CN111004404A - 利用功能化有机粉体制备的功能膜、低温无损伤制造方法及应用 - Google Patents

利用功能化有机粉体制备的功能膜、低温无损伤制造方法及应用 Download PDF

Info

Publication number
CN111004404A
CN111004404A CN201911149824.4A CN201911149824A CN111004404A CN 111004404 A CN111004404 A CN 111004404A CN 201911149824 A CN201911149824 A CN 201911149824A CN 111004404 A CN111004404 A CN 111004404A
Authority
CN
China
Prior art keywords
powder
temperature
organic powder
low
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911149824.4A
Other languages
English (en)
Other versions
CN111004404B (zh
Inventor
周海涛
俞崇晨
高宏权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Altron Energy Technology Co ltd
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201911149824.4A priority Critical patent/CN111004404B/zh
Publication of CN111004404A publication Critical patent/CN111004404A/zh
Priority to PCT/CN2020/099141 priority patent/WO2021098215A1/zh
Priority to PCT/CN2020/130376 priority patent/WO2021098820A1/zh
Priority to US17/413,960 priority patent/US11289737B2/en
Application granted granted Critical
Publication of CN111004404B publication Critical patent/CN111004404B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Fuel Cell (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

本发明提供了一种利用功能化有机粉体制备的功能膜、低温无损伤制造方法及应用,所述有机粉体膜材由功能化有机粉体和聚四氟乙烯(PTFE)组成,利用预热后的超音速气流使聚四氟乙烯分子链打开,粘接功能化有机粉体,并挤出粉体中的空气形成连续饼状,采用低温热压工艺使得粉体成膜,再经过多层膜热压复合工艺,形成低孔隙率、厚度均匀的膜材。该方法可连续的卷对卷制得微米级的有机膜,该膜材可最大限度发挥有机粉体的物化性能,防止因高温或引入溶剂成膜导致的性能损伤或重结晶导致的各向异性。制造过程不引入溶剂,避免了溶剂干燥过程造成的环境污染、高能耗和膜材致密度不均等问题。

