CN110965066B - 一种用于光生阴极保护的二硫化钼/二氧化锡/云母复合材料及其制备方法 - Google Patents

一种用于光生阴极保护的二硫化钼/二氧化锡/云母复合材料及其制备方法 Download PDF

Info

Publication number
CN110965066B
CN110965066B CN201911155970.8A CN201911155970A CN110965066B CN 110965066 B CN110965066 B CN 110965066B CN 201911155970 A CN201911155970 A CN 201911155970A CN 110965066 B CN110965066 B CN 110965066B
Authority
CN
China
Prior art keywords
mica
tin dioxide
composite material
molybdenum disulfide
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911155970.8A
Other languages
English (en)
Other versions
CN110965066A (zh
Inventor
姚超
王培君
左士祥
严向玉
李霞章
刘文杰
吴凤芹
王灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Nano Materials S&t Co ltd
Original Assignee
Changzhou Nano Materials S&t Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Nano Materials S&t Co ltd filed Critical Changzhou Nano Materials S&t Co ltd
Priority to CN201911155970.8A priority Critical patent/CN110965066B/zh
Publication of CN110965066A publication Critical patent/CN110965066A/zh
Application granted granted Critical
Publication of CN110965066B publication Critical patent/CN110965066B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic

Abstract

本发明属于光阴极保护材料领域,具体涉及一种用于光生阴极保护的二硫化钼/二氧化锡/云母复合材料及其制备方法。本发明以云母和五水合四氯化锡为原料,通过静电吸附法将二氧化锡粒子负载在云母片上;然后以钼酸钠和硫代乙酰胺为原料通过一步水热法使二硫化钼原位生长于负载在云母片上的二氧化锡粒子缝隙中,得到具有特殊型貌的二硫化钼/二氧化锡/云母复合材料,该结构不仅能大幅提高了复合材料的比表面积,而且该独特型貌有利于二硫化钼活性位点的暴露,能极大的增强导电速率,更有效防止了复合材料的光生电子与空穴的复合。在光生阴极保护上具有显著的应用效果。

