CN110964786B - Rapid constant-temperature detection method, primer group and kit for cronobacter sakazakii - Google Patents

Rapid constant-temperature detection method, primer group and kit for cronobacter sakazakii Download PDF

Info

Publication number
CN110964786B
CN110964786B CN202010004054.0A CN202010004054A CN110964786B CN 110964786 B CN110964786 B CN 110964786B CN 202010004054 A CN202010004054 A CN 202010004054A CN 110964786 B CN110964786 B CN 110964786B
Authority
CN
China
Prior art keywords
primer
cronobacter sakazakii
seq
upstream
genome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010004054.0A
Other languages
Chinese (zh)
Other versions
CN110964786A (en
Inventor
曹永梅
李园园
李雪玲
刘伟
韦朝春
陆长德
李亦学
贾犇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI INDUSTRIAL TECHNOLOGY INSTITUTE
Shanghai Wangwang Food Group Co ltd
Original Assignee
SHANGHAI INDUSTRIAL TECHNOLOGY INSTITUTE
Shanghai Wangwang Food Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI INDUSTRIAL TECHNOLOGY INSTITUTE, Shanghai Wangwang Food Group Co ltd filed Critical SHANGHAI INDUSTRIAL TECHNOLOGY INSTITUTE
Publication of CN110964786A publication Critical patent/CN110964786A/en
Application granted granted Critical
Publication of CN110964786B publication Critical patent/CN110964786B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

The invention discloses a rapid constant-temperature detection method, a primer group and a kit for cronobacter sakazakii. The method comprises the following steps: extracting genome DNA from a sample to be detected; performing constant-temperature amplification reaction in an enzyme reaction system by using the genome DNA as a template and a primer group capable of amplifying a specific sequence of Cronobacter sakazakii as a primer; and determining whether the sample to be detected has cronobacter sakazakii or not by judging whether the reaction result is positive or not. The detection method has the advantages of high sensitivity and high specificity, short detection time, simple result judgment, convenient operation, low cost and wide application prospect.