Description

利用功能化有机粉体制备的功能膜、低温无损伤制造方法及 应用
技术领域
本发明涉及一种利用功能化有机粉体制备的功能膜、低温无损伤制造方法及应用,属于功能材料制备技术领域。
背景技术
功能化的有机膜材是石油化工催化、燃料电池质子传导膜和全固态锂离子电池的核心材料,当前常用的有机膜材制造方法为热注塑或流涎成型。这些成膜方法通常会采用高温熔融或溶剂来帮助成膜,对于已经具有功能化的有机粉体,如具有催化功能的有机粉体、具有质子传导功能的有机粉体、具有离子传导功能的有机粉体,高温熔融或加入溶剂都会改变有机粉体的物化性质,并产生功能损伤。如催化功能消失;流涎成膜后产生重结晶,导致离子传导出现各向异性。并且膜材制造过程引入溶剂,溶剂干燥过程会造成的环境污染、高能耗,膜材本身会产生空隙,不易制造致密的功能化有机膜,从而影响膜材的离子传导特性。
发明内容
为克服现有技术的缺陷,本发明提供一种功能化有机粉体的低温无损伤膜材的制造方法,所制备的功能有机膜强度高、韧性好、物化性质优异稳定、且不产生各向异性、耗材费用适宜且实用性强。
本发明的目的通过以下技术方案实现:
一种利用功能化有机粉体制备的功能膜的低温无损伤制造方法,其特征在于,包括以下步骤:
将功能化有机粉体和聚四氟乙烯(PTFE)在混料机中低温混合均匀至粉料A;混合过程在聚四氟乙烯呈玻璃态的温度条件下进行;
所述粉料A在空气研磨设备中使用超音速气体进行空气研磨,使得粉料A中的聚四氟乙烯的分子链延展打开,并与功能化有机粉体之间形成物理粘连,且不发生化学反应,获得粉料B;
粉料B先经过挤出机排除粉体中的气体制成连续饼状宽带,然后将连续饼状宽带采用低于150℃的温度热压制成功能膜C。
进一步地,在热压制成功能膜C后,还包括将两张或多张功能膜C经过热压复合形成复合膜D的步骤。
进一步地,所述功能化有机粉体为具有催化功能的有机粉体、具有传导质子功能的有机粉体或具有传导金属离子功能的有机粉体。
进一步地,所述具有传导质子功能的有机粉体包括质子导电能力的羧酸类金属有机框架(MOFs)粉体、经过预金属化的聚偏氟乙烯(PVDF)粉体、聚酰亚胺(PI)粉体、聚氨酯(PU)粉体或聚苯硫醚(PPS))粉体,所述预金属化至少包括预锂化、预钠化或预钾化;所述具有传导金属离子功能的有机粉体是指能够传导Li+、Na+、K+或Al3+的有机粉体。
进一步地,功能化有机粉体重量百分比为80%-97%。
进一步地,所述功能化有机粉体和聚四氟乙烯(PTFE)在混料机中混合均匀至粉料A的过程中温度控制在10℃以下;混料机中混料时间为0.5-4小时。
进一步地,所述空气研磨的气体为干燥的压缩空气、氩气或氮气.
进一步地,用于空气研磨的气体在接触粉料前预热到40-50℃。
所述低温无损伤制造方法制备的功能膜,其特征在于,由功能化有机粉体和聚四氟乙烯(PTFE)组成,所述功能化有机粉体通过物理附着在聚四氟乙烯长链上,经过热压成膜的工艺制备而成。
所述的功能膜的应用,其特征在于,用于催化用膜,或用于燃料电池质子膜,或用于全固态锂离子电池的固态电解质膜。
本发明通过将功能化有机粉体与聚四氟乙烯混合后在空气研磨设备中进行空气研磨。由于在空气研磨的过程中,通过空气的作用将长链的PTFE的分子链延展打开,功能化有机粉体物理粘连在PTFE分子链上;在经过挤出机排出粉体中的气体制成连续饼状宽带,饼状宽带在有机粉体物化性质改变温度以下(<150℃)经过热压制成膜。聚四氟乙烯高压缩比,且分子量高,链段长;在制备的过程中,功能化有机粉体与聚四氟乙烯在空气研磨是充分粘附到PTFE的分子链上,实现均匀混合。再经挤出机制成连续饼状宽带的过程中PTFE分子链之间黏连将功能化粉体包裹起来。同时经过首先预制成连续饼状宽带,能够有效排除空气研磨后疏松粉体中的空气,有利于连续均匀膜的形成。该制造过程不采用高温,加工温度始终在有机粉体物化性质改变温度以下,制造过程不采用溶剂等助剂,避免了粉料溶解造成的功能破坏。膜材制造过程不会出现功能化粉体的重结晶,不会出现各向异性,并且容易制造致密的膜材,特别对于有机的固态电解质膜,可以确保膜材在各个方向上均具有优异的离子电导特性。整个过程均为物理过程,功能化有机粉体不会发生化学反应,其物理化学性质不发生改变,因此所制备的功能膜材料具有理想的催化、金属离子交换或质子交换的性能。
采用流涎成型的锂离子固态有机电解质膜,其水平膜方向的锂离子电导率比垂直膜方向的电导率大1到2个数量级。采用低温无损伤制造方法,膜材的锂离子电导率不产生各向异性。
因此,本发明尤其适用于功能化有机粉体不宜通过注塑或流涎等方法成膜,或高温或溶剂的影响会损坏有机粉体的功能,或在制膜中产生各向异性影响到膜材性能的膜材料的制备。
另外,在空气研磨的过程中,首先将用于空气研磨的气体在接触粉料前预热到40-50℃,提高空气研磨的环境温度,有利于PTFE在较轻的有机粉体里纤维化。能够缩短空气研磨的时间,提高空气研磨对有机粉体与PTFE分子链之间粘附的均匀性和充分性。
两层或多层功能膜经热压复合形成复合膜材,不仅能增加膜材的强度、韧性、平整度,并最大限度消除膜材的空隙、裂纹、厚度不均一等损害膜材功能的缺陷,尤其防止因膜材厚度不均造成的电池在循环过程中表面金属枝晶析出。本发明可连续的卷对卷制得微米级的有机膜材。
同时,所述制造方法使用的制造设备操作简单方便,无溶剂干燥过程,能耗低,且使用过程中不会造成二次污染,清理方便。
附图说明
图1为本发明中所述两层功能膜经热压复合形成复合膜材的示意图。
图中:
1-第一卷辊,2-第二卷辊,3-第一夹辊,4-第二夹辊4,5-第一热压辊,6第二热压辊。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。在本发明的一种实施方式中描述的元素和特征可以与一个或更多个其它实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,说明中省略了与本发明无关的、本领域普通技术人员已知的部件和处理的表示和描述。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明所述的功能化有机粉体是指具有催化功能的有机粉体,或传导质子功能的有机粉体,或能够传导Li+,Na+,K+,Al3+等金属离子的功能的有机粉体。所述具有传导质子功能的有机粉体包括质子导电能力的羧酸类金属有机框架(MOFs)粉体,经过预金属化的聚偏氟乙烯(PVDF)粉体、聚酰亚胺(PI)粉体、聚氨酯(PU)粉体或聚苯硫醚(PPS))粉体,所述预金属化至少包括预锂化、预钠化或预钾化。尤其适用于不易通过注塑或流涎等方法成膜,或高温或溶剂的影响会损坏有机粉体的功能,或在制膜中产生各向异性影响到膜材性能。
选用PTFE作为聚合物粘接剂,由于PTFE粉料具有高压缩比,且分子量高,链段长,能在超音速空气研磨下,分子链迅速展开并形成空间网络状,将有机粉体粘附包裹,有利于功能化有机粉体的均匀分布与粘附,更有利于成膜。
所述利用功能化有机粉体制备的功能膜的低温无损伤制造方法,包括以下步骤:
首先,将功能化有机粉体和PTFE粉料在混料机中混合均匀至粉料A,混合过程在PTFE呈玻璃态的温度条件下进行,具体的在10℃以下,防止温升造成PTFE转变为粘弹态,造成粘壁和混合不均,混料时间0.5-4小时。
然后,所述粉料A在空气研磨设备中使用干燥气体进行研磨,研磨气体的流速达到超音速级。利用超音速空气流动对长链PTFE的梳理作用,使得粉料A中的PTFE的分子链延展打开,同功能化有机粉体形成物理粘连,且不发生化学反应,获得粉料B。该气体为干燥的、流速为超音速的压缩空气、氩气或氮气,气体的露点为-40℃以下,且气体在接触粉料前进行预热,温度达到40-50℃,能高效研磨粉体,保证链状PTFE的分子链延展快速打开,且不发生反应。空气研磨设备为不锈钢封闭仓体,能够承载超音速气流的冲击。