Description

一种用于光生阴极保护的二硫化钼/二氧化锡/云母复合材料 及其制备方法
技术领域
本发明属于光阴极保护材料领域,具体涉及一种用于光生阴极保护的二硫化钼/二氧化锡/云母复合材料的制备方法。
背景技术
金属材料的腐蚀给全世界带来巨大的经济损失,每年因腐蚀造成的损失约是地震、水灾、台风等自然灾害损失总和的6倍。因此金属腐蚀与防护技术一直是国内外学者研究的热点,环境友好、高性能和长效防腐技术也是当今科学家的主要目标。金属的腐蚀与防护主要技术有表面处理与涂层技术、缓蚀剂技术、阴极保护技术。光致阴极保护是一种新型的阴极保护技术,有不牺牲阳极、不消耗电能、价格低廉等优点,因此成为金属腐蚀与防护领域的研究热点。
二氧化锡是一种优秀的透明半导体材料,具有良好的稳定性和导电性,在光阴极防护领域被广泛应用。但其禁带宽度较大,对可见光的利用效率不高,而且受激发产生的光生电子容易与空穴复合,因此需要对其改性以提高其光响应范围和电子分离效率。
发明内容
本发明提供了一种用于光生阴极保护的复合材料,即一种二硫化钼/二氧化锡/云母复合材料。本发明还提供了上述二硫化钼/二氧化锡/云母复合材料的制备方法如下:首先,以云母和五水合四氯化锡为原料,通过静电吸附法将二氧化锡粒子负载在云母片上;然后以钼酸钠和硫代乙酰胺为原料通过一步水热法使二硫化钼原位生长于负载在云母片上的二氧化锡粒子缝隙中,得到二硫化钼/二氧化锡/云母复合材料。
具体操作步骤为:
1、将云母分散于去离子水中,搅拌加热至70~80℃,调节pH值至2~3,同时缓慢加入五水合四氯化锡溶液和氢氧化钠溶液,使pH值保持在2~3左右,在70~80℃下持续搅拌1~3h,待冷却至室温后,抽滤洗涤至中性,洗涤后的样品在60~80℃下干燥,并于500~700℃下煅烧,即得二氧化锡/云母复合材料,
其中,云母分散液的质量浓度为150~250g/L,五水合四氯化锡溶液的质量浓度为200~400g/L,氢氧化钠溶液的摩尔浓度为3~5mol/L,所生成的氧化锡与云母的质量比为1~4:2;
使保持pH在2-3之间是为了保证pH在云母和氧化锡的等电点之间,两者一个带正电一个带负电,才能保证氧化锡成功负载在云母片上。
2、将钼酸钠与硫代乙酰胺分散于去离子水中,将步骤1所制得的二氧化锡/云母复合材料加入其中,充分搅拌后,在200~240℃条件下水热反应12~36h,待冷却至室温后抽滤,滤饼经洗涤后在60~80℃下干燥,即得二硫化钼/二氧化锡/云母复合材料,
其中,钼酸钠与硫代乙酰胺的质量比为1:2,所生成的二硫化钼与二氧化锡/云母复合材料的总质量比为1~2:1。
本发明以云母为载体,二氧化锡粒子在云母片层上均匀负载,二硫化钼能够生长于二氧化锡粒子间隙中,首次得到具有特殊型貌的二硫化钼/二氧化锡/云母复合材料,制备了具有特殊型貌的二硫化钼/二氧化锡/云母复合材料,其独特的型貌在以往的材料中是没有出现过的,这种独特型貌有利于二硫化钼活性位点的暴露,能极大的增强导电速率。
本发明的有益效果:
1、本发明引入了二硫化钼这一禁带宽度小的半导体材料,与二氧化锡形成异质结,提高了复合材料的可见光响应范围。
2、本发明以云母为载体,二氧化锡粒子在云母片层上均匀负载,使二硫化钼片层能够生长于二氧化锡粒子间隙中,得到具有特殊型貌的二硫化钼/二氧化锡/云母复合材料,大幅提高了复合材料的比表面积,这种独特型貌有利于二硫化钼电化学活性位点的暴露,能极大的增强导电速率,该结构更有效防止了复合材料的光生电子与空穴的复合。
3、云母的片层结构有良好的阻隔效果,能有效防止金属材料与腐蚀介质接触,协同提高防腐性能。
附图说明
图1为实施例1所制备的二硫化钼/二氧化锡/云母复合材料X-射线衍射图;
图2为实施例1所制备的二硫化钼/二氧化锡/云母复合材料扫描电镜图;
图3为实施例1和对比例1、对比例2和对比例3中所制得的材料的光电流-时间曲线对比图。
具体实施方式
实施例1
1、取200g云母分散于1L去离子水中,搅拌中加热至75℃,调节pH至2.5,向分散液中逐滴加入五水合四氯化锡溶液(1.55L,300g/L),同时加入氢氧化钠溶液(4mol/L)保持混合液pH在2.5,在75℃下继续搅拌2h,待冷却至室温后,抽滤洗涤至中性,洗涤后的样品在70℃下干燥,并于600℃下煅烧,即得二氧化锡/云母复合材料;
2、将270mg钼酸钠、540mg硫代乙酰胺和120mg步骤1中制得的二氧化锡/云母复合材料加入到60mL去离子水中,搅拌均匀后装入水热釜,将水热釜移入烘箱,在220℃的条件下水热反应24h,待冷却至室温后抽滤,滤饼经洗涤后在70℃下干燥,即得二硫化钼/二氧化锡/云母复合材料。
实施例2
1、取150g云母分散于1L去离子水中,搅拌中加热至70℃,调节pH至2,向分散液中逐滴加入五水合四氯化锡溶液(0.875L,200g/L),同时加入氢氧化钠溶液(3mol/L)保持混合液pH在2,在70℃下继续搅拌1h,待冷却至室温后,抽滤洗涤至中性,洗涤后的样品在60℃下干燥,并于500℃下煅烧,即得二氧化锡/云母复合材料;
2、将180mg钼酸钠、360mg硫代乙酰胺和120mg步骤1中制得的二氧化锡/云母复合材料加入到60mL去离子水中,搅拌均匀后装入水热釜,将水热釜移入烘箱,在200℃的条件下水热反应12h,待冷却至室温后抽滤,滤饼经洗涤后在60℃下干燥,即得二硫化钼/二氧化锡/云母复合材料。