Description

Rapid constant-temperature detection method, primer group and kit for cronobacter sakazakii
The application is filed on 2016, 8, 30, and has the application number of 201610767389.1 and the name of the invention: the divisional application of the Chinese invention patent application of 'method, primer and application for rapid constant temperature detection of Cronobacter sakazakii'; the parent application claims the priority of the Chinese patent application with the application date of 2015, 9 and 2, the application number of 201510556917.4, named as 'method, primer and kit for rapid isothermal detection of cronobacter sakazakii'.
Technical Field
The invention belongs to the technical field of biology, and particularly relates to a method, primers and a kit for rapidly detecting cronobacter sakazakii at a constant temperature.
Background
Sakazakii (Cronobacter sakazakii) is a gram-negative, peritrichous, motile, sporular facultative anaerobic bacterium, named as atypical flavochrome-producing enterobacter cloacae before 1980, which was named enterobacter sakazakii after 1980, and reclassified in 2008, and classified as Cronobacter sakazakii of enterobacteriaceae. The cronobacter sakazakii is widely existed in the natural world, is an important conditioned pathogen which harms the health of infants through the formula powder, can cause serious clinical symptoms of the infants, such as cerebral abscess, meningitis, necrotizing enterocolitis, systemic septicemia and the like, and has the lethality rate of 40-80%. Both newborn infants and premature infants are at risk of infection with cronobacter sakazakii strains by consumption of infant formula contaminated with cronobacter sakazakii. Compared with other food-borne pathogenic microorganisms, the cronobacter sakazakii has a low infection rate but has a high mortality rate for special people, and the host and the propagation model of the cronobacter sakazakii are not clear yet. Therefore, it is particularly important to prevent and detect the bacteria.
At present, the detection method for cronobacter sakazakii at home and abroad still uses a conventional culture method as a standard, but the detection period is longer (up to 5-7 days), the operation is relatively complex, the detection efficiency is lower, and the requirements of modern society on high flux, high sensitivity, high specificity, rapidness and convenience in the detection process of food-borne pathogenic bacteria are difficult to meet. Researchers developed detection means of PCR and fluorescence PCR technologies successively, and the detection means is also brought into the industry standard of 'detection method of Cronobacter sakazakii in milk powder' in China, but the two methods need special detection instruments, and therefore, the method is not suitable for being widely applied to basic detection departments, particularly real-time field detection in enterprise production lines.
Loop-mediated isothermal amplification (LAMP) is a novel isothermal Nucleic acid amplification method developed in recent years, which designs 4 specific primers (including upstream and downstream outer primers F3 and B3, and upstream and downstream inner primers FIP and BIP, wherein FIP is composed of F1C and F2, and BIP is composed of B1C and B2) for 6 regions of a target sequence, and completes the Nucleic acid amplification reaction by incubating for about 60min at an isothermal condition, and generates a visible reaction by-product, white magnesium pyrophosphate precipitate (see Notomi T, Oyayaama H, Masubuchi H, Yonekawa T, Watanabe K, Nuino N, Hase T. loop-mediated isothermal amplification (8512, 2000, 63). The technology can be completed at a constant temperature without a PCR instrument or a fluorescent quantitative PCR instrument, can judge the reaction result by naked eyes, and has the advantages of high sensitivity, strong specificity, short reaction time, convenient operation, low cost and the like.
Primer design is the most critical step in LAMP technology, and the conventional method is to introduce the acknowledged specific gene of a certain organism to be detected into an online website (http:// primer explorer. jp/e) designed by LAMP primers, and set relevant parameters to generate a primer group. That is, the user must first ensure that the target gene is a specific sequence of the species to be tested. Taking the invention patents ZL201010614700.1 and CN 101319249B as examples, the OmpA gene and the 18S rDNA sequence, which are specific genes of Cronobacter sakazakii and are reported in the literature, are respectively used for detecting the Cronobacter sakazakii by adopting LAMP technology. However, the so-called "recognized specific gene" is often based on the knowledge of hysteresis and is not necessarily updated based on the ever-increasing genome data of microorganisms, so that a primer obtained based on the sequence of the target gene is not necessarily able to ensure its specificity in practical use. The present invention, as shown in Table 1, shows the problems of insufficient primer specificity and unsuitability of versatility in the prior art. That is, the cronobacter sakazakii detection sequence used in the prior art method is not actually specific to cronobacter sakazakii, that is, it is possible that cronobacter sakazakii is erroneously identified as cronobacter sakazakii. Meanwhile, the cronobacter sakazakii detection sequence used in the prior art method is not common to cronobacter sakazakii, that is, there is a possibility that a part of strains of cronobacter sakazakii is missed. Therefore, a cronobacter sakazakii detection method capable of ensuring specificity and universality is urgently needed in the industry, and meanwhile, the requirements of the primary detection department on rapidness and convenience are met, and real-time field detection can be conveniently carried out in an enterprise production line. In order to ensure the safety of food, a rapid, simple and accurate method for detecting cronobacter sakazakii in the food is urgently needed.
Disclosure of Invention
The invention aims to overcome the defects of insufficient primer universality and specificity in the primer design of the prior LAMP technology, fully utilizes abundant microbial genome sequence information in the current public data resources and corresponding sequence analysis tools, designs a primer group for specifically identifying the cronobacter sakazakii, and forms a high-sensitivity and high-specificity detection kit on the basis. The invention provides a method, a primer group and a kit for detecting cronobacter sakazakii by rapid isothermal amplification, which are used for designing cronobacter sakazakii LAMP primers based on microbial genome data resources (data 8/5/8/2013) in a GenBank database. The detection method for detecting the cronobacter sakazakii has the advantages of high sensitivity and specificity, short detection time, simple result judgment, convenient operation and low cost.
The invention provides a method for rapidly detecting cronobacter sakazakii strains, which comprises the following steps:
(1) extracting genome DNA from a sample to be detected;
(2) carrying out constant-temperature amplification reaction in an enzyme reaction system by taking the genome DNA as a template and a primer group capable of amplifying the specific base sequence of the Cronobacter sakazakii genome as a primer;
(3) and determining whether the sample to be detected has cronobacter sakazakii or not by judging whether the reaction result is positive or not.
The method for detecting the cronobacter sakazakii strain at constant temperature extracts genome DNA from a sample to be detected, takes the genome DNA as a template and takes a cronobacter sakazakii specific amplification primer group as a primer to carry out constant temperature amplification reaction, and then determines whether the cronobacter sakazakii exists in the sample to be detected or not by judging whether the reaction result is positive or not. Wherein, the enzyme reaction system includes but is not limited to a DNA polymerase reaction system.
In the invention, the genome specific alkali sequence of the cronobacter sakazakii is the sequence of 1080296-1081222 bp bits of the cronobacter sakazakii with the GI number of 156932229.
In the present invention, the primer set capable of amplifying the nucleotide sequence specific to the Cronobacter sakazakii genome is a part of the nucleotide sequence of 1080296 to 1081222bp of the genome (GI No. 156932229) or a part of the complementary strand thereof. Wherein the sakazakii genome-specific nucleotide sequence is a nucleotide sequence unique to the sakazakii genome, and is not contained in the genome of another microorganism.
Wherein the primer set capable of amplifying the specific nucleotide sequence of the Cronobacter sakazakii genome includes, but is not limited to, any one selected from the following primer sets A to D, or any one selected from the primer sets having a homology of 50% or more with a single sequence in the sequence of the primer set or the complementary strand sequence thereof.
Primer set a:
upstream outer primer F3_ a: 5'-GGCGGGTTTATACTGGAT-3' (SEQ ID NO: 1);
downstream outer primer B3_ a: 5'-CACTGAAATGTCACAAGCTA-3' (SEQ ID NO: 2);
upstream inner primer FIP _ a: 5'-CGGCGTATCTAAATCAAATGCCCTTAGCCCAACACGATTC-3' (SEQ ID NO: 3);
the downstream inner primer BIP _ A: 5'-GCGACGTTATCTAATATTGTAAGGCGCCAGAAACCAAATCATTG-3' (SEQ ID NO: 4);
primer set B:
upstream outer primer F3_ B: 5'-ATAGTGTTTTGTTTTCCGGG-3' (SEQ ID NO: 5);
downstream outer primer B3_ B: 5'-ACGAGGGTAAAGGACAAA-3' (SEQ ID NO: 6);
upstream inner primer FIP _ B: 5'-GCTTCAGTTTGGTTGATGGGAAAAGAAGTGGTAAGGAAGCT-3' (SEQ ID NO: 7);
the downstream inner primer BIP _ B: 5'-TTTCTCCGTGACAGTGAATACGAAACTGCCAGTGAAGTGA-3' (SEQ ID NO: 8);
primer set C:
the upstream outer primer F3_ C: 5'-GGATCATGGAGCAATTTCC-3' (SEQ ID NO: 9);
downstream outer primer B3 — C: 5'-TCATTTTCGCACAAAGCC-3' (SEQ ID NO: 10);
upstream inner primer FIP _ C: 5'-AAGAACCAGACTGGCGTAACTTTTTCAGTCCTTTCTCCG-3' (SEQ ID NO: 11);
a downstream inner primer BIP _ C: 5'-CCCTCGTAAGTAGCGAATTTAGCCGATTTCCTTGAAGCAGTG-3' (SEQ ID NO: 12);
primer set D:
upstream outer primer F3_ D: 5'-GCGAATTTAGCACCCAAA-3' (SEQ ID NO: 13);
downstream outer primer B3_ D: 5'-GGACATCAGCAAACCTTC-3' (SEQ ID NO: 14);
upstream inner primer FIP _ D: 5'-GACGCAGGCTATTCATTTTCGTTTTGACCATTTACCACTGC-3' (SEQ ID NO: 15);
the downstream inner primer BIP _ D: 5'-CATAGTTCAAAAAGCCTGTGTCAAGAGCTGATACTGCTACTGC-3' (SEQ ID NO: 16).
In the present invention, the primer set capable of amplifying the specific nucleotide sequence of the cronobacter sakazakii genome may further include a primer set having a homology of 50% or more with a single sequence in each of the aforementioned primer set sequences or the complementary strand sequences thereof, and the primer set includes, but is not limited to, any one of the following primer sets E to H:
primer set E:
the upstream outer primer F3_ E: 5'-GGCGGGTTTATACTGGAT-3' (SEQ ID NO: 17);
downstream outer primer B3_ E: 5'-TCAATGGCACTGAAATGTC-3' (SEQ ID NO: 18) (60% homology to primer B3_ A5 '-CACTGAAATGTCACAAGCTA-3');
upstream inner primer FIP _ E: 5'-CGGCGTATCTAAATCAAATGCCCTTAGCCCAACACGATTC-3' (SEQ ID NO: 19);
the downstream inner primer BIP _ E: 5'-GCGACGTTATCTAATATTGTAAGGCGAGCAATAGCCAGAAACC-3' (SEQ ID NO: 20);
a primer set F:
upstream outer primer F3 — F: 5'-TACCCTCGTAAGTAGCGA-3' (SEQ ID NO: 21) (50% homology to the complementary strand 5'-TTTGTCCTTTACCCTCGT-3' of primer B3_ B);
downstream outer primer B3 — F: 5'-GGACATCAGCAAACCTTC-3' (SEQ ID NO: 22);
upstream inner primer FIP _ F: 5'-CGCACAAAGCCAATTTCGATTTTAGCACCCAAATTTTGACC-3' (SEQ ID NO: 23);
the downstream inner primer BIP _ F: 5'-CATAGTTCAAAAAGCCTGTGTCAAGAGCTGATACTGCTACTGC-3' (SEQ ID NO: 24);
primer set G:
upstream outer primer F3_ G: 5'-AGCAATTTCCCATCAACC-3' (SEQ ID NO: 25) (homology 52.6% to primer F3_ C5 '-GGATCATGGAGCAATTTCC-3');
downstream outer primer B3_ G: 5'-GGGTGCTAAATTCGCTAC-3' (SEQ ID NO: 26);
upstream inner primer FIP _ G: 5'-AAGAACCAGACTGGCGTAACTGAAGCCATTTTTCAGTCC-3' (SEQ ID NO: 27);
the downstream inner primer BIP _ G: 5'-CCGTTTTTAATGTCACTTCACTGGTACGAGGGTAAAGGACAAA-3' (SEQ ID NO: 28);
a primer set H:
upstream outer primer F3 — H: 5'-ATAGTGTTTTGTTTTCCGGG-3' (SEQ ID NO: 29);
downstream outer primer B3 — H: 5'-ATGGTCAAAATTTGGGTGC-3' (SEQ ID NO: 30) (50% homology to the complementary strand 5'-TTTGGGTGCTAAATTCGC-3' of primer F3_ D);
upstream inner primer FIP _ H: 5'-GAGAAAGGACTGAAAAATGGCTTCTAAGGAAGCTCTGGGGAT-3' (SEQ ID NO: 31);
the downstream inner primer BIP _ H: 5'-CCAGTCTGGTTCTTCCGTTTACGAGGGTAAAGGACAAA-3' (SEQ ID NO: 32).
In the method of the present invention, the primer set capable of amplifying the genomic specific nucleotide sequence of cronobacter sakazakii may or may not contain a loop primer. The loop primer may be one or more, including primers LF and/or LB. The primer group capable of amplifying the specific base sequence of the cronobacter sakazakii genome is selected from any one of the following primer groups A ', B ', E ', G ' and H '; or any one selected from the group consisting of primer sets having a homology of 50% or more with respect to a single sequence in the sequences of the primer sets A ', B ', E ', G ', H ' or the complementary strand sequences thereof:
a primer set A':
upstream outer primer F3_ a: 5'-GGCGGGTTTATACTGGAT-3', respectively;
downstream outer primer B3_ a: 5'-CACTGAAATGTCACAAGCTA-3', respectively;
upstream inner primer FIP _ A: 5'-CGGCGTATCTAAATCAAATGCCCTTAGCCCAACACGATTC-3', respectively;
the downstream inner primer BIP _ A:
5’-GCGACGTTATCTAATATTGTAAGGCGCCAGAAACCAAATCATTG-3’;
upstream loop primer LF _ a: 5'-TAAGGCAGCGAAGATACAGC-3' (SEQ ID NO: 33);
a primer set B':
upstream outer primer F3_ B: 5'-ATAGTGTTTTGTTTTCCGGG-3';
downstream outer primer B3_ B: 5'-ACGAGGGTAAAGGACAAA-3', respectively;
an upstream inner primer FIP _ B: 5'-GCTTCAGTTTGGTTGATGGGAAAAGAAGTGGTAAGGAAGCT-3', respectively;
the downstream inner primer BIP _ B: 5'-TTTCTCCGTGACAGTGAATACGAAACTGCCAGTGAAGTGA-3', respectively;
downstream loop primer LB _ B: 5'-CATTGACGTTACGCCAGTCT-3' (SEQ ID NO: 34);
a primer set E':
the upstream outer primer F3_ E: 5'-GGCGGGTTTATACTGGAT-3', respectively;
downstream outer primer B3_ E: 5'-TCAATGGCACTGAAATGTC-3', respectively;
upstream inner primer FIP _ E: 5'-CGGCGTATCTAAATCAAATGCCCTTAGCCCAACACGATTC-3';
the downstream inner primer BIP _ E: 5'-GCGACGTTATCTAATATTGTAAGGCGAGCAATAGCCAGAAACC-3', respectively;
upstream loop primer LF _ E: 5'-TAAGGCAGCGAAGATACAGC-3' (SEQ ID NO: 35);
a primer group G':
upstream outer primer F3_ G: 5'-AGCAATTTCCCATCAACC-3', respectively;
downstream outer primer B3_ G: 5'-GGGTGCTAAATTCGCTAC-3', respectively;
upstream inner primer FIP _ G: 5'-AAGAACCAGACTGGCGTAACTGAAGCCATTTTTCAGTCC-3', respectively;
the downstream inner primer BIP _ G: 5'-CCGTTTTTAATGTCACTTCACTGGTACGAGGGTAAAGGACAAA-3';
upstream loop primer LF _ G: 5'-CGTATTCACTGTCACGGAGAA-3' (SEQ ID NO: 36);
a primer set H':
upstream outer primer F3 — H: 5'-ATAGTGTTTTGTTTTCCGGG-3', respectively;
downstream outer primer B3 — H: 5'-ATGGTCAAAATTTGGGTGC-3', respectively;
upstream inner primer FIP _ H: 5'-GAGAAAGGACTGAAAAATGGCTTCTAAGGAAGCTCTGGGGAT-3', respectively;
the downstream inner primer BIP _ H: 5'-CCAGTCTGGTTCTTCCGTTTACGAGGGTAAAGGACAAA-3';
upstream loop primer LF _ H: 5'-GGTTGATGGGAAATTGCTCCAT-3' (SEQ ID NO: 37);
and/or, the downstream loop primer LB _ H: 5'-TAATGTCACTTCACTGGCAGTT-3' (SEQ ID NO: 38).
In specific embodiments, for example, the primer set H' may include only one forward loop primer, only one downstream loop primer, or both a forward loop primer and a downstream loop primer.