粉料B经过挤出机排出气体制成连续饼状宽带,饼状宽带经过热压制成膜,热压温度在有机粉体物化性质改变温度以下,即<150℃,制成功能膜C收卷。两张或多张功能膜C经过热压复合形成复合膜D,如图1所示。经第一步压膜收卷后得到两卷膜材C,分别放置在两个相对转动的放第一卷辊1和第二卷辊2上,膜材C从中间支撑第一夹辊3和第二夹辊4的缝隙中穿过,进入到两个相对转动的第一热压辊5和第二热压辊6的缝中,调节第一热压辊5和第二热压辊6的辊缝,使得热复合过程中膜材上的拉伸张力均一,不发生断带,热复合的温度在功能化有机粉体物化性质改变温度以下。经过复合后,能够增加复合膜材的强度、韧性、平整度,并最大限度消除膜材的空隙、裂纹、厚度不均一等损害膜材功能的缺陷,尤其防止因膜材厚度不均造成的电池在循环过程中表面金属枝晶析出。
实施例1:
将预锂化的聚偏氟乙烯(PVDF)粉体和PTFE粉料按照92%:8%的重量百分比混合,在VC型高效不对称混合机中,且在3℃的低温冷库中,混料2小时至均匀得到粉料A。采用空气流速达到超音速的干燥压缩空气将粉料A在不锈钢封闭仓体中研磨,且空气在接触粉料前进行预热,温度达到45℃,制得混粉B,研磨后的粉料B随气流排出并收集。粉料B挤出机排除粉体中的气体制成连续饼状宽带,然后经热辊压机辊压成功能膜C,热压成膜的温度为100℃,成膜厚90微米左右,将功能膜C收卷。两张或多张膜材C经过热压复合形成复合膜材D。热复合温度为85℃,膜厚可到60微米左右。所制得的膜材D水平方向及垂直方向的锂离子电导率均为3.5*10-5S·cm-1,不存在各向异性。制造成全固态锂离子全电池后,循环500圈,无锂枝晶在膜材表面析出。
实施例2
将预锂化的聚苯硫醚(PPS)粉体和PTFE粉料按照90%:10%的重量百分比混合,在VC型高效不对称混合机中,且在5℃的低温冷库中,混合2小时至均匀得到粉料A。采用空气流速达到超音速的干燥压缩空气将粉料A在不锈钢封闭仓体中研磨,且空气在接触粉料前进行预热,温度达到45℃,制得混粉B,研磨后的粉料B随气流排出并收集。粉料B经挤出机排除粉体中的气体制成连续饼状宽带,然后再利用热辊压机辊压成膜C,热压温度为90℃,膜厚可到100微米左右,将功能膜C收卷。两张或多张膜材C经过热压复合形成复合膜材D。热复合温度为85℃,膜厚可到80微米左右。所制得的膜材D水平方向及垂直方向的锂离子电导率为1.5*10-4S·cm-1,不存在各向异性。
实施例3
将预锂化的聚酰亚胺(PI)粉体和PTFE粉料按照93%:7%的重量百分比混合,在VC型高效不对称混合机中,且在5℃的低温冷库中,混合2小时至均匀得到粉料A。采用空气流速达到超音速的干燥压缩空气将粉料A在不锈钢封闭仓体中研磨,且空气在接触粉料前进行预热,温度达到45℃,制得混粉B,研磨后的粉料B随气流排出并收集。粉料B经挤出机排除粉体中的气体制成连续饼状宽带,然后再利用热辊压机辊压成膜C,热压温度为120℃,膜厚可到80微米左右。将功能膜C收卷。两张或多张膜材C经过热压复合形成复合膜材D。热复合温度为90℃,膜厚可到70微米左右。所制得的膜材D水平方向及垂直方向的锂离子电导率为5.5*10-4S·cm-1,不存在各向异性。
实施例4:
将预钠化的聚氨酯(PU)粉体和PTFE粉料按照90%:10%的重量百分比,在VC型高效不对称混合机中,且在3℃的低温冷库中,混合2小时至均匀得到粉料A。采用空气流速达到超音速的干燥压缩空气将粉料A在不锈钢封闭仓体中研磨,且空气在接触粉料前进行预热,温度达到45℃,制得混粉B,研磨后的粉料B随气流排出并收集。粉料B经挤出机排除粉体中的气体制成连续饼状宽带,然后再利用热辊压机辊压成膜C,热压温度为120℃,膜厚可到80微米左右。将功能膜C收卷。两张或多张膜材C经过热压复合形成复合膜材D。热复合温度为90℃,膜厚可到70微米左右。所制得的膜材D水平方向及垂直方向的钠离子电导率为6.5*10-5S·cm-1,不存在各向异性。
述实施例为本发明的部分实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

1.一种利用功能化有机粉体制备的功能膜的低温无损伤制造方法,其特征在于,包括以下步骤:
将功能化有机粉体和聚四氟乙烯(PTFE)在混料机中低温混合均匀至粉料A;混合过程在聚四氟乙烯呈玻璃态的温度条件下进行;
所述粉料A在空气研磨设备中使用超音速气体进行空气研磨,使得粉料A中的聚四氟乙烯的分子链延展打开,并与功能化有机粉体之间形成物理粘连,且不发生化学反应,获得粉料B;
粉料B先经过挤出机排除粉体中的气体制成连续饼状宽带,然后将连续饼状宽带采用低于150℃的温度热压制成功能膜C。
2.根据权利要求1所述的低温无损伤制造方法,其特征在于,在热压制成功能膜C后,还包括将两张或多张功能膜C经过热压复合形成复合膜D的步骤。
3.根据权利要求1所述的低温无损伤制造方法,其特征在于,所述功能化有机粉体为具有催化功能的有机粉体、具有传导质子功能的有机粉体或具有传导金属离子功能的有机粉体。
4.根据权利要求3所述的低温无损伤制造方法,其特征在于,所述具有传导质子功能的有机粉体包括质子导电能力的羧酸类金属有机框架(MOFs)粉体,经过预金属化的聚偏氟乙烯(PVDF)粉体、聚酰亚胺(PI)粉体、聚氨酯(PU)粉体或聚苯硫醚(PPS))粉体,所述预金属化至少包括预锂化、预钠化或预钾化;所述具有传导金属离子功能的有机粉体是指能够传导Li+、Na+、K+或Al3+的有机粉体。
5.根据权利要求1所述低温无损伤制造方法,其特征在于:功能化有机粉体重量百分比为80%-97%。
6.根据权利要求1所述低温无损伤制造方法,其特征在于:所述功能化有机粉体和聚四氟乙烯(PTFE)在混料机中混合均匀至粉料A的过程中温度控制在10℃以下;混料机中混料时间为0.5-4小时。
7.根据权利要求1所述低温无损伤制造方法,其特征在于:所述空气研磨的气体为干燥的压缩空气、氩气或氮气。
8.根据权利要求1所述低温无损伤制造方法,其特征在于:用于空气研磨的气体在接触粉料前预热到40-50℃。
9.根据权利要求1-8中任一项所述低温无损伤制造方法制备的功能膜,其特征在于,由功能化有机粉体和聚四氟乙烯(PTFE)组成,所述功能化有机粉体通过物理附着在聚四氟乙烯长链上,经过热压成膜的工艺制备而成。
10.根据权利要求9所述的功能膜的应用,其特征在于:用于催化用膜,或用于燃料电池质子膜,或用于全固态锂离子电池的固态电解质膜。
CN201911149824.4A 2019-11-21 2019-11-21 利用功能化有机粉体制备的功能膜、低温无损伤制造方法及应用 Active CN111004404B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201911149824.4A CN111004404B (zh) 2019-11-21 2019-11-21 利用功能化有机粉体制备的功能膜、低温无损伤制造方法及应用
PCT/CN2020/099141 WO2021098215A1 (zh) 2019-11-21 2020-06-30 一种高安全性高体积能量密度准固态锂离子电池及其制造方法
PCT/CN2020/130376 WO2021098820A1 (zh) 2019-11-21 2020-11-20 预锂化聚苯硫醚、聚苯硫醚固态电解质膜、电池极片、准固态锂离子电池及其制造方法
US17/413,960 US11289737B2 (en) 2019-11-21 2020-11-20 Pre-lithiated polyphenylene sulfide, polyphenylene sulfide-based solid electrolyte membrane, battery electrode sheet, quasi-solid-state lithium ion battery and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911149824.4A CN111004404B (zh) 2019-11-21 2019-11-21 利用功能化有机粉体制备的功能膜、低温无损伤制造方法及应用

Publications (2)

Publication Number Publication Date
CN111004404A true CN111004404A (zh) 2020-04-14
CN111004404B CN111004404B (zh) 2022-03-22

Family

ID=70112377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911149824.4A Active CN111004404B (zh) 2019-11-21 2019-11-21 利用功能化有机粉体制备的功能膜、低温无损伤制造方法及应用

Country Status (1)

Country Link
CN (1) CN111004404B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864272A (zh) * 2020-06-09 2020-10-30 江苏大学 一种高安全性高体积能量密度准固态锂离子电池及其制造方法
CN112290081A (zh) * 2020-09-22 2021-01-29 江苏大学 高能量密度准固态钠离子电池的制造方法
CN112397770A (zh) * 2020-11-19 2021-02-23 华南理工大学 一种有机无机复合固态电解质制备方法及其电解质
WO2021098215A1 (zh) * 2019-11-21 2021-05-27 江苏大学 一种高安全性高体积能量密度准固态锂离子电池及其制造方法
WO2021098820A1 (zh) * 2019-11-21 2021-05-27 江苏大学 预锂化聚苯硫醚、聚苯硫醚固态电解质膜、电池极片、准固态锂离子电池及其制造方法
CN116001332A (zh) * 2022-12-26 2023-04-25 江苏大学 固态隔膜的制造设备及方法
CN116130672A (zh) * 2022-10-08 2023-05-16 江苏大学 锌锰准固态液流电池的锌粉负极及其半干法电极制造方法
CN116825941A (zh) * 2022-04-01 2023-09-29 江苏大学 锌锰准固态液流电池的氧化锰基正极及其半干法电极制造方法
CN116001332B (zh) * 2022-12-26 2024-05-10 江苏大学 固态隔膜的制造设备及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150004527A1 (en) * 2011-12-19 2015-01-01 National Research Council Of Canada Co-Extruded Ultra Thin Films
CN104715937A (zh) * 2014-11-07 2015-06-17 深圳市今朝时代新能源技术有限公司 一种叠层式电极的制备方法、炭膜及其制备方法
CN110211723A (zh) * 2019-05-28 2019-09-06 江苏大学 一种微米级厚度的疏水透气导电石墨膜及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150004527A1 (en) * 2011-12-19 2015-01-01 National Research Council Of Canada Co-Extruded Ultra Thin Films
CN104715937A (zh) * 2014-11-07 2015-06-17 深圳市今朝时代新能源技术有限公司 一种叠层式电极的制备方法、炭膜及其制备方法
CN110211723A (zh) * 2019-05-28 2019-09-06 江苏大学 一种微米级厚度的疏水透气导电石墨膜及其制造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021098215A1 (zh) * 2019-11-21 2021-05-27 江苏大学 一种高安全性高体积能量密度准固态锂离子电池及其制造方法
US11289737B2 (en) 2019-11-21 2022-03-29 Jiangsu University Pre-lithiated polyphenylene sulfide, polyphenylene sulfide-based solid electrolyte membrane, battery electrode sheet, quasi-solid-state lithium ion battery and method for manufacturing same
WO2021098820A1 (zh) * 2019-11-21 2021-05-27 江苏大学 预锂化聚苯硫醚、聚苯硫醚固态电解质膜、电池极片、准固态锂离子电池及其制造方法
CN111864272B (zh) * 2020-06-09 2022-04-26 江苏大学 一种高安全性高体积能量密度准固态锂离子电池及其制造方法
CN111864272A (zh) * 2020-06-09 2020-10-30 江苏大学 一种高安全性高体积能量密度准固态锂离子电池及其制造方法
CN112290081A (zh) * 2020-09-22 2021-01-29 江苏大学 高能量密度准固态钠离子电池的制造方法
CN112397770A (zh) * 2020-11-19 2021-02-23 华南理工大学 一种有机无机复合固态电解质制备方法及其电解质
CN116825941A (zh) * 2022-04-01 2023-09-29 江苏大学 锌锰准固态液流电池的氧化锰基正极及其半干法电极制造方法
CN116825941B (zh) * 2022-04-01 2024-04-09 江苏大学 锌锰准固态液流电池的氧化锰基正极及其半干法电极制造方法
CN116130672A (zh) * 2022-10-08 2023-05-16 江苏大学 锌锰准固态液流电池的锌粉负极及其半干法电极制造方法
CN116130672B (zh) * 2022-10-08 2024-05-14 江苏大学 锌锰准固态液流电池的锌粉负极及其半干法电极制造方法
CN116001332A (zh) * 2022-12-26 2023-04-25 江苏大学 固态隔膜的制造设备及方法
CN116001332B (zh) * 2022-12-26 2024-05-10 江苏大学 固态隔膜的制造设备及方法

Also Published As

Publication number Publication date
CN111004404B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN111004404B (zh) 利用功能化有机粉体制备的功能膜、低温无损伤制造方法及应用
Chen et al. Performance of through-hole anodic aluminum oxide membrane as a separator for lithium-ion battery
Bansal et al. Gelled membranes for Li and Li-ion batteries prepared by electrospinning
US20070020514A1 (en) Electrode for secondary battery
CN111864272B (zh) 一种高安全性高体积能量密度准固态锂离子电池及其制造方法
CN112909326B (zh) 一种干法制备的硫化物复合固体电解质及其制备方法
US20210155766A1 (en) Compositions and methods for electrode fabrication
US20230120595A1 (en) Composition, composite separator and preparation method therefor, and lithium ion battery
WO2014163986A1 (en) Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
Kim et al. Thermal, mechanical, and electrochemical stability enhancement of Al2O3 coated polypropylene/polyethylene/polypropylene separator via poly (vinylidene fluoride)-poly (ethoxylated pentaerythritol tetraacrylate) semi-interpenetrating network binder
US20200313191A1 (en) Compositions and methods for electrode fabrication
TW201836852A (zh) 聚烯烴微多孔膜
WO2022151734A1 (zh) 一种固态电解质及其制备方法和应用
KR20240054956A (ko) 건식 전극 필름을 포함하는 전기화학소자용 전극 및 이의 제조 방법
Lin et al. In-situ construction of tetraethylene glycol diacrylate based gel polymer electrolyte for long lifespan lithium metal batteries
US20210273290A1 (en) Method for producing a polymer composite material for an electrochemical cell by means of a swollen polymer
CN108878947B (zh) 降低电池组中发生短路和/或锂析出的方法
WO2013065478A1 (ja) リチウムイオン二次電池およびその製造方法
CN113991244A (zh) 一种孔径均一的聚偏氟乙烯隔膜材料的制备方法
EP3940818A1 (en) Method for producing all-solid-state battery
CN117059885A (zh) 一种固态电解质膜及其制备方法与应用
CN109494350B (zh) 一种电极、制备方法及锂离子电池
Xu et al. Chemically modified polyvinyl butyral polymer membrane as a gel electrolyte for lithium ion battery applications
CN108832179B (zh) 一种修饰聚合物基固体电解质膜的方法
CN114361452B (zh) 一种粘合剂、电极浆料及其制造方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221118

Address after: 212013 2803, Building 6, Zhongjian Daguantianxia, No. 88-8, Xuefu Road, Jingkou District, Zhenjiang City, Jiangsu Province

Patentee after: Jiangsu Zhenjiang gulina new energy technology partnership (L.P.)

Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301

Patentee before: JIANGSU University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221209

Address after: 523000 Room 1001, Building 3, No. 3, Zhuangyuan Road, Songshanhu Park, Dongguan, Guangdong

Patentee after: Dongguan Altron Energy Technology Co.,Ltd.

Address before: 212013 2803, Building 6, Zhongjian Daguantianxia, No. 88-8, Xuefu Road, Jingkou District, Zhenjiang City, Jiangsu Province

Patentee before: Jiangsu Zhenjiang gulina new energy technology partnership (L.P.)

TR01 Transfer of patent right