实施例3
1、取250g云母分散于1L去离子水中,搅拌中加热至80℃,调节pH至3,向分散液中逐滴加入五水合四氯化锡溶液(2.9L,400g/L),同时加入氢氧化钠溶液(5mol/L)保持混合液pH在3,在80℃下继续搅拌3h,待冷却至室温后,抽滤洗涤至中性,洗涤后的样品在80℃下干燥,并于700℃下煅烧,即得二氧化锡/云母复合材料;
2、将360mg钼酸钠、720mg硫代乙酰胺和120mg步骤1中制得的二氧化锡/云母复合材料加入到60mL去离子水中,搅拌均匀后装入水热釜,将水热釜移入烘箱,在240℃的条件下水热反应36h,待冷却至室温后抽滤,滤饼经洗涤后在80℃下干燥,即得二硫化钼/二氧化锡/云母复合材料。
对比例1
去掉实施例1中加入云母的操作,其他操作与实施例1相同:
1、搅拌状态下,向五水合四氯化锡溶液(1.55L,300g/L)中逐滴加入氢氧化钠溶液(4mol/L),直至混合液pH为2.5,在75℃下继续搅拌2h,待冷却至室温后,抽滤洗涤至中性,洗涤后的样品在70℃下干燥,并于600℃下煅烧,即得二氧化锡;
2、将270mg钼酸钠、540mg硫代乙酰胺和120mg步骤1中制得的二氧化锡加入到60mL去离子水中,搅拌均匀后装入水热釜,将水热釜移入烘箱,在220℃的条件下水热反应24h,待冷却至室温后抽滤,滤饼经洗涤后在70℃下干燥,即得二硫化钼/二氧化锡复合材料。
对比例2
去掉实施例1中生长二硫化钼的操作,其他操作与实施例1相同:
1、取200g云母分散于1L去离子水中,搅拌中加热至75℃,调节pH至2.5,向分散液中逐滴加入五水合四氯化锡溶液(1.55L,300g/L),同时加入氢氧化钠溶液(4mol/L)保持混合液pH在2.5,在75℃下继续搅拌2h,待冷却至室温后,抽滤洗涤至中性,洗涤后的样品在70℃下干燥,并于600℃下煅烧,即得二氧化锡/云母复合材料。
对比例3
把实施例1中生长二硫化钼的操作改为生长二氧化钛,其他操作与实施例1相同:
1、取200g云母分散于1L去离子水中,搅拌中加热至75℃,调节pH至2.5,向分散液中逐滴加入五水合四氯化锡溶液(1.55L,300g/L),同时加入氢氧化钠溶液(4mol/L)保持混合液pH在2.5,在75℃下继续搅拌2h,待冷却至室温后,抽滤洗涤至中性,洗涤后的样品在70℃下干燥,并于600℃下煅烧,即得二氧化锡/云母复合材料;
2、将1mL四氯化钛溶液(3.75mol/mL)和120mg步骤1中制得的二氧化锡/云母复合材料加入到60mL去离子水中,搅拌均匀后装入水热釜,将水热釜移入烘箱,在220℃的条件下水热反应24h,待冷却至室温后抽滤,滤饼经洗涤后在70℃下干燥,即得二氧化钛/二氧化锡/云母复合材料。
对比例4
对比例4与实施例1相比,区别在于:先制备得二硫化钼/云母复合材料,然后再制备得二氧化锡/二硫化钼/云母复合材料。
1、将270mg钼酸钠、540mg硫代乙酰胺和120mg云母加入到60mL去离子水中,搅拌均匀后装入水热釜,将水热釜移入烘箱,在220℃的条件下水热反应24h,待冷却至室温后抽滤,滤饼经洗涤后在70℃下干燥,即得二硫化钼/云母复合材料。
2、将200mg二硫化钼/云母复合材料分散于100mL去离子水中,搅拌中加热至75℃,调节pH至2.5,向分散液中逐滴加入五水合四氯化锡溶液(1.55mL,300g/L),同时加入氢氧化钠溶液(4mol/L)保持混合液pH在2.5,在75℃下继续搅拌2h,待冷却至室温后,抽滤洗涤至中性,洗涤后的样品在70℃下干燥,并于600℃下煅烧,即得二氧化锡/二硫化钼/云母复合材料。
在上述对比实验中,先反应得到得到二硫化钼/云母复合材料,由于硫化钼和导电云母先反应,两个片状物不能形成有序且规律的结构,无法有效的结合在一起的。再在其基础上反应得二氧化锡,氧化锡会将硫化钼包住,不利于硫化钼活性位点暴露,该复合材料虽然与实施例1具有相同成分的复合材料,但由于其无法形成本发明的特殊结构,最终制备的复合材料效果很差,仅和对比例1效果等同。
图1的X-射线衍射图中可以看出,本发明所制备的复合材料是二硫化钼/二氧化锡/云母复合材料。
图2扫描电镜图中可以看出,本发明所制备的复合材料中二硫化钼、二氧化锡与云母形成了独特的型貌,二硫化钼与二氧化锡形成了异质结并且均匀的负载在云母片层上,这种结构改善了二氧化锡易团聚的缺点,极大地增大了复合材料的比表面积。
防腐性能测试:取50mg实施例1、对比例1和对比例2,对比例3所制备的材料,于1mL水中充分超声分散,然后取50μL分散液均匀涂覆于面积为1cm2的圆形304不锈钢电极上,待其自然风干后,将该电极浸没在溶质质量分数为3.5%的氯化钠溶液中,并以饱和甘汞电极为参比电极,以铂丝电极为辅助电极,以350W氙灯为光源,在CHI 660D型电化学工作站上测试其光电流-时间曲线。
由图3可以看出,光照时,材料中的光电流密度迅速增加,此时产生了大量的电子和空穴,光照停止后电流回到初始值附近,与对比例1、对比例2和对比例3相比,实施例1所制备的二硫化钼/二氧化锡/云母复合材料在光照条件下的光电流密度明显提高,表明其更高的光电转化效率。

Claims (5)

1.一种二硫化钼/二氧化锡/云母复合材料作为光生阴极保护材料在金属防腐中的应用,其特征在于,二硫化钼/二氧化锡/云母复合材料的具体制备步骤包括:
(1)将云母分散于去离子水中,得云母分散液,搅拌加热,调节pH值为2~3,向分散液中加入五水合四氯化锡溶液和氢氧化钠溶液,保持pH值,保温搅拌一段时间,待冷却至室温后抽滤,洗涤,干燥,煅烧,即得二氧化锡/云母复合材料,其中二氧化锡粒子均匀负载在云母片上;
(2)将钼酸钠、硫代乙酰胺和步骤(1)所制得的二氧化锡/云母复合材料分散于去离子水中,充分搅拌后装入水热釜,进行水热反应,水热反应是在200~240℃条件下水热反应12~36h,使二硫化钼生长于二氧化锡粒子间隙中,得到特殊型貌的二硫化钼/二氧化锡/云母复合材料。
2.根据权利要求1所述的二硫化钼/二氧化锡/云母复合材料作为光生阴极保护材料在金属防腐中的应用,其特征在于:所述步骤(1)中搅拌加热至70~80℃,煅烧温度为500~700℃。
3.根据权利要求1所述的二硫化钼/二氧化锡/云母复合材料作为光生阴极保护材料在金属防腐中的应用,其特征在于:所述步骤(1)中云母分散液的质量浓度为150~250g/L,五水合四氯化锡溶液的质量浓度为200~400g/L。
4.根据权利要求1所述的二硫化钼/二氧化锡/云母复合材料作为光生阴极保护材料在金属防腐中的应用,其特征在于:所述步骤(1)生成的氧化锡与云母的质量比为1~4:2。
5.根据权利要求1所述的二硫化钼/二氧化锡/云母复合材料作为光生阴极保护材料在金属防腐中的应用,其特征在于:所述步骤(2)钼酸钠与硫代乙酰胺的质量比为1:2,所生成的二硫化钼与二氧化锡/云母复合材料的总质量比为1~2:1。
CN201911155970.8A 2019-11-22 2019-11-22 一种用于光生阴极保护的二硫化钼/二氧化锡/云母复合材料及其制备方法 Active CN110965066B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911155970.8A CN110965066B (zh) 2019-11-22 2019-11-22 一种用于光生阴极保护的二硫化钼/二氧化锡/云母复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911155970.8A CN110965066B (zh) 2019-11-22 2019-11-22 一种用于光生阴极保护的二硫化钼/二氧化锡/云母复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110965066A CN110965066A (zh) 2020-04-07
CN110965066B true CN110965066B (zh) 2022-04-26

Family

ID=70031321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911155970.8A Active CN110965066B (zh) 2019-11-22 2019-11-22 一种用于光生阴极保护的二硫化钼/二氧化锡/云母复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110965066B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3701724A (en) * 1968-10-18 1972-10-31 Ici Ltd Electrodes for electrochemical processes
CN103205760A (zh) * 2013-04-27 2013-07-17 厦门大学 用于光生阴极保护的Ag2S/TiO2复合膜光阳极的制备方法
CN105688944A (zh) * 2016-03-14 2016-06-22 西安建筑科技大学 一种层状MoS2-SnO2纳米复合材料的制备方法
CN106011872A (zh) * 2016-06-06 2016-10-12 中国科学院海洋研究所 一种用于光生阴极保护的N719/TiO2/FTO复合薄膜光阳极的制备方法
CN106268907A (zh) * 2016-08-15 2017-01-04 南京工业大学 一种二维导电云母负载氮化碳光催化材料及其制备方法
CN108359994A (zh) * 2018-03-08 2018-08-03 常州大学 一种以导电云母为载体的一维纳米二氧化钛光阴极保护复合材料的制备方法
CN110042452A (zh) * 2019-04-23 2019-07-23 滨州学院 一种光阳极复合膜、其制备方法及其用途

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952708B (zh) * 2014-04-10 2016-03-23 中国科学院海洋研究所 用于光生阴极保护的Ag/SnO2/TiO2复合膜光阳极的制备方法
CN104047043B (zh) * 2014-06-27 2016-08-31 厦门大学 TiO2/SnO2半导体双层复合膜光阳极的制备方法
CN110459548B (zh) * 2018-05-08 2021-05-28 南京大学 一种基于范德瓦尔斯异质结的光电探测器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3701724A (en) * 1968-10-18 1972-10-31 Ici Ltd Electrodes for electrochemical processes
CN103205760A (zh) * 2013-04-27 2013-07-17 厦门大学 用于光生阴极保护的Ag2S/TiO2复合膜光阳极的制备方法
CN105688944A (zh) * 2016-03-14 2016-06-22 西安建筑科技大学 一种层状MoS2-SnO2纳米复合材料的制备方法
CN106011872A (zh) * 2016-06-06 2016-10-12 中国科学院海洋研究所 一种用于光生阴极保护的N719/TiO2/FTO复合薄膜光阳极的制备方法
CN106268907A (zh) * 2016-08-15 2017-01-04 南京工业大学 一种二维导电云母负载氮化碳光催化材料及其制备方法
CN108359994A (zh) * 2018-03-08 2018-08-03 常州大学 一种以导电云母为载体的一维纳米二氧化钛光阴极保护复合材料的制备方法
CN110042452A (zh) * 2019-04-23 2019-07-23 滨州学院 一种光阳极复合膜、其制备方法及其用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The Applicability of SnO2 Coatings for Corrosion Protection of Metals;Raghavan Subasri and Tadashi Shinohara;《Electrochemical and Solid-State Letters》;20040426;B17-B20 *

Also Published As

Publication number Publication date
CN110965066A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
CN107887592B (zh) 碳包覆ZnO纳米线及其制备方法和应用
CN109402656B (zh) 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法
CN106350830B (zh) 一种TiO2/C3N4/CQDs复合光阳极及其制备方法
CN110344029B (zh) 一种表面羟基化氧化铁薄膜光阳极材料的制备方法
CN110655656A (zh) 一种钴金属有机框架材料及其制备方法和应用
CN111261413B (zh) 一种Ti掺杂α-Fe2O3纳米棒复合MOFs异质结光阳极及其制备方法与应用
CN109876867A (zh) 一种双金属-有机骨架/钒酸铋复合光电阳极材料的制备方法
CN111146004A (zh) 一种金属羟基氧化物复合B-BiVO4光电阳极及其制备方法
CN108314085B (zh) 三氧化钨纳米片复合光阳极的制备方法
Zhao et al. A WO3/Ag–Bi oxygen-evolution catalyst for splitting water under mild conditions
CN110165204A (zh) 一种金属-有机框架材料包覆三元正极材料及其制备方法
CN110965073B (zh) 一种含缺陷的wo3光电极的制备方法
CN110512264B (zh) 一种光电极的制备方法
CN110205638B (zh) 一种Z型CuBi2O4/SnO2光电阴极薄膜及其制备方法和应用
CN109881198B (zh) 二氧化锡/五氧化二钒核壳结构的多色电致变色薄膜的制备方法
CN110586164A (zh) 一种g-C3N4/rGO/ZnS光催化剂的制备及在光电化学阴极保护方面的应用
CN108359994B (zh) 一种以导电云母为载体的一维纳米二氧化钛光阴极保护复合材料的制备方法
CN110965066B (zh) 一种用于光生阴极保护的二硫化钼/二氧化锡/云母复合材料及其制备方法
CN102145916A (zh) 一种Sn3O4纳米粉体的制备方法
CN109585054A (zh) 绿色溶剂替换法干燥的导电碳浆应用于钙钛矿太阳能电池
CN113502513A (zh) 一种利用太阳能直接沉积铜金属的方法
CN113481546A (zh) 一种氧化锌/硫化锌复合薄膜光电极及太阳能光致沉积贵金属的回收装置
CN110898858B (zh) 一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法
CN109402661B (zh) MIL-100(Fe)/TiO2复合光电极的制备方法及其应用
US20230203675A1 (en) Hydrogen evolution electrode and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant