlON中波红外窗口。
实施例2:
1)以LiAl5O8、α-Al2O3、AlN为原料,以MgO和Y2O3为烧结助剂,并按照一定比例球磨混合,得样品A2。
进一步地,所述原料的配方是这样的:LiAl5O8、AlN、α-Al2O3的质量分数分别为10.0wt%、7.0wt%、83wt%;
进一步地,烧结助剂(MgO+Y2O3)的总质量与原料(LiAl5O8+AlN+α-Al2O3)的总质量的比例为1/50;
进一步地,MgO和Y2O3的比例为3/1。
进一步地,所述球磨混合方法是这样的:取上述混合粉体,以耐磨氧化铝为球磨介质,无水乙醇为分散介质,球料比为10/1,球磨时间为15h,得浆料,再经60℃干燥处理去除分散介质。
2)取A2样品,经模压成型,再经冷等静压处理,得样品B。
进一步地,所述的模压成型压力为30MPa,保压时间5min;冷等静压压力为150MPa,保压时间10min。
3)取B2样品,置于N2气体保护的烧结炉中,升温至1750℃保温18h,自然冷却后,得样品C。
进一步地,B2样品是盛于装有包埋粉的BN或石墨坩埚中,包埋粉的成分为BN、LiAlON的混合物,其中LiAlON的质量比例为50wt%;
进一步地,烧结升、降温速率控制为5℃/min;
进一步地,所述氮气纯度99.995vol%;
进一步地,所述LiAlON粉纯度99.5%。
4)取样品C2装入高纯BN坩埚中,再一起置于高纯Ar气作为穿压介质的热等静压炉中,升温至1850℃并保温3h,然后降温至300℃,再自然冷却至室温即取出,再经打磨抛光至3mm厚,得到样品D2;
进一步地,保温期间热等静压压强为190MPa;
进一步地,所用BN坩埚的纯度99.99wt%;
进一步地,升、降温速率控制在9℃/min,
进一步地,所用Ar气纯度为99.99vol%。
进一步地,所述的表面抛光环节,选择平均颗粒度为2μm的金刚石悬浮液作为抛光介质。
5)取D2样品,外表面镀制一层厚度为0.7μm的MgF2作为减反射膜,得样品E2,即LiAlON中波红外窗口。
本发明实施例1、2所得LiAlON陶瓷样品D1、D2的XRD谱线图如图1所示;本发明实施例1、2所得LiAlON陶瓷样品D1、D2及镀膜后所得样品(E1、E2)在中红外波段(3.5–4.0μm)的透过率如图2所示。本发明实施例1、2所得LiAlON陶瓷样品的弯曲强度及耐热冲击温度如表1所示。
表1
性能 | 样品E1 | 样品E1 |
弯曲强度 | 303 | 323 |
耐热冲击温度 | 207 | 216 |
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。
Claims (10)
1.一种氧氮化物中波红外窗口材料的制备方法,其特征在于,包括以下步骤:
1)以LiAl5O8、α-Al2O3、AlN为原料,以MgO和Y2O3为烧结助剂,并按照一定比例球磨混合,得样品A;
2)取样品A,经模压成型,再经冷等静压处理,得样品B;
3)取样品B,置于N2气体保护的烧结炉中,升温至1700–1800℃保温10–24h,自然冷却后,得样品C;
4)取样品C装入坩埚中,再一起置于Ar气作为穿压介质的热等静压炉中,升温至1800–1900℃并保温若干时间,然后降温至300度,再自然冷却至室温即取出,再经打磨抛光,得到样品D;
5)取样品D,外表面镀制一层厚度为0.5–1.0μm的MgF2作为减反射膜,得样品E,即LiAlON中波红外窗口。
2.如权利要求1所述的制备方法,其特征在于,步骤1中,以LiAl5O8、α-Al2O3、AlN为原料,以MgO和Y2O3为烧结助剂,并按照一定比例球磨混合,得样品A。
3.如权利要求2所述的制备方法,其特征在于,步骤1中,所述原料的配方是这样的:LiAl5O8、AlN、α-Al2O3的质量分数分别为6.0–20.0wt%、7.0–12.0wt%、70–85wt%;烧结助剂(MgO+Y2O3)的总质量与原料(LiAl5O8+AlN+α-Al2O3)的总质量的比例为1/50–1/20;MgO和Y2O3的比例为2/1–6/1。
4.如权利要求3所述的制备方法,其特征在于,步骤1中,所述球磨混合的方法是这样的:取混合粉体,以耐磨氧化铝为球磨介质,无水乙醇为分散介质,球料比为4/1–12/1,球磨时间为10–24h,得到浆料,再经50–100℃干燥处理去除分散介质。
5.如权利要求4所述的制备方法,其特征在于,步骤2中,所述模压成型时压力为10–30MPa,保压时间1–10min;冷等静压时压力为150–300MPa,保压时间5–15min。
6.如权利要求5所述的制备方法,其特征在于,步骤3中,样品B是盛于装有包埋粉的BN或石墨坩埚中的,包埋粉的成分为BN、LiAlON的混合物,混合物中LiAlON的质量比例为50–80wt%;烧结升、降温速率控制在5–10℃/min;所述N2的纯度不低于99.99vol%;LiAlON粉的纯度不低于99%。
7.如权利要求5所述的制备方法,其特征在于,步骤4中,保温时间为1–10h;保温期间热等静压时压强为150–200MPa;样品所用坩埚材料为高纯钨或者BN,纯度不低于99.99wt%;升、降温速率控制在5–10℃/min,高纯Ar气的纯度不低于99.99vol%。其中的表面抛光环节选择平均颗粒度低于2μm的金刚石悬浮液作为抛光介质。
8.如权利要求7所述的制备方法,其特征在于,所述原料的配方是这样的:LiAl5O8、AlN、α-Al2O3的质量分数分别为17.0wt%、10wt%、73wt%;烧结助剂(MgO+Y2O3)的总质量与原料(LiAl5O8+AlN+α-Al2O3)的总质量的比例为1/20;MgO和Y2O3的比例为2/1;所述球磨混合方法是这样的:取混合粉体,以耐磨氧化铝为球磨介质,无水乙醇为分散介质,球料比为6/1,球磨时间为24h,得浆料,再经80℃干燥处理去除分散介质;步骤2中,模压成型压力为15MPa,保压时间5min;冷等静压压力为200MPa,保压时间10min;步骤3中,样品B是盛于装有包埋粉的BN或石墨坩埚中,包埋粉的成分为BN、LiAlON的混合物,其中LiAlON的质量比例为70wt%;烧结升、降温速率控制为10℃/min;所述氮气纯度为99.995vol%;所述LiAlON粉的纯度为99%;步骤4中,保温期间热等静压压强为150MPa;所用钨坩埚的纯度99.99wt%;升、降温速率控制在5℃/min,所用Ar气纯度为99.99vol%;所述表面抛光环节,选择平均颗粒度为2μm的金刚石悬浮液作为抛光介质。
9.如权利要求7所述的制备方法,其特征在于,步骤1中,所述原料的配方是这样的:LiAl5O8、AlN、α-Al2O3的质量分数分别为10.0wt%、7.0wt%、83wt%;烧结助剂(MgO+Y2O3)的总质量与原料(LiAl5O8+AlN+α-Al2O3)的总质量的比例为1/50;MgO和Y2O3的比例为3/1,球磨混合方法是这样的:取上述混合粉体,以耐磨氧化铝为球磨介质,无水乙醇为分散介质,球料比为10/1,球磨时间为15h,得浆料,再经60℃干燥处理去除分散介质;取A2样品,经模压成型,再经冷等静压处理,得样品B;模压成型压力为30MPa,保压时间5min;冷等静压压力为150MPa,保压时间10min;步骤3中,取B2样品,置于N2气体保护的烧结炉中,升温至1750℃保温18h,自然冷却后,得样品C;B2样品是盛于装有包埋粉的BN或石墨坩埚中,包埋粉的成分为BN、LiAlON的混合物,其中LiAlON的质量比例为50wt%;烧结升、降温速率控制为5℃/min;所述氮气纯度99.995vol%;所述LiAlON粉纯度99.5%;步骤4中,保温期间热等静压压强为190MPa;所用BN坩埚的纯度99.99wt%;升、降温速率控制在9℃/min,所用Ar气纯度为99.99vol%;表面抛光环节,选择平均颗粒度为2μm的金刚石悬浮液作为抛光介质。
10.一种利用权利要求1至9中任一项所述的方法制备的氧氮化物中波红外窗口材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911146617.3A CN111018538A (zh) | 2019-11-21 | 2019-11-21 | 一种氧氮化物中波红外窗口材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911146617.3A CN111018538A (zh) | 2019-11-21 | 2019-11-21 | 一种氧氮化物中波红外窗口材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111018538A true CN111018538A (zh) | 2020-04-17 |
Family
ID=70201673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911146617.3A Pending CN111018538A (zh) | 2019-11-21 | 2019-11-21 | 一种氧氮化物中波红外窗口材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111018538A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112225568A (zh) * | 2020-09-22 | 2021-01-15 | 天津津航技术物理研究所 | 用于红外光学窗口的MgLiAlON透明陶瓷及制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102976626A (zh) * | 2012-11-14 | 2013-03-20 | 西安理工大学 | 一种使用溶胶-凝胶法制备MgF2减反射膜的方法 |
CN107459354A (zh) * | 2017-09-19 | 2017-12-12 | 南京云启金锐新材料有限公司 | 高透过率高纯氮氧化铝透明陶瓷及其制备方法 |
WO2018168666A1 (ja) * | 2017-03-13 | 2018-09-20 | Agc株式会社 | 透光性セラミックス焼結体とその製造方法 |
CN109437916A (zh) * | 2018-12-12 | 2019-03-08 | 天津津航技术物理研究所 | 高透明LiAlON陶瓷的制备方法 |
-
2019
- 2019-11-21 CN CN201911146617.3A patent/CN111018538A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102976626A (zh) * | 2012-11-14 | 2013-03-20 | 西安理工大学 | 一种使用溶胶-凝胶法制备MgF2减反射膜的方法 |
WO2018168666A1 (ja) * | 2017-03-13 | 2018-09-20 | Agc株式会社 | 透光性セラミックス焼結体とその製造方法 |
CN107459354A (zh) * | 2017-09-19 | 2017-12-12 | 南京云启金锐新材料有限公司 | 高透过率高纯氮氧化铝透明陶瓷及其制备方法 |
CN109437916A (zh) * | 2018-12-12 | 2019-03-08 | 天津津航技术物理研究所 | 高透明LiAlON陶瓷的制备方法 |
Non-Patent Citations (2)
Title |
---|
RONGSHI ZHANG 等: ""Highly transparent LiAlON ceramic prepared by reaction sintering and post hot isostatic pressing"", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 * |
SHEN QI 等: ""Reaction Sintering of Transparent Aluminum Oxynitride (AlON) Ceramics Using MgO and Y2O3 as Co-Additives"", 《KEY ENGINEERING MATERIALS》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112225568A (zh) * | 2020-09-22 | 2021-01-15 | 天津津航技术物理研究所 | 用于红外光学窗口的MgLiAlON透明陶瓷及制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107352994B (zh) | 一种镁铝尖晶石透明陶瓷的制备方法 | |
CN109206013B (zh) | 一种釉面不龟裂的长余辉陶瓷及其制作工艺 | |
CN108794016B (zh) | 一种高红外透过率AlON透明陶瓷的快速制备方法 | |
CN112939607B (zh) | 一种高热导率氮化铝陶瓷及其制备方法 | |
CN106342081B (zh) | 一种氮氧化铝透明陶瓷的固相制备方法 | |
CN108640687B (zh) | 一种碳化硼/碳化硅复相陶瓷及其制备方法 | |
CN109369183B (zh) | 一种红外透明陶瓷材料及其制备方法 | |
CN102093057A (zh) | 高透光率γ-ALON透明陶瓷的制备技术 | |
US7148480B2 (en) | Polycrystalline optical window materials from nanoceramics | |
CN115028458B (zh) | 一种氮氧化铝透明陶瓷的制备方法 | |
CN111153688A (zh) | 一种高强度半透明的氧化铝陶瓷制备方法 | |
CN113149652B (zh) | 基于冷烧结技术制备的高透光率透明陶瓷及其制备方法 | |
CN112390628A (zh) | 一种氧化铝靶材的制备方法 | |
CN111018538A (zh) | 一种氧氮化物中波红外窗口材料的制备方法 | |
CN111517756A (zh) | 一种易洁陶瓷制品及其制备方法 | |
CN104876552A (zh) | 一种热喷涂用耐冲击陶瓷及其制备方法 | |
CN102168240A (zh) | 一种热喷涂封严涂层材料的制备方法 | |
CN104817334A (zh) | 一种热喷涂用抗开裂陶瓷及其制备方法 | |
CN110981484A (zh) | 一种热压法制备纳米级氟化镁透明陶瓷的方法 | |
CN107805068B (zh) | 一种小晶粒y2o3陶瓷的制备方法 | |
CN110937898B (zh) | 一种倍半氧化物窗口材料的制备方法 | |
CN109437916B (zh) | 高透明LiAlON陶瓷的制备方法 | |
CN109136488B (zh) | 一种用于硅钢退火炉的节能高温辐射喷涂料及其制备方法和应用 | |
CN104817333A (zh) | 热喷涂用高强度陶瓷及其制备方法 | |
CN109053192B (zh) | 一种MgAlON透明陶瓷粉体的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200417 |