In a specific embodiment (including a loop primer), the enzyme reaction system for isothermal amplification is as follows: 1 XBst DNA polymerase reaction buffer, 2-9mmol/L Mg 2+ (MgSO 4 Or MgCl 2 ) 1.0-1.6mmol/L dNTP, 0.8-2.0 mu mol/L FIP and BIP primers, 0.15-0.3 mu mol/L F3 and B3 primers, 0.4-1.0 mu mol/L LF and/or LB primers, 0.16-0.64U/mu L Bst DNA polymerase and 0-1.5mol/L betaine. In another embodiment (without loop primer), the enzyme reaction system for isothermal amplification is: 1 XBst DNA polymerase reaction buffer solution, 2-9mmol/L Mg 2+ (MgSO 4 Or MgCl 2 ) 1.0-1.6mmol/L dNTP, 0.8-2.0 mu mol/L FIP and BIP primers, 0.15-0.3 mu mol/L F3 and B3 primers, 0.16-0.64U/mu L Bst DNA polymerase and 0-1.5mol/L betaine. The loop primer contributes to the improvement of the reaction efficiency. For example, 1 XBst DNA polymerase reaction buffer can be 1 × Thermopol reaction buffer containing 20mmol/L Tris-HCl (pH8.8), 10mmol/L KCl, 10mmol/L (NH4) 2 SO4,0.1%Triton X-100,2mM MgSO 4 . MgSO in 1 XBst DNA polymerase reaction buffer 4 And magnesium ion Mg in enzyme reaction system 2+ And (6) merging.
In the method, the reaction procedure of the constant-temperature amplification reaction is incubation at 60-65 ℃ for 10-90 min, preferably 10-60 min; ② terminating the reaction for 2-20 min at 80 ℃. The invention is not limited to the implementation of the detection method of the invention by other suitable reaction procedures.
In the method of the present invention, the detection method includes, but is not limited to, electrophoresis detection, turbidity detection, color detection, or the like. The electrophoresis detection is preferably a gel electrophoresis detection method, and may be agarose gel or polyacrylamide gel. In the electrophoresis detection result, if the electrophoresis chart shows a characteristic step-shaped strip, the sample to be detected is positive to the cronobacter sakazakii and contains the cronobacter sakazakii; if the electrophoretogram does not present a characteristic ladder-shaped strip, the sample to be detected is negative to cronobacter sakazakii. The turbidity detection is to detect turbidity by naked eye observation or a turbidity meter, and if the detection tube is turbid, the sample to be detected is positive to the cronobacter sakazakii and contains the cronobacter sakazakii; if no turbidity is found, the sample to be tested is negative to cronobacter sakazakii. Or the reaction tube bottom can be visually observed whether the precipitate exists after the centrifugation, if the precipitate exists at the reaction tube bottom, the sample to be detected is positive to the cronobacter sakazakii and contains the cronobacter sakazakii; if the reaction tube bottom is not precipitated, the sample to be tested is negative to cronobacter sakazakii.
The color development detection is to add color development reagent, including but not limited to calcein (50 μ M) or SYBR Green I (30-50 ×), or hydroxynaphthol blue (i.e. HNB, 120-. When calcein or SYBR Green I is used as a color developing agent, if the color is orange after reaction, the sample to be detected is negative to cronobacter sakazakii; if the color after the reaction is green, the sample to be detected is positive to the cronobacter sakazakii and contains the cronobacter sakazakii. When hydroxyl naphthol blue is used as a color developing agent, if the color after reaction is violet, the sample to be detected is negative to cronobacter sakazakii; if the color after the reaction is sky blue, the sample to be detected is positive to the cronobacter sakazakii. The chromogenic detection can be used for detecting the reaction result in real time or at an end point through a detection instrument besides observing the reaction result through naked eyes, and by reasonably setting a threshold value of negative reaction, when the reaction result of the sample to be detected is lower than or equal to the threshold value, the sample to be detected is negative to the sakazakii; and when the reaction result of the sample to be detected is greater than the threshold value, determining that the sample to be detected is positive to the cronobacter sakazakii. The detection instrument comprises but is not limited to a fluorescence spectrophotometer, a fluorescence quantitative PCR instrument, a constant temperature amplification microfluidic chip nucleic acid analyzer, a Genie II isothermal amplification fluorescence detection system and the like.
In the color development detection, if calcein or hydroxynaphthol blue is used as a color developing agent, the color developing agent can be added before the constant-temperature amplification reaction, or can be added after the constant-temperature amplification reaction is completed, preferably before the constant-temperature amplification reaction, so that the possibility of reaction pollution can be effectively reduced. If SYBR Green I is adopted as a color developing agent, the SYBR Green I is added after the isothermal amplification reaction is finished. If calcein is used as color-developing agent, 50 μ M calcein is added into enzyme reaction system, and 0.6-1mM [ Mn ] is added 2+ ]For example, 0.6-1mM of MnCl 2 . The invention also provides a primer used in the method for detecting the cronobacter sakazakii strain at constant temperature. The primer comprises a primer group capable of amplifying specific base sequences of a cronobacter sakazakii genome, and the primer comprises but is not limited to a part of a nucleic acid sequence with the GI number of 156932229 at the 1080296-1081222 bp position of the cronobacter sakazakii genome or a part of a complementary strand thereof.
Wherein the primer group capable of amplifying the specific nucleotide sequence of the cronobacter sakazakii genome is selected from any one of the following primer groups, or is selected from any one of the primer groups having homology of 50% or more with a single sequence in the sequence of each primer group or the sequence of the complementary strand thereof. Wherein the primer set includes, but is not limited to, any one of the following primer sets A to D. The primer set having a homology of 50% or more with respect to a single sequence in the aforementioned primer set sequence or the complementary strand sequence thereof includes, but is not limited to, any one of the following primer sets E to H.
Primer set a:
upstream outer primer F3_ a: 5'-GGCGGGTTTATACTGGAT-3';
downstream outer primer B3_ a: 5'-CACTGAAATGTCACAAGCTA-3', respectively;
upstream inner primer FIP _ A: 5'-CGGCGTATCTAAATCAAATGCCCTTAGCCCAACACGATTC-3', respectively;
the downstream inner primer BIP _ A:
5’-GCGACGTTATCTAATATTGTAAGGCGCCAGAAACCAAATCATTG-3’;
primer set B:
the upstream outer primer F3_ B: 5'-ATAGTGTTTTGTTTTCCGGG-3', respectively;
downstream outer primer B3_ B: 5'-ACGAGGGTAAAGGACAAA-3', respectively;
upstream inner primer FIP _ B: 5'-GCTTCAGTTTGGTTGATGGGAAAAGAAGTGGTAAGGAAGCT-3', respectively;
a downstream inner primer BIP _ B: 5'-TTTCTCCGTGACAGTGAATACGAAACTGCCAGTGAAGTGA-3', respectively;
primer set C:
upstream outer primer F3_ C: 5'-GGATCATGGAGCAATTTCC-3', respectively;
downstream outer primer B3 — C: 5'-TCATTTTCGCACAAAGCC-3', respectively;
upstream inner primer FIP _ C: 5'-AAGAACCAGACTGGCGTAACTTTTTCAGTCCTTTCTCCG-3', respectively;
the downstream inner primer BIP _ C: 5'-CCCTCGTAAGTAGCGAATTTAGCCGATTTCCTTGAAGCAGTG-3', respectively;
primer set D:
upstream outer primer F3_ D: 5'-GCGAATTTAGCACCCAAA-3';
downstream outer primer B3_ D: 5'-GGACATCAGCAAACCTTC-3';
upstream inner primer FIP _ D: 5'-GACGCAGGCTATTCATTTTCGTTTTGACCATTTACCACTGC-3', respectively;
the downstream inner primer BIP _ D: 5'-CATAGTTCAAAAAGCCTGTGTCAAGAGCTGATACTGCTACTGC-3', respectively;
primer set E:
upstream outer primer F3_ E: 5'-GGCGGGTTTATACTGGAT-3', respectively;
downstream outer primer B3_ E: 5'-TCAATGGCACTGAAATGTC-3', respectively;
upstream inner primer FIP _ E: 5'-CGGCGTATCTAAATCAAATGCCCTTAGCCCAACACGATTC-3', respectively;
the downstream inner primer BIP _ E: 5'-GCGACGTTATCTAATATTGTAAGGCGAGCAATAGCCAGAAACC-3', respectively;
a primer set F:
upstream outer primer F3 — F: 5'-TACCCTCGTAAGTAGCGA-3', respectively;
downstream outer primer B3 — F: 5'-GGACATCAGCAAACCTTC-3', respectively;
upstream inner primer FIP _ F: 5'-CGCACAAAGCCAATTTCGATTTTAGCACCCAAATTTTGACC-3', respectively;
the downstream inner primer BIP _ F: 5'-CATAGTTCAAAAAGCCTGTGTCAAGAGCTGATACTGCTACTGC-3', respectively;
primer set G:
the upstream outer primer F3_ G: 5'-AGCAATTTCCCATCAACC-3';
downstream outer primer B3_ G: 5'-GGGTGCTAAATTCGCTAC-3';
upstream inner primer FIP _ G: 5'-AAGAACCAGACTGGCGTAACTGAAGCCATTTTTCAGTCC-3', respectively;
the downstream inner primer BIP _ G: 5'-CCGTTTTTAATGTCACTTCACTGGTACGAGGGTAAAGGACAAA-3', respectively;
a primer set H:
upstream outer primer F3 — H: 5'-ATAGTGTTTTGTTTTCCGGG-3', respectively;
downstream outer primer B3 — H: 5'-ATGGTCAAAATTTGGGTGC-3', respectively;
upstream inner primer FIP _ H: 5'-GAGAAAGGACTGAAAAATGGCTTCTAAGGAAGCTCTGGGGAT-3', respectively;
the downstream inner primer BIP _ H: 5'-CCAGTCTGGTTCTTCCGTTTACGAGGGTAAAGGACAAA-3' are provided.
In the primer used in the method for detecting cronobacter sakazakii at constant temperature, the primer group capable of amplifying the specific base sequence of the cronobacter sakazakii genome may or may not comprise one or more loop primers; the loop primer is LF and/or LB. The primer group capable of amplifying the specific base sequence of the sakazakii cronobacter genome is selected from any one of the following primer groups A ', B ', E ', G ' and H '; or any one selected from the group consisting of primer sets having a homology of 50% or more with respect to a single sequence in the sequences of the primer sets A ', B ', E ', G ', H ' or the complementary strand sequences thereof:
primer set a':
upstream outer primer F3_ a: 5'-GGCGGGTTTATACTGGAT-3', respectively;
downstream outer primer B3_ a: 5'-CACTGAAATGTCACAAGCTA-3', respectively;
upstream inner primer FIP _ A: 5'-CGGCGTATCTAAATCAAATGCCCTTAGCCCAACACGATTC-3', respectively;
the downstream inner primer BIP _ A:
5’-GCGACGTTATCTAATATTGTAAGGCGCCAGAAACCAAATCATTG-3’;
upstream loop primer LF _ a: 5'-TAAGGCAGCGAAGATACAGC-3';
a primer set B':
the upstream outer primer F3_ B: 5'-ATAGTGTTTTGTTTTCCGGG-3', respectively;
downstream outer primer B3_ B: 5'-ACGAGGGTAAAGGACAAA-3', respectively;
upstream inner primer FIP _ B: 5'-GCTTCAGTTTGGTTGATGGGAAAAGAAGTGGTAAGGAAGCT-3', respectively;
the downstream inner primer BIP _ B: 5'-TTTCTCCGTGACAGTGAATACGAAACTGCCAGTGAAGTGA-3', respectively;
downstream loop primer LB _ B: 5'-CATTGACGTTACGCCAGTCT-3', respectively;
a primer set E':
upstream outer primer F3_ E: 5'-GGCGGGTTTATACTGGAT-3';
downstream outer primer B3_ E: 5'-TCAATGGCACTGAAATGTC-3', respectively;
an upstream inner primer FIP _ E: 5'-CGGCGTATCTAAATCAAATGCCCTTAGCCCAACACGATTC-3', respectively;
the downstream inner primer BIP _ E: 5'-GCGACGTTATCTAATATTGTAAGGCGAGCAATAGCCAGAAACC-3', respectively;
upstream loop primer LF _ E: 5'-TAAGGCAGCGAAGATACAGC-3', respectively;
a primer set G':
upstream outer primer F3_ G: 5'-AGCAATTTCCCATCAACC-3', respectively;
downstream outer primer B3_ G: 5'-GGGTGCTAAATTCGCTAC-3', respectively;
upstream inner primer FIP _ G: 5'-AAGAACCAGACTGGCGTAACTGAAGCCATTTTTCAGTCC-3', respectively;
the downstream inner primer BIP _ G: 5'-CCGTTTTTAATGTCACTTCACTGGTACGAGGGTAAAGGACAAA-3', respectively;
upstream loop primer LF _ G: 5'-CGTATTCACTGTCACGGAGAA-3', respectively;
a primer set H':
upstream outer primer F3 — H: 5'-ATAGTGTTTTGTTTTCCGGG-3', respectively;
downstream outer primer B3 — H: 5'-ATGGTCAAAATTTGGGTGC-3', respectively;
upstream inner primer FIP _ H: 5'-GAGAAAGGACTGAAAAATGGCTTCTAAGGAAGCTCTGGGGAT-3', respectively;
the downstream inner primer BIP _ H: 5'-CCAGTCTGGTTCTTCCGTTTACGAGGGTAAAGGACAAA-3', respectively;
upstream loop primer LF _ H: 5'-GGTTGATGGGAAATTGCTCCAT-3', respectively;
and/or, the downstream loop primer LB _ H: 5'-TAATGTCACTTCACTGGCAGTT-3' are provided.
In a specific embodiment, the primer set H' may include only one upstream loop primer, only one downstream loop primer, or both an upstream loop primer and a downstream loop primer. In a specific embodiment, the primers are respectively FIP, BIP, F3, B3, LF and LB primers or primers with homology of 50% or more with the above primer sequence or single primer in the complementary strand sequence.
The invention also provides a kit used in the method for detecting the Cronobacter sakazakii strain at the constant temperature, which comprises the primer group capable of amplifying the specific base sequence of the Cronobacter sakazakii genome. In the kit of the present invention, the primer set capable of amplifying the nucleotide sequence specific to the Cronobacter sakazakii genome includes, but is not limited to, a primer sequence including a part of the nucleic acid sequence at the 1080296 to 1081222bp position of the genome (GI No: 156932229) or a part of the complementary strand thereof; the primer includes, but is not limited to, any one of the primer set A, the primer set B, the primer set C, the primer set D, and the like. But not limited to, a primer set having a homology of 50% or more with the aforementioned primer sequence or a single sequence in the complementary strand sequence thereof; including but not limited to primer set E, primer set F, primer set G, primer set H, etc.
In the kit of the present invention, the primer set capable of amplifying the sakazakii genome-specific base sequence may or may not comprise one or more loop primers; the loop primer serves as an optional component. The loop primer is LF and/or LB. The primer set comprising the loop primer LF and/or LB includes, but is not limited to, the primer sets A ', B ', E ', G ', H ', etc. In a specific embodiment, the kit of the present invention may comprise 0.4-1.0. mu. mol/L of LF and/or LB loop primers. In a specific embodiment, the sequences of the primer sets are respectively the primers shown by FIP, BIP, F3, B3, LF and LB, or the primers with 50% or more homology to the single primer of the aforementioned sequence or its complementary strand sequence.
The kit also comprises BstDNA polymerase buffer solution, BstDNA polymerase, dNTP solution and Mg 2+ (MgSO 4 Or MgCl 2 ) And betaine. In a specific embodiment, the enzyme reaction system of the kit comprises 1 XBst DNA polymerase reaction buffer solution and 2-9mmol/L Mg 2+ (MgSO 4 Or MgCl 2 ) 1.0-1.6mmol/L dNTP, 0.8-2.0 mu mol/L FIP and BIP primers, 0.15-0.3 mu mol/L F3 and B3 primers, 0.16-0.64U/mu L Bst DNA polymerase and 0-1.5mol/L betaine. For example, 1 XBst DNA polymerase reaction buffer can be 1 × Thermopol reaction buffer containing 20mmol/L Tris-HCl (pH8.8), 10mmol/L KCl, 10mmol/L (NH4) 2 SO4,0.1%Triton X-100,2mM MgSO 4 . MgSO in 1 XBst DNA polymerase reaction buffer 4 And magnesium ion Mg in enzyme reaction system 2+ And (6) merging.
The kit of the invention also comprises a positive control template. In a specific embodiment, the positive control template includes, but is not limited to, whole genomic DNA, partial genomic DNA of cronobacter sakazakii, or a vector comprising whole genomic DNA or partial genomic DNA of cronobacter sakazakii.
The kit of the invention further comprises a negative control template, and the negative control template comprises but is not limited to double distilled water.
The kit further comprises a color developing agent, wherein the color developing agent comprises but is not limited to calcein, SYBR Green I or hydroxynaphthol blue. When the color developing agent is calcein, the kit also comprises [ Mn 2+ ]For example, MnCl 2
The kit of the invention also comprises double distilled water.
The kit of the invention also comprises a nucleic acid extraction reagent.
The invention also provides a vector, which comprises any one primer selected from the primer groups A-D, E-H, A ', B ', E ', G ' and H '. The vector contains a DNA sequence with specificity of the cronobacter sakazakii, so the vector can be applied to the research fields of microbial taxonomy, comparative genomics, evolution and the like and the application field of microbial detection and the like. The vector may be, but is not limited to, a plasmid vector (e.g., pBR322, pUC18, pUC19, pBluescript M13, Ti plasmid, etc.), a viral vector (e.g., lambda phage, etc.), and an artificial chromosome vector (e.g., bacterial artificial chromosome BAC, yeast artificial chromosome YAC, etc.). For example, vector pBR322-A containing any one primer of primer set A, vector pBR322-B containing any one primer of primer set B, vector pBR322-H 'containing any one primer of primer set H' … …, and the like. A vector lambda phage-A containing any one of the primers of the primer set A, a vector lambda phage-B containing any one of the primers of the primer set B, … … a vector lambda phage-H 'containing any one of the primers of the primer set H', and the like.
The invention also provides application of the primers selected from any one of the primer groups A-D, E-H, A ', B ', E ', G ' and H ' in detecting the cronobacter sakazakii at constant temperature.
The invention also provides application of the kit in constant-temperature detection of Cronobacter sakazakii.
The invention also provides application of the vector in constant temperature detection of Cronobacter sakazakii.
The invention provides a simple, rapid and sensitive method, primer/primer group and detection reagent/kit for detecting cronobacter sakazakii in the technical field of food safety detection, and has great significance for food safety in China. The beneficial effects of the invention include: the method for detecting the cronobacter sakazakii has the advantages of strong specificity, high sensitivity, short detection time, simple result judgment, convenient operation, low cost and the like. Compared with the current common detection method, the isothermal amplification method adopted by the invention can be carried out under the isothermal condition, only a simple isothermal device is needed, expensive instruments in PCR experiments are not needed, and steps such as electrophoresis detection and the like on amplification products are not needed, so the method is very suitable for being widely applied to various social fields including basic food safety detection departments to be popularized and used, and can be fully applied even under the environment with relatively insufficient professional knowledge and skill base in molecular biology. Any combination of the above preferred conditions is within the scope of the present invention based on the general knowledge in the art.
Drawings
FIG. 1 shows the specificity of the isothermal detection method of Cronobacter sakazakii of example 7 of the present invention.
FIG. 2 shows the sensitivity of the Cronobacter sakazakii detection method of example 8 of the present invention.
Detailed Description
The present invention will be described in further detail with reference to the following specific examples and drawings, and the present invention is not limited to the following examples. Variations and advantages that may occur to those skilled in the art may be incorporated into the invention without departing from the spirit and scope of the inventive concept, and the scope of the appended claims is intended to be protected. The procedures, conditions, reagents, experimental methods and the like for carrying out the present invention are general knowledge and common general knowledge in the art, except for the contents specifically mentioned below, and the present invention is not particularly limited.
Example 1-6 Cronobacter sakazakii constant temperature reaction System and detection method
The detection is carried out according to the following steps (1) to (3):
(1) extraction of genomic DNA
The cronobacter sakazakii strain for detection is derived from the collection management center of the chinese industrial microbial strains under the number cic 21560 (ATCC 29544). 1mL of the bacterial culture was used to extract genomic DNA and DNA OD using a bacterial nucleic acid extraction kit from Beijing Tiangen bioengineering Co 260 /OD 280 At a concentration of 1.8, 288 ng/. mu.L.
(2) The method comprises the steps of taking genomic DNA of cronobacter sakazakii to be detected as a template, respectively adopting self-prepared kits (shown in tables 2 and 3) and preparing a reaction system according to the conditions in the table 3, and taking a cronobacter sakazakii specific amplification primer group as a primer to carry out constant-temperature amplification reaction. The primers used in examples 1 to 6 were primer set A, B ', H' (2 loop primers), H '(1 loop primer), H, and G', respectively.
(3) The amplification results were confirmed by electrophoresis, turbidity or color development under the conditions shown in Table 3.
As can be seen from Table 3, the detection method and the primer set and the reaction system adopted by the detection method can well amplify the specific fragment of Cronobacter sakazakii and obtain the detection result. In addition, when the detection is performed by using a detector, the detection effect is good when the reaction time is shortened to 10min (as in example 6). Therefore, the invention can be applied to detecting whether the sample contains cronobacter sakazakii.
According to the method of the above embodiment, the specific fragment of Cronobacter sakazakii can be amplified well and the detection result can be obtained by using the primer sets B to D, the primer sets E to G, and the primer sets A 'and E', respectively.
Example 7 Cronobacter sakazakii specific detection
The non-sakazakii 28 strains (1 to 22, 24 to 29 in table 4 and fig. 1) were collected, and these strains were cultured separately from the sakazakii strain (23 in table 4 and fig. 1), and 1mL of the bacterial solution was taken, and bacterial DNA was extracted using the kit IA, and LAMP amplification (primer set a) and color developer addition observation were performed separately with reference to the reaction system and conditions of example 1.
The results are shown in Table 4 and FIG. 1, in FIG. 1, 1-22 are respectively Staphylococcus aureus, Staphylococcus aureus Kindoderma subspecies, Staphylococcus epidermidis, Rhodococcus equi, Bacillus cereus, Bacillus mycoides, Listeria monocytogenes, Listeria Ennok, Listeria Iseli, Salmonella enterica subspecies, Salmonella enteritidis, Salmonella typhimurium, Salmonella paratyphi B, Shigella dysenteriae, Shigella boydii, Shigella flexneri, Escherichia coli (containing Clostridium botulinum type A gene), pathogenic Escherichia coli, Escherichia coli diarrheal, enterotoxigenic Escherichia coli, Escherichia coli hemorrhagic, and 24-29 are respectively Yersinia enterocolitica, Yersinia pseudotuberculosis, Vibrio vulnificus, Vibrio parahaemolyticus, Yersinia enterocolitica, Yersinia pseudotuberculosis, Vibrio parahaemolyticus, Vibrio, Vibrio freundii and vibrio cholerae, NTC: negative control, 23: cronobacter sakazakii. In fig. 1, only the product after the amplification reaction of the cronobacter sakazakii strain appeared bright green, which was a positive result, as shown in tube No. 23. The other sakazakii strains and the products obtained after the negative control amplification reaction are orange, which are negative results, as shown in tubes No. 1-22 and NTC negative control tube.
As can be seen from the results in fig. 1 and table 4, the detection kit and the detection method of the present invention have good specificity for the cronobacter sakazakii strain, that is, only the cronobacter sakazakii strain is amplified positively, and the other cronobacter sakazakii strains are not amplified negatively.
Preparing a detection kit, wherein the primers adopted in the kit are respectively primer groups B-D, primer groups E-H, primer groups A ', B ', E ', G ', H ' according to the specificity detection method, and the same detection results are respectively obtained, namely, the products after the amplification reaction of the non-sakazakii strains and the negative control are negative results, and the products after the amplification reaction of the sakazakii strains are positive results.
In addition, theoretical analysis was performed on the specificity of each of the primer sets a to D, the primer sets E to H, and the primer sets a ', B ', E ', G ', H ' according to the method described in table 1, and as a result, it was found that, in the case where at most 2 mismatches were allowed in each of the primers, each of the primers in each of the primer sets could not be simultaneously aligned to cronobacter sakazakii, indicating that the specificity of each of the primer sets was good.
Example 8 sensitivity detection
DNA of the bacterium CICC21560 was extracted by the method of example 2, and LAMP amplification (primer set B') and visualization by adding a color-developing agent were carried out by using the kit IIB and by gradient addition of 50ng, 5ng, 500pg, 50pg, 5pg, 500fg and 50fg DNA according to the method of example 2 of Table 3 under other reaction conditions. As shown in fig. 2, 1 to 7 are 50ng, 5ng, 500pg, 50pg, 5pg, 500fg and 50fg, respectively, NTC: and (5) negative control. In FIG. 2, the reaction products of 50ng, 5ng, 500pg, 50pg, and 5pg treatments appeared bright green and as positive results, the reaction products of 500fg and 50fg treatments and the negative control appeared orange and as negative results. The detection results show that DNA of a minimum of 5pg (about 1000 bacteria) can be detected in each reaction tube, and the sensitivity is high.
According to the detection method, other steps and conditions are the same, the primer groups A-D, the primer groups E-H and the primer groups A ', E', G 'and H' are respectively used, DNA as low as 5 pg-500 fg in each reaction tube can still be detected, and the detection sensitivity is higher.
Example 9 commonality testing
Theoretical analysis of the versatility of the primer sets a to D, E to H, and a pair of primer sets a ', B ', E ', G ', H ' was conducted according to the method described in table 1, and as a result, it was found that the primer regions of the respective primer sets completely match the genomic sequences of the three sakazakii strains (GI nos. 156932229, 449306535, and 389839000, respectively), and that the primers can be theoretically used for the detection of the three sakazakii strains, indicating that the versatility of the respective primer sets is good.
TABLE 1 analysis of the versatility and specificity of primers in the existing detection method of Cronobacter sakazakii
Figure BDA0002354565100000141
Figure BDA0002354565100000151
Note: a) the sequence between primers F3 and B3 in the patent was Bowtie aligned with three genomes of Cronobacter sakazakii (GI Nos. 156932229, 449306535 and 389839000, respectively) to determine the position of the detection region in the GI No. 156932229 genome (asterisk indicates that the sequence between primers F3 and B3 can be aligned to 7 repetitive regions in the GI No. 156932229 genome, and only 1 region is listed in the table). The amplification regions of the four sets of primers in patent ZL201310287426.5 cannot be located, and the genes of the amplified target genes are not shown in the text. b) And performing Blast comparison on the detection region sequences in public database resources, wherein the primer regions are completely matched and have good universality. c) And performing Blast comparison on the detection region sequences in public database resources, wherein the higher the matching degree of the primer regions is, the poorer the specificity is.
TABLE 2 types and major components of kit for isothermal detection of cronobacter sakazakii
Figure BDA0002354565100000152
Figure BDA0002354565100000161
Table 3 examples 1 to 6 reaction conditions and results of detection in the method for isothermal detection of cronobacter sakazakii according to the present invention
Figure BDA0002354565100000162
Figure BDA0002354565100000171
TABLE 4 strains used in the test and the results
Figure BDA0002354565100000172
Figure BDA0002354565100000181
Note: a) CGMCC: china general microbiological culture Collection center, CICC: china center for preservation and management of industrial microbial strains, CMCC: china center for preservation and management of bacterial strains. b) +: positive result, -: and (5) negative result.
Sequence listing
<110> Shanghai Wangwang food group Co., Ltd., Shanghai Marine industry and technology research institute
Rapid constant-temperature detection method, primer group and kit for sakazakii
<160> 38
<170> SIPOSequenceListing 1.0
<210> 1
<211> 18
<212> DNA
<213> Artificial sequence ()
<400> 1
ggcgggttta tactggat 18
<210> 2
<211> 20
<212> DNA
<213> Artificial sequence ()
<400> 2
cactgaaatg tcacaagcta 20
<210> 3
<211> 39
<212> DNA
<213> Artificial sequence ()
<400> 3
cggcgtatct aaatcaaatg cccttagccc aacacgatt 39
<210> 4
<211> 44
<212> DNA
<213> Artificial sequence ()
<400> 4
gcgacgttat ctaatattgt aaggcgccag aaaccaaatc attg 44
<210> 5
<211> 20
<212> DNA
<213> Artificial sequence ()
<400> 5
atagtgtttt gttttccggg 20
<210> 6
<211> 18
<212> DNA
<213> Artificial sequence ()
<400> 6
acgagggtaa aggacaaa 18
<210> 7
<211> 41
<212> DNA
<213> Artificial sequence ()
<400> 7
gcttcagttt ggttgatggg aaaagaagtg gtaaggaagc t 41
<210> 8
<211> 40
<212> DNA
<213> Artificial sequence ()
<400> 8
tttctccgtg acagtgaata cgaaactgcc agtgaagtga 40
<210> 9
<211> 19
<212> DNA
<213> Artificial sequence ()
<400> 9
ggatcatgga gcaatttcc 19
<210> 10
<211> 18
<212> DNA
<213> Artificial sequence ()
<400> 10
tcattttcgc acaaagcc 18
<210> 11
<211> 39
<212> DNA
<213> Artificial sequence ()
<400> 11
aagaaccaga ctggcgtaac tttttcagtc ctttctccg 39
<210> 12
<211> 42
<212> DNA
<213> Artificial sequence ()
<400> 12
ccctcgtaag tagcgaattt agccgatttc cttgaagcag tg 42
<210> 13
<211> 18
<212> DNA
<213> Artificial sequence ()
<400> 13
gcgaatttag cacccaaa 18
<210> 14
<211> 18
<212> DNA
<213> Artificial sequence ()
<400> 14
ggacatcagc aaaccttc 18
<210> 15
<211> 41
<212> DNA
<213> Artificial sequence ()
<400> 15
gacgcaggct attcattttc gttttgacca tttaccactg c 41
<210> 16
<211> 43
<212> DNA
<213> Artificial sequence ()
<400> 16
catagttcaa aaagcctgtg tcaagagctg atactgctac tgc 43
<210> 17
<211> 18
<212> DNA
<213> Artificial sequence ()
<400> 17
ggcgggttta tactggat 18
<210> 18
<211> 19
<212> DNA
<213> Artificial sequence ()
<400> 18
tcaatggcac tgaaatgtc 19
<210> 19
<211> 40
<212> DNA
<213> Artificial sequence ()
<400> 19
cggcgtatct aaatcaaatg cccttagccc aacacgattc 40
<210> 20
<211> 43
<212> DNA
<213> Artificial sequence ()
<400> 20
gcgacgttat ctaatattgt aaggcgagca atagccagaa acc 43
<210> 21
<211> 18
<212> DNA
<213> Artificial sequence ()
<400> 21
taccctcgta agtagcga 18
<210> 22
<211> 18
<212> DNA
<213> Artificial sequence ()
<400> 22
ggacatcagc aaaccttc 18
<210> 23
<211> 41
<212> DNA
<213> Artificial sequence ()
<400> 23
cgcacaaagc caatttcgat tttagcaccc aaattttgac c 41
<210> 24
<211> 43
<212> DNA
<213> Artificial sequence ()
<400> 24
catagttcaa aaagcctgtg tcaagagctg atactgctac tgc 43
<210> 25
<211> 18
<212> DNA
<213> Artificial sequence ()
<400> 25
agcaatttcc catcaacc 18
<210> 26
<211> 18
<212> DNA
<213> Artificial sequence ()
<400> 26
gggtgctaaa ttcgctac 18
<210> 27
<211> 39
<212> DNA
<213> Artificial sequence ()
<400> 27
aagaaccaga ctggcgtaac tgaagccatt tttcagtcc 39
<210> 28
<211> 43
<212> DNA
<213> Artificial sequence ()
<400> 28
ccgtttttaa tgtcacttca ctggtacgag ggtaaaggac aaa 43
<210> 29
<211> 20
<212> DNA
<213> Artificial sequence ()
<400> 29
atagtgtttt gttttccggg 20
<210> 30
<211> 19
<212> DNA
<213> Artificial sequence ()
<400> 30
atggtcaaaa tttgggtgc 19
<210> 31
<211> 42
<212> DNA
<213> Artificial sequence ()
<400> 31
gagaaaggac tgaaaaatgg cttctaagga agctctgggg at 42
<210> 32
<211> 38
<212> DNA
<213> Artificial sequence ()
<400> 32
ccagtctggt tcttccgttt acgagggtaa aggacaaa 38
<210> 33
<211> 20
<212> DNA
<213> Artificial sequence ()
<400> 33
taaggcagcg aagatacagc 20
<210> 34
<211> 20
<212> DNA
<213> Artificial sequence ()
<400> 34
cattgacgtt acgccagtct 20
<210> 35
<211> 20
<212> DNA
<213> Artificial sequence ()
<400> 35
taaggcagcg aagatacagc 20
<210> 36
<211> 21
<212> DNA
<213> Artificial sequence ()
<400> 36
cgtattcact gtcacggaga a 21
<210> 37
<211> 22
<212> DNA
<213> Artificial sequence ()
<400> 37
ggttgatggg aaattgctcc at 22
<210> 38
<211> 22
<212> DNA
<213> Artificial sequence ()
<400> 38
taatgtcact tcactggcag tt 22

Claims (9)

1. A rapid constant temperature detection method aiming at Cronobacter sakazakii and not used for diagnosis is characterized by comprising the following steps:
(1) extracting genome DNA from a sample to be detected;
(2) taking the genome DNA as a template, taking a primer group capable of amplifying the specific base sequence of the Cronobacter sakazakii genome as a primer, and carrying out constant-temperature amplification reaction in an enzyme reaction system;
(3) determining whether the sample to be detected has cronobacter sakazakii or not by judging whether the reaction result is positive or not;
wherein the cronobacter sakazakii genome specific alkali sequence is a sequence of 1080296-1081222 bp bits of the cronobacter sakazakii genome with the GI number of 156932229;
wherein the primer group capable of amplifying the specific base sequence of the cronobacter sakazakii genome is selected from the primer group E or E';
primer set E:
the upstream outer primer F3_ E: 5'-GGCGGGTTTATACTGGAT-3' (SEQ ID NO: 17);
downstream outer primer B3_ E: 5'-TCAATGGCACTGAAATGTC-3' (SEQ ID NO: 18);
upstream inner primer FIP _ E: 5'-CGGCGTATCTAAATCAAATGCCCTTAGCCCAACACGATTC-3' (SEQ ID NO: 19);
a downstream inner primer BIP _ E: 5'-GCGACGTTATCTAATATTGTAAGGCGAGCAATAGCCAGAAACC-3' (SEQ ID NO: 20);
a primer set E':
upstream outer primer F3_ E: 5'-GGCGGGTTTATACTGGAT-3', respectively;
downstream outer primer B3_ E: 5'-TCAATGGCACTGAAATGTC-3', respectively;
upstream inner primer FIP _ E: 5'-CGGCGTATCTAAATCAAATGCCCTTAGCCCAACACGATTC-3', respectively;
the downstream inner primer BIP _ E: 5'-GCGACGTTATCTAATATTGTAAGGCGAGCAATAGCCAGAAACC-3';
upstream loop primer LF _ E: 5'-TAAGGCAGCGAAGATACAGC-3' (SEQ ID NO: 35).
2. The method of claim 1, wherein in step (2), the enzymatic reaction system comprises: 1 XBst DNA polymerase reaction buffer, 2-9mmol/L Mg 2+ 1.0-1.6mmol/L dNTP, 0.8-2.0 μmol/L FIP _ E and BIP _ E primers, 0.15-0.3 μmol/L F3_ E and B3_ E primers, 0.16-0.64U/μ L Bst DNA polymerase, 0-1.5mol/L betaine, and 0.4-1.0 μmol/L LF _ E primer is included or excluded.
3. The method of claim 1, wherein the isothermal amplification reaction is performed by a reaction sequence comprising: incubating for 10-90 min at 60-65 ℃; ② terminating the reaction for 2-20 min at 80 ℃.
4. The primer in the rapid constant temperature detection method for the cronobacter sakazakii is characterized by comprising a primer group capable of amplifying a specific base sequence of the cronobacter sakazakii genome, wherein the specific base sequence of the cronobacter sakazakii genome is a part of a nucleic acid sequence with the GI number of 156932229 at the 1080296-1081222 bp position of the cronobacter sakazakii genome or a part of a complementary strand thereof;
wherein the primer group capable of amplifying the Cronobacter sakazakii genome-specific base sequence is selected from the primer group E or E';
primer set E:
upstream outer primer F3_ E: 5'-GGCGGGTTTATACTGGAT-3' (SEQ ID NO: 17);
downstream outer primer B3_ E: 5'-TCAATGGCACTGAAATGTC-3' (SEQ ID NO: 18);
upstream inner primer FIP _ E: 5'-CGGCGTATCTAAATCAAATGCCCTTAGCCCAACACGATTC-3' (SEQ ID NO: 19);
the downstream inner primer BIP _ E: 5'-GCGACGTTATCTAATATTGTAAGGCGAGCAATAGCCAGAAACC-3' (SEQ ID NO: 20);
a primer set E':
upstream outer primer F3_ E: 5'-GGCGGGTTTATACTGGAT-3', respectively;
downstream outer primer B3_ E: 5'-TCAATGGCACTGAAATGTC-3', respectively;
upstream inner primer FIP _ E: 5'-CGGCGTATCTAAATCAAATGCCCTTAGCCCAACACGATTC-3', respectively;
the downstream inner primer BIP _ E: 5'-GCGACGTTATCTAATATTGTAAGGCGAGCAATAGCCAGAAACC-3', respectively;
upstream loop primer LF _ E: 5'-TAAGGCAGCGAAGATACAGC-3' (SEQ ID NO: 35).
5. A rapid isothermal detection kit for Cronobacter sakazakii, comprising the primer of claim 4.
6. The kit of claim 5, further comprising Bst DNA polymerase reaction buffer, Bst DNA polymerase, dNTP solution, Mg 2+ And one or more of betaine.
7. The kit of claim 5, wherein the enzymatic reaction system of the kit comprises: 1 XBst DNA polymerase reaction buffer, 2-9mmol/L Mg 2+ 1.0-1.6mmol/L dNTP, 0.8-2.0 μmol/L FIP _ E and BIP _ E primers, 0.15-0.3 μmol/L F3_ E and B3_ E primers, 0.16-0.64U/μ L Bst DNA polymerase, 0-1.5mol/L betaine, and 0.4-1.0 μmol/L LF _ E primer is included or excluded.
8. Use of a primer for isothermal detection of cronobacter sakazakii for non-diagnostic purposes, wherein the primer is according to claim 4.
9. Use of a kit according to any one of claims 5 to 7 for isothermal detection of cronobacter sakazakii for non-diagnostic purposes.
CN202010004054.0A 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for cronobacter sakazakii Active CN110964786B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510556917 2015-09-02
CN2015105569174 2015-09-02
CN201610767389.1A CN106434882B (en) 2015-09-02 2016-08-30 Method for rapidly detecting cronobacter sakazakii at constant temperature, primer and application

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201610767389.1A Division CN106434882B (en) 2015-09-02 2016-08-30 Method for rapidly detecting cronobacter sakazakii at constant temperature, primer and application

Publications (2)

Publication Number Publication Date
CN110964786A CN110964786A (en) 2020-04-07
CN110964786B true CN110964786B (en) 2022-08-26

Family

ID=57899245

Family Applications (54)

Application Number Title Priority Date Filing Date
CN202010035795.5A Active CN111041114B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for Listeria monocytogenes nucleic acid and application
CN202010035812.5A Active CN111073989B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and application of shigella nucleic acid
CN202010004057.4A Pending CN110964789A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio cholerae O1 group, primer set and application
CN202010043523.XA Active CN111100939B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method for nucleic acid of staphylococcus aureus and application thereof
CN202010035771.XA Active CN111073955B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method for nucleic acid of vibrio cholerae O1 group and application
CN201911167633.0A Active CN110760570B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapid constant-temperature detection of cronobacter sakazakii
CN202010035808.9A Active CN111041115B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus
CN202010004054.0A Active CN110964786B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for cronobacter sakazakii
CN202010003956.2A Pending CN110951840A (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method and kit for vibrio cholerae O1 group
CN202010035787.0A Active CN111041071B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio cholerae O1 group, primer group and application
CN202010036105.8A Active CN111020008B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method and kit for nucleic acid of vibrio cholerae O1 group
CN202010042445.1A Active CN111020049B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for staphylococcus aureus
CN201610767426.9A Active CN106434884B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting listeria monocytogenes at constant temperature
CN201610780457.8A Active CN106434898B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature
CN201610767402.3A Active CN106434883B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio vulnificus at constant temperature and application of primer and kit
CN202010042443.2A Active CN111057778B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio vulnificus and application
CN201610780425.8A Active CN106434895B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio parahaemolyticus at constant temperature
CN201911337926.9A Active CN110951837B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for Listeria monocytogenes nucleic acid and application
CN201610767703.6A Active CN106434891B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting shigella at constant temperature
CN202010042446.6A Active CN111057780B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus
CN201610767579.3A Active CN106434889B (en) 2015-09-02 2016-08-30 Method for rapidly detecting bacillus cereus at constant temperature, primers and application
CN201610780421.XA Active CN106367500B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio vulnificus at constant temperature, primer and application
CN202010043524.4A Active CN111041116B (en) 2015-09-02 2016-08-30 Nucleic acid rapid constant temperature detection method and kit for vibrio vulnificus
CN201610767354.8A Active CN106244706B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapid constant temperature detection of cronobacter sakazakii
CN201610767576.XA Active CN106434888B (en) 2015-09-02 2016-08-30 Method, primer and application for rapidly detecting staphylococcus aureus at constant temperature
CN201911281772.6A Active CN110938677B (en) 2015-09-02 2016-08-30 Quick constant-temperature detection method for yersinia pseudotuberculosis nucleic acid and application
CN202010004056.XA Active CN110964788B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of cronobacter sakazakii, primer group and application
CN201610780447.4A Active CN106434896B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio parahaemolyticus at constant temperature, primer and application
CN202010003957.7A Pending CN110951841A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for vibrio cholerae O1 group
CN201911167632.6A Active CN110760569B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and kit for nucleic acid of cronobacter sakazakii
CN202010036130.6A Active CN111020009B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio parahaemolyticus and application
CN201610780460.XA Active CN106434899B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting bacillus cereus at constant temperature
CN202010042440.9A Pending CN111020011A (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio parahaemolyticus and application
CN201610767491.1A Active CN106434885B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio cholerae O1 group at constant temperature, primer and application
CN201610767506.4A Active CN106434886B (en) 2015-09-02 2016-08-30 Method for rapidly detecting yersinia pseudotuberculosis at constant temperature, primer and application
CN202010036127.4A Active CN111020045B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method
CN202010286793.3A Active CN111304348B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for bacillus cereus
CN202010042444.7A Active CN111057779B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for vibrio vulnificus and application
CN202010035791.7A Active CN111073956B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio vulnificus
CN202010042450.2A Active CN111057781B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio parahaemolyticus, primer group and application
CN202010035792.1A Pending CN111100906A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for yersinia pseudotuberculosis
CN202010036146.7A Active CN111020047B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio parahaemolyticus, primer set and application
CN202010036128.9A Pending CN111020046A (en) 2015-09-02 2016-08-30 Nucleic acid rapid constant temperature detection method for yersinia pseudotuberculosis and application
CN201911281105.8A Active CN110938676B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature
CN201610780456.3A Active CN106434897B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio cholerae O1 group at constant temperature
CN202010286794.8A Pending CN111334595A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method
CN201610767389.1A Active CN106434882B (en) 2015-09-02 2016-08-30 Method for rapidly detecting cronobacter sakazakii at constant temperature, primer and application
CN202010035775.8A Active CN111041112B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio vulnificus, primer set and application
CN201610767436.2A Active CN106367492B (en) 2015-09-02 2016-08-30 Method, primer and application for rapidly detecting listeria monocytogenes at constant temperature
CN202010004055.5A Active CN110964787B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and kit for cronobacter sakazakii
CN202010036148.6A Active CN111020048B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for shigella
CN202010035788.5A Active CN111041113B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for bacillus cereus
CN201911337898.0A Active CN110938678B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapidly detecting listeria monocytogenes at constant temperature
CN202010036143.3A Active CN111020010B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method, primer set and kit for listeria monocytogenes

Family Applications Before (7)

Application Number Title Priority Date Filing Date
CN202010035795.5A Active CN111041114B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for Listeria monocytogenes nucleic acid and application
CN202010035812.5A Active CN111073989B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and application of shigella nucleic acid
CN202010004057.4A Pending CN110964789A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio cholerae O1 group, primer set and application
CN202010043523.XA Active CN111100939B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method for nucleic acid of staphylococcus aureus and application thereof
CN202010035771.XA Active CN111073955B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method for nucleic acid of vibrio cholerae O1 group and application
CN201911167633.0A Active CN110760570B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapid constant-temperature detection of cronobacter sakazakii
CN202010035808.9A Active CN111041115B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus

Family Applications After (46)

Application Number Title Priority Date Filing Date
CN202010003956.2A Pending CN110951840A (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method and kit for vibrio cholerae O1 group
CN202010035787.0A Active CN111041071B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio cholerae O1 group, primer group and application
CN202010036105.8A Active CN111020008B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method and kit for nucleic acid of vibrio cholerae O1 group
CN202010042445.1A Active CN111020049B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for staphylococcus aureus
CN201610767426.9A Active CN106434884B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting listeria monocytogenes at constant temperature
CN201610780457.8A Active CN106434898B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature
CN201610767402.3A Active CN106434883B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio vulnificus at constant temperature and application of primer and kit
CN202010042443.2A Active CN111057778B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio vulnificus and application
CN201610780425.8A Active CN106434895B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio parahaemolyticus at constant temperature
CN201911337926.9A Active CN110951837B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for Listeria monocytogenes nucleic acid and application
CN201610767703.6A Active CN106434891B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting shigella at constant temperature
CN202010042446.6A Active CN111057780B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus
CN201610767579.3A Active CN106434889B (en) 2015-09-02 2016-08-30 Method for rapidly detecting bacillus cereus at constant temperature, primers and application
CN201610780421.XA Active CN106367500B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio vulnificus at constant temperature, primer and application
CN202010043524.4A Active CN111041116B (en) 2015-09-02 2016-08-30 Nucleic acid rapid constant temperature detection method and kit for vibrio vulnificus
CN201610767354.8A Active CN106244706B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapid constant temperature detection of cronobacter sakazakii
CN201610767576.XA Active CN106434888B (en) 2015-09-02 2016-08-30 Method, primer and application for rapidly detecting staphylococcus aureus at constant temperature
CN201911281772.6A Active CN110938677B (en) 2015-09-02 2016-08-30 Quick constant-temperature detection method for yersinia pseudotuberculosis nucleic acid and application
CN202010004056.XA Active CN110964788B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of cronobacter sakazakii, primer group and application
CN201610780447.4A Active CN106434896B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio parahaemolyticus at constant temperature, primer and application
CN202010003957.7A Pending CN110951841A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for vibrio cholerae O1 group
CN201911167632.6A Active CN110760569B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and kit for nucleic acid of cronobacter sakazakii
CN202010036130.6A Active CN111020009B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio parahaemolyticus and application
CN201610780460.XA Active CN106434899B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting bacillus cereus at constant temperature
CN202010042440.9A Pending CN111020011A (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio parahaemolyticus and application
CN201610767491.1A Active CN106434885B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio cholerae O1 group at constant temperature, primer and application
CN201610767506.4A Active CN106434886B (en) 2015-09-02 2016-08-30 Method for rapidly detecting yersinia pseudotuberculosis at constant temperature, primer and application
CN202010036127.4A Active CN111020045B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method
CN202010286793.3A Active CN111304348B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for bacillus cereus
CN202010042444.7A Active CN111057779B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for vibrio vulnificus and application
CN202010035791.7A Active CN111073956B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio vulnificus
CN202010042450.2A Active CN111057781B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio parahaemolyticus, primer group and application
CN202010035792.1A Pending CN111100906A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for yersinia pseudotuberculosis
CN202010036146.7A Active CN111020047B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio parahaemolyticus, primer set and application
CN202010036128.9A Pending CN111020046A (en) 2015-09-02 2016-08-30 Nucleic acid rapid constant temperature detection method for yersinia pseudotuberculosis and application
CN201911281105.8A Active CN110938676B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature
CN201610780456.3A Active CN106434897B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio cholerae O1 group at constant temperature
CN202010286794.8A Pending CN111334595A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method
CN201610767389.1A Active CN106434882B (en) 2015-09-02 2016-08-30 Method for rapidly detecting cronobacter sakazakii at constant temperature, primer and application
CN202010035775.8A Active CN111041112B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio vulnificus, primer set and application
CN201610767436.2A Active CN106367492B (en) 2015-09-02 2016-08-30 Method, primer and application for rapidly detecting listeria monocytogenes at constant temperature
CN202010004055.5A Active CN110964787B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and kit for cronobacter sakazakii
CN202010036148.6A Active CN111020048B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for shigella
CN202010035788.5A Active CN111041113B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for bacillus cereus
CN201911337898.0A Active CN110938678B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapidly detecting listeria monocytogenes at constant temperature
CN202010036143.3A Active CN111020010B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method, primer set and kit for listeria monocytogenes

Country Status (1)

Country Link
CN (54) CN111041114B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041114B (en) * 2015-09-02 2023-03-28 上海产业技术研究院 Rapid constant-temperature detection method for Listeria monocytogenes nucleic acid and application
CN107058599A (en) * 2017-06-22 2017-08-18 上海速创诊断产品有限公司 A kind of Primer composition, kit and its dual signal channel detection methods for detecting staphylococcus aureus
CN107475401B (en) * 2017-09-08 2021-03-19 江苏农林职业技术学院 Method and primer for detecting food-borne bacillus cereus by using loop-mediated isothermal amplification technology
CN108285925A (en) * 2017-12-29 2018-07-17 广东环凯微生物科技有限公司 A kind of rugged Cronobacter sakazakii quick detection kit of slope
CN108192988B (en) * 2018-03-06 2020-05-19 青岛大学 Staphylococcus aureus strand exchange amplification detection method
CN108611402A (en) * 2018-05-12 2018-10-02 浙江工商大学 Shigella flexneri visible detection method based on aptamers magnetic capture and direct LAMP
CN109680079A (en) * 2018-06-08 2019-04-26 深圳市计量质量检测研究院(国家高新技术计量站、国家数字电子产品质量监督检验中心) Detect RPA primer, probe, kit and the method for vibrio parahemolyticus
CN109593866A (en) * 2018-06-20 2019-04-09 齐鲁工业大学 Primer, kit and the detection method of ring mediated isothermal amplification Listeria monocytogenes
CN109517914A (en) * 2018-12-27 2019-03-26 广东环凯微生物科技有限公司 The dry powdered double PCR detection kit of the rugged Cronobacter sakazakii of slope
CN110257541B (en) * 2019-07-25 2022-08-09 沈阳农业大学 CAMP detection primer group and kit for enterotoxin gene of bacillus cereus
CN110358851B (en) * 2019-08-14 2023-01-17 河南科技学院 Nucleic acid sequence, primer, method and kit for detecting bacillus cereus
CN111172325A (en) * 2020-02-21 2020-05-19 北京天恩泽基因科技有限公司 Multi-target double-dye isothermal amplification rapid detection method and kit
CN111690757A (en) * 2020-05-19 2020-09-22 广东岭南职业技术学院 Primer and detection method for rapidly identifying vomitoxin-producing bacillus cereus
CN112538549A (en) * 2020-12-07 2021-03-23 菲吉乐科(南京)生物科技有限公司 On-site rapid detection test method for phage activity
CN112646908A (en) * 2020-12-31 2021-04-13 广州赛哲生物科技股份有限公司 Vibrio vulnificus isothermal amplification primer, probe, kit and detection method
CN113512554B (en) * 2021-07-09 2022-07-12 合肥工业大学 Protein for regulating sakazakii cronobacter sakazakii pressure-resistant strong stress, encoding gene thereof and application thereof
CN113846173A (en) * 2021-09-01 2021-12-28 东北农业大学 Novel target, primer group and detection method for cronobacter sakazakii detection
CN113957164B (en) * 2021-10-29 2023-05-23 上海市质量监督检验技术研究院 CRISPR One post detection method and kit thereof for Cronobacter in infant formula powder
CN114182029A (en) * 2021-11-30 2022-03-15 石家庄君乐宝乳业有限公司 Primer combination and application thereof in detection of cronobacter sakazakii in dairy products
CN114540516B (en) * 2022-03-08 2023-06-20 河南中检食安生物科技有限公司 LAMP double-strand detection probe, kit and detection method for staphylococcus aureus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154451A (en) * 2010-12-30 2011-08-17 广东省微生物研究所 Loop-mediated isothermal amplification detection primer group, detection method and detection kit for enterobacter sakazakii
CN103243171A (en) * 2013-05-29 2013-08-14 光明乳业股份有限公司 Method for detecting cronobacter sakazakii as well as kit and primer thereof

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016940A2 (en) * 2000-08-23 2002-02-28 Genome Therapeutics Corporation Genomics-assisted rapid identification of targets
US20040029129A1 (en) * 2001-10-25 2004-02-12 Liangsu Wang Identification of essential genes in microorganisms
JP2003199572A (en) * 2001-12-28 2003-07-15 Eiken Chem Co Ltd Primer for detection of salmonella and detection method using the same
JP4226984B2 (en) * 2003-09-26 2009-02-18 日本ハム株式会社 LAMP primer for detection of Listeria monocytogenes
JP2007129935A (en) * 2005-11-09 2007-05-31 Ishikawa Pref Gov Primer specifically detecting microorganism in sample
CN101020927A (en) * 2007-03-09 2007-08-22 中国科学院南海海洋研究所 Reagent kit and process for detecting Vibrio vulnificus in circular mediated constant temperature amplification method
CN101153326B (en) * 2007-09-21 2011-03-23 珠海市疾病预防控制中心 Primer, detection method and detection reagent kit for detecting shigella
CN101153332B (en) * 2007-09-21 2011-03-23 珠海市疾病预防控制中心 Primer, detection method and detection reagent kit for detecting cholera vibrio
CN101153329B (en) * 2007-09-21 2010-11-03 珠海市疾病预防控制中心 Primer, detection method and detection reagent kit for detecting staphylococcus aureus
CN101153330B (en) * 2007-09-21 2011-07-13 珠海市疾病预防控制中心 Primer, detection method and detection reagent kit for detecting vibrio parahemolyticus
CN101140243B (en) * 2007-09-29 2010-04-14 上海水产大学 Method for detecting vibrio parahaemolyticus
CN101182575B (en) * 2007-11-19 2011-03-23 天津出入境检验检疫局动植物与食品检测中心 Method for detecting food-borne pseudotuberculosis yersinia genus by loop-mediated isothermal amplification
CN101245375A (en) * 2007-12-13 2008-08-20 山东出入境检验检疫局检验检疫技术中心 Method for producing and using trauma vibrio fast detection kit
CN101200760A (en) * 2007-12-13 2008-06-18 中国检验检疫科学研究院 Preparation and utilization method of yersinia genus rapid detection reagent kit
CN101307351A (en) * 2008-04-29 2008-11-19 广州华峰生物科技有限公司 Rapid diagnosis kit for listeria monocytogenes gene based on loop-mediated isothermal amplification technology and detecting method thereof
CN101319249B (en) * 2008-06-10 2011-05-11 山东出入境检验检疫局检验检疫技术中心 Fast detecting reagent kit for enterobacter sakazakii and detecting method thereof
CN101348835B (en) * 2008-09-09 2011-08-17 南开大学 Reagent kit for detecting vibrio vulnificus by loop-mediated isothermal amplification technology
CN101368204B (en) * 2008-09-16 2011-08-31 中国计量学院 Fast detection primer and reagent kit for enterobacter sakazakii hymenial veil mediated isothermality amplification technique
CN101403004B (en) * 2008-09-26 2011-08-24 广州华峰生物科技有限公司 Rapid diagnosis reagent kit and detection method for vibrio vulnficus gene
CN101402997B (en) * 2008-11-06 2010-08-11 中华人民共和国天津出入境检验检疫局 Reagent kit and method for detecting bacillus cereus with loop mediated isothermality amplification method
CN101748201B (en) * 2008-11-28 2012-06-27 中华人民共和国黑龙江出入境检验检疫局检验检疫技术中心 Method of loop-mediated isothermal amplification (LAMP) for detecting Listeria monocytogenes
CN101492733A (en) * 2008-12-15 2009-07-29 天津出入境检验检疫局动植物与食品检测中心 Reagent kit and method for detection of artificial tuberculosis yersinia genus with ring mediated isothermality amplification method
CN101831493B (en) * 2009-11-06 2012-05-23 武汉工业学院 Loop-mediated isothermal amplification (LAMP) primer pair of bacillus cereus and detection method
CN101845493A (en) * 2010-01-29 2010-09-29 华南农业大学 Primer for detection of shigella and detection method
CN101864483B (en) * 2010-04-12 2012-09-19 广州华峰生物科技有限公司 Salmonella and shigella joint detection kit and detection method thereof
CN101824482B (en) * 2010-06-07 2012-09-19 广州华峰生物科技有限公司 Detection kit for vibrio cholerae O1 group and detection method thereof
WO2012008860A2 (en) * 2010-07-16 2012-01-19 Auckland Uniservices Limited Bacterial nitroreductase enzymes and methods relating thereto
CN102094090B (en) * 2010-12-13 2013-03-13 华东师范大学 Cholera toxin virulence gene detection kit and detection method thereof
CN102206703A (en) * 2011-01-23 2011-10-05 浙江省质量技术监督检测研究院 Multiple rapid detection method for three food borne pathogenic bacteria, and detection primer set and kit thereof
CN102277422A (en) * 2011-06-20 2011-12-14 黑龙江省乳品工业技术开发中心 Method for rapid detection of Listeria monocytogenes viable bacteria in liquid milk
CN102329861B (en) * 2011-08-29 2013-06-05 中国疾病预防控制中心传染病预防控制所 Primer for detecting serotype of shigella flexneri and multiplex amplification using same
US8883488B2 (en) * 2011-11-15 2014-11-11 Tuskegee University Detection of food threat agents and food-borne pathogens
ITMI20112177A1 (en) * 2011-11-29 2013-05-30 Genefast S R L METHOD OF DETECTING SYNTHESIS AND / OR AMPLIFICATION OF A NUCLEIC ACID
CN102719535B (en) * 2012-06-01 2014-02-26 南昌大学 Method for rapidly detecting listeria monocytogenes in food
CN102925588B (en) * 2012-08-02 2014-04-23 四川农业大学 LAMP kit used for rapidly detecting porcine cytomegalovirus
CN102936621B (en) * 2012-08-27 2014-06-11 上海交通大学 Bacillus cereus detection method and kit
CN102851381A (en) * 2012-09-21 2013-01-02 武汉真福医药科技发展有限公司 LAMP kit for rapid detection of Listeria monocytogenes
CN102864228A (en) * 2012-09-21 2013-01-09 武汉真福医药科技发展有限公司 Loop-mediated isothermal amplification (LAMP) kit for rapidly detecting vibrio parahaemolyticus
CN102851382A (en) * 2012-09-21 2013-01-02 武汉真福医药科技发展有限公司 LAMP kit for rapid detection of Shigella
CN103160606B (en) * 2013-04-08 2014-07-30 北京出入境检验检疫局检验检疫技术中心 LAMP (loop-mediated isothermal amplification) detection kit of vibrio cholerae and detection method thereof
CN103160604A (en) * 2013-04-08 2013-06-19 北京出入境检验检疫局检验检疫技术中心 LAMP (loop-mediated isothermal amplification) detection kit for Vibrio vulnificus and detection method using same
CN103243168A (en) * 2013-05-16 2013-08-14 汇智泰康生物技术(北京)有限公司 Kit for detecting vibrio parabaemolyticus in food and using method for kit
CN103320435B (en) * 2013-06-28 2015-04-22 华南理工大学 Listeria monocytogenes LAMP (loop-mediated isothermal amplification) detection kit containing internal standard
CN103484536B (en) * 2013-07-10 2015-03-04 东北农业大学 Kit used for rapid detection of enterobacter sakazakii in milk, and applications thereof
CN103421904B (en) * 2013-08-14 2015-04-29 华中农业大学 Listeria monocytogenes LAMP (loop-medicated isothermal amplification) visualized detection method
CN103614466B (en) * 2013-11-11 2015-08-26 宁波大学 The primer detected for the LAMP-LFD of Vibrio vulnificus and probe sequence
CN103571961B (en) * 2013-11-12 2015-04-15 光明乳业股份有限公司 Method, primer pair, target probe, internal standard probe and kit for detecting Cronobacter sakazakii
CN104212885B (en) * 2014-06-26 2016-06-22 舟山出入境检验检疫局综合技术服务中心 The LAMP kit of vibrio cholera in a kind of aquatic products
CN104293954A (en) * 2014-10-13 2015-01-21 河北省食品检验研究院 LAMP primer of staphylococcus aureus and application method of LAMP primer
CN104313173B (en) * 2014-11-11 2016-05-04 舟山市质量技术监督检测研究院 The real-time turbidity LAMP of Listeria Monocytogenes detection method
CN104328208A (en) * 2014-11-24 2015-02-04 武汉明曼基因工程有限公司 Rapid detection kit of Shigella and application of rapid detection kit
CN104911249A (en) * 2014-12-22 2015-09-16 浙江海隆生物科技有限公司 Kit for rapidly detecting staphylococcus aureus in milk animal and raw milk
CN104513857A (en) * 2014-12-22 2015-04-15 广东省微生物研究所 Loop-mediated isothermal amplification detection primer group, detection method and kit of vibrio parahaemolyticus
CN104593516A (en) * 2015-02-09 2015-05-06 江南大学 Isothermal amplification method for rapid detection of listeria monocytogenes
CN104862399B (en) * 2015-05-21 2018-06-19 渤海大学 Detect the PCR method and kit containing amplification interior label of bacillus cereus in food
CN111041114B (en) * 2015-09-02 2023-03-28 上海产业技术研究院 Rapid constant-temperature detection method for Listeria monocytogenes nucleic acid and application
CN105861702A (en) * 2016-05-16 2016-08-17 昆明理工大学 Specific gene of staphylococcus aureus and loop-mediated isothermal amplification kit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154451A (en) * 2010-12-30 2011-08-17 广东省微生物研究所 Loop-mediated isothermal amplification detection primer group, detection method and detection kit for enterobacter sakazakii
CN103243171A (en) * 2013-05-29 2013-08-14 光明乳业股份有限公司 Method for detecting cronobacter sakazakii as well as kit and primer thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Cronobacter sakazaiiATCC BAA-894 chromosome,complete genome;Kucerova,E.等;《Genbank database》;20130727;第1-2页 *
阪崎克罗诺杆菌TaqMan-MGB探针实时荧光PCR快速检测技术研究;黄焘等;《环境与职业医学》;20131125(第11期);第875-879页 *
阪崎肠杆菌环介导等温扩增检测方法建立;范宏英等;《中国公共卫生》;20110115(第01期);第31-33页 *

Also Published As

Publication number Publication date
CN111020047B (en) 2022-07-26
CN106434882B (en) 2020-02-21
CN111334595A (en) 2020-06-26
CN106434883B (en) 2020-02-21
CN106434888A (en) 2017-02-22
CN111020047A (en) 2020-04-17
CN111100906A (en) 2020-05-05
CN111057781B (en) 2022-07-26
CN106434889A (en) 2017-02-22
CN106434895A (en) 2017-02-22
CN106434891B (en) 2020-02-18
CN110938678A (en) 2020-03-31
CN110938676A (en) 2020-03-31
CN106434897A (en) 2017-02-22
CN106434899B (en) 2020-02-21
CN106434896A (en) 2017-02-22
CN111020009A (en) 2020-04-17
CN106434886B (en) 2020-01-21
CN106434898A (en) 2017-02-22
CN111041113A (en) 2020-04-21
CN111020008A (en) 2020-04-17
CN111041116B (en) 2022-07-22
CN111020046A (en) 2020-04-17
CN106434885B (en) 2020-02-14
CN111020008B (en) 2022-10-28
CN106434883A (en) 2017-02-22
CN111304348A (en) 2020-06-19
CN111041113B (en) 2022-10-21
CN111073955B (en) 2022-10-21
CN111041071A (en) 2020-04-21
CN111041112B (en) 2022-09-20
CN110951837B (en) 2022-08-26
CN110760569B (en) 2023-01-24
CN106434891A (en) 2017-02-22
CN106367492B (en) 2020-02-07
CN106434884A (en) 2017-02-22
CN110760570B (en) 2023-01-24
CN110938677A (en) 2020-03-31
CN110951841A (en) 2020-04-03
CN106434882A (en) 2017-02-22
CN111057780B (en) 2022-07-22
CN111304348B (en) 2022-07-26
CN110760569A (en) 2020-02-07
CN111020048B (en) 2023-03-10
CN111057779A (en) 2020-04-24
CN111020011A (en) 2020-04-17
CN111041115B (en) 2022-07-26
CN106434888B (en) 2020-02-21
CN110951840A (en) 2020-04-03
CN111073955A (en) 2020-04-28
CN111041116A (en) 2020-04-21
CN106434884B (en) 2020-02-21
CN106244706A (en) 2016-12-21
CN110964787A (en) 2020-04-07
CN106434899A (en) 2017-02-22
CN111041071B (en) 2022-10-21
CN111057778A (en) 2020-04-24
CN111041114A (en) 2020-04-21
CN106434895B (en) 2020-02-21
CN111057781A (en) 2020-04-24
CN111020048A (en) 2020-04-17
CN110964789A (en) 2020-04-07
CN111020010A (en) 2020-04-17
CN111073956B (en) 2022-09-20
CN106434885A (en) 2017-02-22
CN110964788A (en) 2020-04-07
CN106367492A (en) 2017-02-01
CN106367500A (en) 2017-02-01
CN111073989B (en) 2023-05-02
CN111100939A (en) 2020-05-05
CN110760570A (en) 2020-02-07
CN111041114B (en) 2023-03-28
CN111100939B (en) 2022-07-26
CN111020045A (en) 2020-04-17
CN111020049A (en) 2020-04-17
CN106367500B (en) 2020-02-21
CN111041112A (en) 2020-04-21
CN106434889B (en) 2020-06-09
CN111020010B (en) 2023-05-02
CN106434898B (en) 2020-02-21
CN111020009B (en) 2022-07-22
CN111073989A (en) 2020-04-28
CN111020049B (en) 2022-07-26
CN111057778B (en) 2022-07-26
CN111057779B (en) 2022-08-26
CN110938677B (en) 2022-07-22
CN106434896B (en) 2020-02-18
CN111073956A (en) 2020-04-28
CN106434886A (en) 2017-02-22
CN106434897B (en) 2020-02-21
CN111020045B (en) 2022-10-21
CN110964788B (en) 2022-08-26
CN106244706B (en) 2020-01-10
CN110964787B (en) 2022-08-26
CN110951837A (en) 2020-04-03
CN111057780A (en) 2020-04-24
CN110964786A (en) 2020-04-07
CN110938676B (en) 2022-07-26
CN111041115A (en) 2020-04-21
CN110938678B (en) 2022-08-26

Similar Documents

Publication Publication Date Title
CN110964786B (en) Rapid constant-temperature detection method, primer group and kit for cronobacter sakazakii
CN111073986B (en) Rapid constant-temperature detection method for salmonella, primer group and application
CN111073987B (en) Rapid constant-temperature detection method, primer group and kit for yersinia enterocolitica
CN111073985B (en) Rapid constant-temperature detection method, primer group and kit for salmonella

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant