CN106434898B - Method, primer and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature - Google Patents

Method, primer and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature Download PDF

Info

Publication number
CN106434898B
CN106434898B CN201610780457.8A CN201610780457A CN106434898B CN 106434898 B CN106434898 B CN 106434898B CN 201610780457 A CN201610780457 A CN 201610780457A CN 106434898 B CN106434898 B CN 106434898B
Authority
CN
China
Prior art keywords
primer
yersinia pseudotuberculosis
upstream
downstream
genome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610780457.8A
Other languages
Chinese (zh)
Other versions
CN106434898A (en
Inventor
李园园
李雪玲
韦朝春
贾犇
刘伟
陆长德
李亦学
曹永梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Wang Wang Food Group Co Ltd
Shanghai Industrial Institute For Research And Technology
Original Assignee
Shanghai Wang Wang Food Group Co Ltd
Shanghai Industrial Institute For Research And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Wang Wang Food Group Co Ltd, Shanghai Industrial Institute For Research And Technology filed Critical Shanghai Wang Wang Food Group Co Ltd
Priority to CN202010035792.1A priority Critical patent/CN111100906A/en
Priority to CN202010036128.9A priority patent/CN111020046A/en
Publication of CN106434898A publication Critical patent/CN106434898A/en
Application granted granted Critical
Publication of CN106434898B publication Critical patent/CN106434898B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a method, a primer group and a kit for rapidly detecting yersinia pseudotuberculosis at constant temperature. The method comprises the following steps: extracting genome DNA from a sample to be detected; carrying out constant-temperature amplification reaction in an enzyme reaction system by taking the genome DNA as a template and a primer group capable of amplifying the specific sequence of the Yersinia pseudotuberculosis as a primer; and determining whether the sample to be detected has the yersinia pseudotuberculosis or not by judging whether the reaction result is positive or not. The detection method has the advantages of high sensitivity and high specificity, short detection time, simple result judgment, convenient operation, low cost and wide application prospect.

Description

Method, primer and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature
Technical Field
The invention belongs to the technical field of biology, and particularly relates to a method, primers and a kit for rapidly detecting yersinia pseudotuberculosis at a constant temperature.
Background
Yersinia pseudotuberculosis (Yersinia pseudotuberculosis) belongs to Yersinia genus of Enterobacteriaceae, is an intestinal pathogenic bacterium which is co-infected with human and livestock, and can live in a low-temperature environment, so that refrigerator-stored food is an important infection source of the bacterium infection in modern society, and can cause gastrointestinal symptoms, mesenteric lymphadenitis and the like. The bacterial infection is mainly sporadic in the population and occasionally causes outbreaks of different scales. Because the clinical symptoms are not typical, the diagnosis is not clear and even misdiagnosis is easy to cause to delay treatment. Therefore, it is very important to prevent and detect the bacteria.
The traditional detection method for the yersinia pseudotuberculosis has the defects of long detection period, relatively complex operation and low detection efficiency, and is difficult to meet the requirements of high flux, high sensitivity, high specificity, rapidness and convenience in the detection process of the food-borne pathogenic bacteria in the modern society. In recent years, researchers have developed detection means such as PCR with the development of nucleic acid molecule detection technology, but this method requires a special detection instrument, and is not suitable for real-time in-situ detection widely used in the basic detection department, particularly in the production line of enterprises. In order to ensure food safety, a rapid, simple and accurate method for detecting yersinia pseudotuberculosis in food is urgently needed.
Loop-mediated isothermal amplification (LAMP) is a novel isothermal Nucleic acid amplification method developed in recent years, which designs 4 specific primers (including upstream and downstream outer primers F3 and B3, and upstream and downstream inner primers FIP and BIP, wherein FIP is composed of F1C and F2, and BIP is composed of B1C and B2) for 6 regions of a target sequence, and completes the Nucleic acid amplification reaction by incubating for about 60min at an isothermal condition, and generates a visible reaction by-product, white magnesium pyrophosphate precipitate (see Notomi T, OkayamaH, Masubuchi H, Yonekawa T, Watanabe K, Nuino N, Hase T. loop-mediated isothermal amplification reaction (2000, J8512; 63). The technology can be completed at a constant temperature without a PCR instrument or a fluorescent quantitative PCR instrument, can judge the reaction result by naked eyes, and has the advantages of high sensitivity, strong specificity, short reaction time, convenient operation, low cost and the like.
Primer design is the most critical step in LAMP technology, and the conventional method is to introduce the acknowledged specific gene of a certain organism to be detected into an online website (http:// primer explorer. jp/e) designed by LAMP primers, and set relevant parameters to generate a primer group. That is, the user must first ensure that the target gene is a specific sequence of the species to be tested. Taking the invention patents CN101182575B and CN 101200760A as examples, the detection of Yersinia pseudotuberculosis is carried out by LAMP technology aiming at specific sequences of Yersinia pseudotuberculosis, namely 16S-23S interval and gyrB gene, reported in literature. However, the so-called "recognized specific genes" are often based on a delayed knowledge and are not necessarily updated based on the ever-increasing genome data of microorganisms, so that primers obtained based on the target gene sequences are not necessarily able to ensure their specificity and/or versatility in practical use. The present invention, as shown in Table 1, shows the problems of insufficient primer specificity and unsuitability of versatility in the prior art. That is, the yersinia pseudotuberculosis detection sequence used in the prior art method is not actually specific to yersinia pseudotuberculosis, that is, it is possible that yersinia pseudotuberculosis is erroneously identified as yersinia pseudotuberculosis. Similar problems exist in the confirmation of the versatility, i.e., the possibility of missing part of the strains of Yersinia pseudotuberculosis. Therefore, a Yersinia pseudotuberculosis detection method capable of ensuring specificity and universality is urgently needed in the industry, and meanwhile, the requirements of basic detection departments on rapidness and convenience are met, and real-time on-site detection can be conveniently developed in an enterprise production line.
Disclosure of Invention
The invention aims to overcome the defects of insufficient primer universality and specificity in the primer design of the LAMP technology, fully utilizes abundant microbial genome sequence information in the current public data resources and corresponding sequence analysis tools, designs a primer group for specifically identifying the Yersinia pseudotuberculosis, and forms a high-sensitivity and high-specificity detection kit on the basis. The invention designs Yersinia pseudotuberculosis LAMP primers based on microbial genome data resources (data 8/5/2013) in a GenBank database, and provides a method, a primer group and a kit for rapid isothermal amplification detection of Yersinia pseudotuberculosis. The detection method for detecting the yersinia pseudotuberculosis has the advantages of high sensitivity and specificity, short detection time, simple result judgment, convenience in operation and low cost.
The invention provides a method for rapidly detecting Yersinia pseudotuberculosis strains, which comprises the following steps:
(1) extracting genome DNA from a sample to be detected;
(2) carrying out constant-temperature amplification reaction under an enzyme reaction system by taking the genome DNA as a template and a primer group capable of amplifying the specific base sequence of the Yersinia pseudotuberculosis genome as a primer;
(3) and determining whether the sample to be detected has the yersinia pseudotuberculosis or not by judging whether the reaction result is positive or not.
The method for detecting the yersinia pseudotuberculosis strain at constant temperature extracts genome DNA from a sample to be detected, takes the genome DNA as a template and takes a yersinia pseudotuberculosis specific amplification primer group as a primer to carry out constant-temperature amplification reaction, and then determines whether the yersinia pseudotuberculosis exists in the sample to be detected by judging whether the reaction result is positive or not. Wherein, the enzyme reaction system includes but is not limited to DNA polymerase reaction system.
In the invention, the genome-specific alkali sequence of the Yersinia pseudotuberculosis is the sequence of 768567-768785 bp of the Yersinia pseudotuberculosis with GI number of 153946813.
In the present invention, the primer set capable of amplifying the Yersinia pseudotuberculosis genome-specific nucleotide sequence is a part of the nucleic acid sequence of 768567 to 768785bp of the genome (GI No. 153946813) or a part of the complementary strand thereof. Wherein the Yersinia pseudotuberculosis genome-specific base sequence refers to a base sequence that is unique to the Yersinia pseudotuberculosis genome and is not contained in the genomes of other microorganisms.
Wherein the primer group capable of amplifying the Yersinia pseudotuberculosis genome-specific base sequence includes, but is not limited to, primer group A, or any one selected from the primer group having a homology of 50% or more with a single sequence in the sequence of the primer group or the complementary strand sequence thereof.
Primer set a:
upstream outer primer F3_ a: 5'-GTTGTTGTATGAATTGCTGG-3' (SEQ ID NO: 1);
downstream outer primer B3_ a: 5'-GCGGATAACTCCTGTTCT-3' (SEQ ID NO: 2);
upstream inner primer FIP _ A: 5'-GTAACGCTGAAATACCGAACTGTAAATGGTTGATGAAGGTGG-3'
(SEQ ID NO:3);
The downstream inner primer BIP _ A: 5'-CACCTTTATCTCTGATAATTTCCGCCTTTCCAGCTCATGTTGAT-3'
(SEQ ID NO:4)。
In the present invention, the primer set capable of amplifying the specific base sequence of the yersinia pseudotuberculosis genome may further include a primer set having a homology of 50% or more with a single sequence in the aforementioned sequences of each primer set or the complementary strand sequence thereof, and the primer set includes, but is not limited to, the following primer set B:
primer set B:
upstream outer primer F3_ B: 5'-GAATTGCTGGAAATGGTTG-3' (SEQ ID NO: 5) (50% homology to primer F3_ A5'-GTTGTTGTATGAATTGCTGG-3');
downstream outer primer B3_ B: 5'-GCGGATAACTCCTGTTCT-3' (SEQ ID NO: 6);
upstream inner primer FIP _ B: 5'-GTAACGCTGAAATACCGAACTGTATGAAGGTGGTTTGAAACG-3'
(SEQ ID NO:7);
The downstream inner primer BIP _ B: 5'-CACCTTTATCTCTGATAATTTCCGCCTTTCCAGCTCATGTTGAT-3'
(SEQ ID NO:8)。
In the method of the present invention, the primer set capable of amplifying a Yersinia pseudotuberculosis genome-specific base sequence may or may not comprise a loop primer. The loop primer may be one or more, including primers LF and/or LB. The primer group capable of amplifying the specific base sequence of the Yersinia pseudotuberculosis genome is selected from any one of the following primer groups A 'and B'; or any one selected from the group consisting of primers having a homology of 50% or more with respect to the sequences of the primer groups A ', B' or the complementary strand sequences thereof:
primer set a':
upstream outer primer F3_ a: 5'-GTTGTTGTATGAATTGCTGG-3', respectively;
downstream outer primer B3_ a: 5'-GCGGATAACTCCTGTTCT-3', respectively;
upstream inner primer FIP _ A: 5'-GTAACGCTGAAATACCGAACTGTAAATGGTTGATGAAGGTGG-3', respectively;
the downstream inner primer BIP _ A: 5'-CACCTTTATCTCTGATAATTTCCGCCTTTCCAGCTCATGTTGAT-3', respectively;
upstream loop primer LF _ a: 5'-TATGCTCATCCAGGCGTTTC-3' (SEQ ID NO: 9);
and/or, the downstream loop primer LB _ A: 5'-TGATGGCGATGGGGAAAATT-3' (SEQ ID NO: 10);
a primer set B':
upstream outer primer F3_ B: 5'-GAATTGCTGGAAATGGTTG-3', respectively;
downstream outer primer B3_ B: 5'-GCGGATAACTCCTGTTCT-3', respectively;
upstream inner primer FIP _ B: 5'-GTAACGCTGAAATACCGAACTGTATGAAGGTGGTTTGAAACG-3', respectively;
the downstream inner primer BIP _ B: 5'-CACCTTTATCTCTGATAATTTCCGCCTTTCCAGCTCATGTTGAT-3', respectively;
upstream loop primer LF _ B: 5'-GGGATTTCAATATGCTCATCCAG-3' (SEQ ID NO: 11);
and/or, the downstream loop primer LB _ B: 5'-TGATGGCGATGGGGAAAATT-3' (SEQ ID NO: 12).
In specific embodiments, for example, the primer sets a 'and B' may comprise only one forward loop primer, only one downstream loop primer, or both an upstream loop primer and a downstream loop primer.
In a specific embodiment (including a loop primer), the enzyme reaction system for isothermal amplification is as follows: 1 XBstDNA polymerase reaction buffer, 2-9mmol/L Mg2+(MgSO4Or MgCl2) 1.0-1.6mmol/L dNTP, 0.8-2.0 mu mol/L FIP and BIP primers, 0.15-0.3 mu mol/L F3 and B3 primers, 0.4-1.0 mu mol/L LF and/or LB primers, 0.16-0.64U/mu L Bst DNA polymerase and 0-1.5mol/L betaine. In another embodiment (without loop primer), the enzyme reaction system for isothermal amplification is: 1 XBst DNA polymerase reaction buffer, 2-9mmol/L Mg2+(MgSO4Or MgCl2) 1.0-1.6mmol/L dNTP, 0.8-2.0 mu mol/L FIP and BIP primers, 0.15-0.3 mu mol/L F3 and B3 primers, 0.16-0.64U/mu L Bst DNA polymerase and 0-1.5mol/L betaine. The loop primer contributes to the improvement of the reaction efficiency. For example, 1 XBst DNA polymerase reaction buffer can be 1 × Thermopol reaction buffer containing 20mmol/L Tris-HCl (pH8.8), 10mmol/L KCl, 10mmol/L (NH4)2SO4,0.1%Triton X-100,2mMMgSO4. MgSO in 1 XBst DNA polymerase reaction buffer4And magnesium ion Mg in enzyme reaction system2+And (6) merging.
In the method, the reaction procedure of the constant-temperature amplification reaction is incubation at ① 60-65 ℃ for 10-90 min, preferably 10-60 min, and termination reaction at ② 80 ℃ for 2-20 min.
In the method of the present invention, the detection method includes, but is not limited to, electrophoresis detection, turbidity detection, color detection, or the like. The electrophoresis detection is preferably a gel electrophoresis detection method, and may be agarose gel or polyacrylamide gel. In the electrophoresis detection result, if the electrophoresis chart shows a characteristic step-shaped strip, the sample to be detected is positive to the Yersinia pseudotuberculosis and contains the Yersinia pseudotuberculosis; and if the electrophoretogram does not present a characteristic step-shaped strip, the sample to be detected is negative to the Yersinia pseudotuberculosis. The turbidity detection is to detect turbidity by visual observation or a turbidity meter, and if the detection tube is obviously turbid, the sample to be detected is positive to the yersinia pseudotuberculosis and contains the yersinia pseudotuberculosis; if no turbidity is found, the sample to be detected is negative to the Yersinia pseudotuberculosis. Or the bottom of the reaction tube can be visually observed whether the precipitate exists or not after centrifugation, if the precipitate exists at the bottom of the reaction tube, the sample to be detected is positive to the Yersinia pseudotuberculosis and contains the Yersinia pseudotuberculosis; if no precipitate is formed at the bottom of the reaction tube, the sample to be detected is negative to the Yersinia pseudotuberculosis.
The color development detection is to add color development reagent, including but not limited to calcein (50 μ M) or SYBRGreenI (30-50X), or hydroxynaphthol blue (i.e. HNB, 120-. When calcein or SYBR Green I is used as a color developing agent, if the color is orange after reaction, the sample to be detected is negative to Yersinia pseudotuberculosis; if the color after the reaction is green, the sample to be detected is positive to the Yersinia pseudotuberculosis and contains the Yersinia pseudotuberculosis. When hydroxyl naphthol blue is used as a color developing agent, if the color after reaction is violet, the sample to be detected is negative to Yersinia pseudotuberculosis; and if the color after the reaction is sky blue, the sample to be detected is positive to the Yersinia pseudotuberculosis. The chromogenic detection can be used for detecting the reaction result in real time or at the end point through a detection instrument besides observing the reaction result through naked eyes, and by reasonably setting the threshold value of the negative reaction, when the reaction result of the sample to be detected is lower than or equal to the threshold value, the sample to be detected is negative to the yersinia pseudotuberculosis; and when the reaction result of the sample to be detected is greater than the threshold value, determining that the sample to be detected is positive in Yersinia pseudotuberculosis. The detection instrument comprises but is not limited to a fluorescence spectrophotometer, a fluorescence quantitative PCR instrument, a constant temperature amplification microfluidic chip nucleic acid analyzer, a Genie II isothermal amplification fluorescence detection system and the like.
In the color development detection, if calcein or hydroxynaphthol blue is used as a color developing agent, the color developing agent can be added before the constant-temperature amplification reaction, or can be added after the constant-temperature amplification reaction is completed, preferably before the constant-temperature amplification reaction, so that the possibility of reaction pollution can be effectively reduced. If SYBR Green I is adopted as a color developing agent, the SYBR Green I is added after the isothermal amplification reaction is finished. If calcein is used as color-developing agent, 50 μ M calcein is added into enzyme reaction system, and 0.6-1mM [ Mn ] is added2+]For example, 0.6-1mM MnCl2
The invention also provides a primer used in the method for detecting the Yersinia pseudotuberculosis strain at constant temperature. The primer comprises a primer group capable of amplifying specific base sequences of the Yersinia pseudotuberculosis genome, and the sequence of the primer is part of the nucleic acid sequence with the position of 768567-768785 bp of the Yersinia pseudotuberculosis genome with the GI number of 153946813 or part of the complementary strand of the Yersinia pseudotuberculosis genome.
Wherein the primer group capable of amplifying the Yersinia pseudotuberculosis genome-specific base sequence is selected from any one of the following primer groups, or from any one of the primer groups having a homology of 50% or more with a single sequence in the sequences of the primer groups or the complementary strand sequences thereof. Wherein, the primer group includes but is not limited to the following primer group A. The primer set having a homology of 50% or more with a single sequence in the aforementioned primer set sequence or its complementary strand sequence includes, but is not limited to, the following primer set B.
Primer set a:
upstream outer primer F3_ a: 5'-GTTGTTGTATGAATTGCTGG-3', respectively;
downstream outer primer B3_ a: 5'-GCGGATAACTCCTGTTCT-3', respectively;
upstream inner primer FIP _ A: 5'-GTAACGCTGAAATACCGAACTGTAAATGGTTGATGAAGGTGG-3', respectively;
the downstream inner primer BIP _ A: 5'-CACCTTTATCTCTGATAATTTCCGCCTTTCCAGCTCATGTTGAT-3' are provided.
Primer set B:
upstream outer primer F3_ B: 5'-GAATTGCTGGAAATGGTTG-3', respectively;
downstream outer primer B3_ B: 5'-GCGGATAACTCCTGTTCT-3', respectively;
upstream inner primer FIP _ B: 5'-GTAACGCTGAAATACCGAACTGTATGAAGGTGGTTTGAAACG-3', respectively;
the downstream inner primer BIP _ B: 5'-CACCTTTATCTCTGATAATTTCCGCCTTTCCAGCTCATGTTGAT-3' are provided.
In the primers used in the method for detecting Yersinia pseudotuberculosis at constant temperature, the primer group capable of amplifying Yersinia pseudotuberculosis genome-specific base sequences may or may not comprise one or more loop primers; the loop primer is LF and/or LB. The primer group capable of amplifying the specific base sequence of the Yersinia pseudotuberculosis genome is selected from any one of the following primer groups A 'and B'; or any one selected from the group consisting of primers having a homology of 50% or more with respect to the sequences of the primer groups A ', B' or the complementary strand sequences thereof:
primer set a':
upstream outer primer F3_ a: 5'-GTTGTTGTATGAATTGCTGG-3', respectively;
downstream outer primer B3_ a: 5'-GCGGATAACTCCTGTTCT-3', respectively;
upstream inner primer FIP _ A: 5'-GTAACGCTGAAATACCGAACTGTAAATGGTTGATGAAGGTGG-3', respectively;
the downstream inner primer BIP _ A: 5'-CACCTTTATCTCTGATAATTTCCGCCTTTCCAGCTCATGTTGAT-3', respectively;
upstream loop primer LF _ a: 5'-TATGCTCATCCAGGCGTTTC-3', respectively;
and/or, the downstream loop primer LB _ A: 5'-TGATGGCGATGGGGAAAATT-3', respectively;
a primer set B':
upstream outer primer F3_ B: 5'-GAATTGCTGGAAATGGTTG-3', respectively;
downstream outer primer B3_ B: 5'-GCGGATAACTCCTGTTCT-3', respectively;
upstream inner primer FIP _ B: 5'-GTAACGCTGAAATACCGAACTGTATGAAGGTGGTTTGAAACG-3', respectively;
the downstream inner primer BIP _ B: 5'-CACCTTTATCTCTGATAATTTCCGCCTTTCCAGCTCATGTTGAT-3', respectively;
upstream loop primer LF _ B: 5'-GGGATTTCAATATGCTCATCCAG-3', respectively;
and/or, the downstream loop primer LB _ B: 5'-TGATGGCGATGGGGAAAATT-3' are provided.
In a specific embodiment, the primer sets a 'and B' may comprise only one upstream loop primer, only one downstream loop primer, or both an upstream loop primer and a downstream loop primer. In a specific embodiment, the primers are respectively FIP, BIP, F3, B3, LF and LB primers or primers with homology of 50% or more with the above primer sequence or single primer in the complementary strand sequence.
The invention also provides a kit used in the method for detecting the Yersinia pseudotuberculosis strain at constant temperature, which comprises the primer group capable of amplifying the specific base sequence of the Yersinia pseudotuberculosis genome. In the kit of the present invention, the primer set capable of amplifying the Yersinia pseudotuberculosis genome-specific base sequence includes, but is not limited to, a primer sequence including a part of a nucleic acid sequence at position 768567-768785 bp of a genome (GI No. 153946813) or a part of a complementary strand thereof; the primer includes but is not limited to the primer set a. But not limited to, a primer set having a homology of 50% or more with the aforementioned primer sequence or a single sequence in the complementary strand sequence thereof; including but not limited to primer set B.
In the kit of the present invention, the primer set capable of amplifying the Yersinia pseudotuberculosis genome-specific base sequence may or may not comprise one or more loop primers; the loop primer serves as an optional component. The loop primer is LF and/or LB. The primer set comprising the loop primer LF and/or LB includes, but is not limited to, primer sets A ', B', etc. In a specific embodiment, the kit of the invention may comprise 0.4-1.0. mu. mol/L of LF and/or LB loop primers. In a specific embodiment, the sequences of the primer sets are respectively the primers shown by FIP, BIP, F3, B3, LF and LB, or the primers with 50% or more homology to the single primer of the aforementioned sequence or its complementary strand sequence.
The kit also comprises Bst DNA polymerase buffer solution, Bst DNA polymerase, dNTP solution and Mg2+(MgSO4Or MgCl2) And betaine. In a specific embodiment, the enzyme reaction system of the kit comprises 1 XBst DNA polymerase reaction buffer solution and 2-9mmol/L Mg2+(MgSO4Or MgCl2) 1.0-1.6mmol/LdNTP, 0.8-2.0 mu mol/L FIP and BIP primers, 0.15-0.3 mu mol/L F3 and B3 primers, 0.16-0.64U/mu L Bst DNA polymerase and 0-1.5mol/L betaine. For example, 1 XBst DNA polymerase reaction buffer can be 1 × Thermopol reaction buffer containing 20mmol/L Tris-HCl (pH8.8), 10mmol/L KCl, 10mmol/L (NH4)2SO4,0.1%TritonX-100,2mM MgSO4. MgSO in 1 XBst DNA polymerase reaction buffer4And magnesium ion Mg in enzyme reaction system2+And (6) merging.
The kit of the invention also comprises a positive control template. In a specific embodiment, the positive control template includes, but is not limited to, Yersinia pseudotuberculosis whole genomic DNA, partial genomic DNA, or a vector comprising Yersinia pseudotuberculosis whole genomic DNA or partial genomic DNA.
The kit of the invention further comprises a negative control template, and the negative control template comprises but is not limited to double distilled water.
The kit further comprises a color developing agent, wherein the color developing agent comprises but is not limited to calcein, SYBR Green I or hydroxynaphthol blue. When the color developing agent is calcein, the kit also comprises [ Mn2+]For example, MnCl2
The kit of the invention also comprises double distilled water.
The kit of the invention also comprises a nucleic acid extraction reagent.
The invention also provides a carrier, which comprises any one primer selected from the primer groups A, B, A 'and B'. The vector contains a DNA sequence with the specificity of the Yersinia pseudotuberculosis, so the vector can be applied to the research fields of microbial taxonomy, comparative genomics, evolution and the like, and the application fields of microbial detection and the like. The vector may be, but is not limited to, a plasmid vector (e.g., pBR322, pUC18, pUC19, pBluescript M13, Ti plasmid, etc.), a viral vector (e.g., lambda phage, etc.), and an artificial chromosome vector (e.g., bacterial artificial chromosome BAC, yeast artificial chromosome YAC, etc.). For example, vector pBR322-A containing any one of the primers of primer set A, vector pBR322-B containing any one of the primers of primer set B, and vector pBR322-B 'containing any one of the primers of primer set B' … …. A vector lambda phage-A containing any one of the primers of the primer set A, a vector lambda phage-B containing any one of the primers of the primer set B, … … a vector lambda phage-B 'containing any one of the primers of the primer set B', and the like.
The invention also provides application of the primers selected from any one of the primer groups A, B, A 'and B' in constant-temperature detection of Yersinia pseudotuberculosis.
The invention also provides application of the kit in constant-temperature detection of Yersinia pseudotuberculosis.
The invention also provides application of the vector in constant-temperature detection of Yersinia pseudotuberculosis.
The invention provides a simple, rapid and sensitive method for detecting yersinia pseudotuberculosis, a primer/primer group and a detection reagent/kit for the technical field of food safety detection, and has great significance for food safety in China. The beneficial effects of the invention include: the detection method of the yersinia pseudotuberculosis has the advantages of strong specificity, high sensitivity, short detection time, simple result judgment, convenient operation, low cost and the like. Compared with the current common detection method, the constant temperature amplification method adopted by the invention can be carried out under the constant temperature condition, only a simple constant temperature device is needed, expensive instruments in PCR experiments are not needed, and the steps of carrying out electrophoresis detection on the amplified products and the like are not needed, so the method is very suitable for being widely applied to various social fields including basic food safety detection departments for popularization and use, and can be fully applied even under the environment with relatively insufficient professional knowledge and skill base of molecular biology. Any combination of the above preferred conditions is within the scope of the present invention based on the general knowledge in the art.
Drawings
FIG. 1 shows the specificity of the Yersinia pseudotuberculosis isothermal detection method of example 7 of the present invention.
FIG. 2 shows the sensitivity of the Yersinia pseudotuberculosis detection method of example 8 of the present invention.
Detailed Description
The present invention will be described in further detail with reference to the following specific examples and drawings, and the present invention is not limited to the following examples. Variations and advantages that may occur to those skilled in the art may be incorporated into the invention without departing from the spirit and scope of the inventive concept, and the scope of the appended claims is intended to be protected. The procedures, conditions, reagents, experimental methods and the like for carrying out the present invention are general knowledge and common general knowledge in the art except for the contents specifically mentioned below, and the present invention is not particularly limited.
Examples 1-6 Yersinia pseudotuberculosis isothermal reaction System and detection method
The detection is carried out according to the following steps (1) to (3):
(1) extraction of genomic DNA
The Yersinia pseudotuberculosis strain for detection is from China medical bacterial strain preservation management center, and is numbered CMCC 53504. 1mL of the bacterial culture was used to extract genomic DNA and DNA OD using a bacterial nucleic acid extraction kit from Beijing Tiangen bioengineering Co260/OD280At a concentration of 1.8, 18.94 ng/. mu.L.
(2) The method comprises the steps of taking the genomic DNA of the yersinia pseudotuberculosis to be detected as a template, respectively adopting self-matched kits (shown in table 2 and table 3), preparing a reaction system according to the conditions in table 3, and carrying out constant-temperature amplification reaction by taking a specific amplification primer group of the yersinia pseudotuberculosis as a primer. The primers used in examples 1 to 6 were primer set A, A '(1 loop primer), A' (2 loop primer), B, B '(2 loop primer), and B' (1 loop primer), respectively.
(3) The amplification results were confirmed by electrophoresis, turbidity or color development under the conditions shown in Table 3.
As can be seen from Table 3, the detection method and the primer set and reaction system adopted by the detection method can well amplify specific fragments of Yersinia pseudotuberculosis and obtain detection results. In addition, when the detection is performed by using a detector, the detection effect is good when the reaction time is shortened to 10min (as in example 6). Therefore, the present invention can be applied to the detection of the presence or absence of Yersinia pseudotuberculosis in a sample.
Example 7 specific detection of Yersinia pseudotuberculosis
Yersinia pseudotuberculosis 29 strains (1 to 24, 26 to 30 in Table 4 and FIG. 1) were collected, cultured separately from Yersinia pseudotuberculosis strains (25 in Table 4 and FIG. 1), 1mL of the bacterial solution was taken, bacterial DNA was extracted using kit IA, LAMP amplification (primer set A) and visualization by addition of a color-developing agent were carried out separately with reference to the reaction system and conditions of example 1.
The results are shown in Table 4 and FIG. 1, in FIG. 1, 1-24 are Staphylococcus aureus, Staphylococcus aureus subspecies aureoflavus, Staphylococcus epidermidis, Rhodococcus equi, Bacillus cereus, Bacillus mycoides, Listeria monocytogenes, Listeria inowhose, Listeria ehelii, Salmonella enterica subspecies enterica, Salmonella enteritidis, Salmonella typhimurium, Salmonella paratyphi B, Shigella dysenteriae, Shigella boydii, Shigella flexneri, Escherichia coli (containing Clostridium botulinum type A gene), pathogenic Escherichia coli, Escherichia coli diarrheal, enterotoxigenic Escherichia coli, Escherichia coli hemorrhagic, Cronobacter sakazakii and Yersinia enterocolitica, 26-30 are Vibrio vulnificus, Vibrio parahaemolyticus, and Yersinia enterocolitica, respectively, Vibrio freundii, vibrio cholerae and shigella sonnei, NTC: negative control, 25: yersinia pseudotuberculosis. In FIG. 1, the product after the amplification reaction of only Yersinia pseudotuberculosis strain appeared in bright green color as a positive result, as shown in the 25 th tube. The products of other Yersinia pseudotuberculosis strains and the negative control amplification reaction are orange, and are negative results, as shown in tubes No. 1-24, No. 26-30 and NTC negative control tube.
As can be seen from the results shown in FIG. 1 and Table 4, the detection kit and the detection method of the present invention have good Yersinia pseudotuberculosis strain specificity, i.e., only Yersinia pseudotuberculosis strains are amplified positively, and other Yersinia pseudotuberculosis strains are negative.
Preparing a detection kit, wherein the primers adopted in the kit are respectively a primer group B and primer groups A 'and B', and the same detection results are obtained according to the specific detection method, namely, the products of the Yersinia pseudotuberculosis strain and the negative control amplification reaction are negative results, and the products of the Yersinia pseudotuberculosis strain after the amplification reaction are positive results.
In addition, theoretical analysis was performed on the specificity of each primer set a, B, a ', B' according to the method described in table 1, and as a result, it was found that, when at most three mismatches were allowed for each primer, at most five primers were simultaneously aligned to yersinia non-pseudotuberculosis in each primer set, indicating that the specificity of each primer set was better.
Example 8 sensitivity detection
DNA of bacterial CMCC53504 was extracted as in example 1, and subjected to LAMP amplification (primer set A) and visualization by adding a color-developing agent, respectively, under the conditions of the kit IB, 50ng, 5ng, 500pg, 50pg, 5pg, 500fg and 50fg DNA gradient addition reaction system, and other reaction conditions, as in example 1 of Table 3. As shown in fig. 2, 1-7 are 50ng, 5ng, 500pg, 50pg, 5pg, 500fg and 50fg, respectively, ntc: and (5) negative control. In FIG. 2, the reaction products of 50ng, 5ng, and 500pg treatments appeared bright green and as positive results, and the reaction products of 50pg, 5pg, 500fg, and 50fg treatments and the negative control appeared orange and as negative results. The test results showed that each reaction tube contained a minimum of 500pg (about 10 pg equivalent)5Individual bacteria) can still be detected.
According to the detection method, the DNA as low as 5 pg-500 fg in each reaction tube can still be detected by using the primer group B, the primer groups A 'and B' respectively according to the other steps and conditions.
Example 9 commonality testing
Theoretical analysis of the versatility of each of the primer sets A, B and A ', B' was carried out according to the method described in Table 1, and it was found that the primer regions of each of the primer sets perfectly matched with 4 strains of Yersinia pseudotuberculosis (GI Nos. 51594359, 153946813, 170022262 and 186893344, respectively), and could be theoretically used for the detection of the above 4 strains of Yersinia pseudotuberculosis, indicating that the versatility of each of the primer sets was good.
TABLE 1 analysis of the versatility and specificity of primers in the existing detection methods for Yersinia pseudotuberculosis
Figure BDA0001099853460000111
Note: a) the sequence between primers F3 and B3 in the patent is subjected to Bowtie alignment with 4 genomes of Yersinia pseudotuberculosis (GI No. 153946813, 51594359, 170022262 and 186893344 respectively), and the position of a detection region in the GI No. 153946813 genome is determined. b) And performing Blast comparison on the detection region sequences in public database resources, wherein the primer regions are completely matched and have good universality. c) Performing Blast comparison on the detection region sequence in public database resources, wherein the higher the matching degree of the primer region is, the worse the specificity is; if the primers can not be simultaneously compared with the Yersinia pseudotuberculosis strain, the specificity is good.
TABLE 2 types and main components of kit for isothermal detection of Yersinia pseudotuberculosis
Figure BDA0001099853460000112
TABLE 3 examples 1-6 reaction conditions and test results in the method for isothermal detection of Yersinia pseudotuberculosis of the present invention
Figure BDA0001099853460000122
TABLE 4 strains used in the test and the results
Figure BDA0001099853460000132
Figure BDA0001099853460000141
Note: a) CGMCC: china general microbiological culture Collection center, CICC: china center for preservation and management of industrial microbial strains, CMCC: china medical bacteria strain preservation and management center. b) +: positive result, -: and (5) negative result.
Figure IDA0001099853530000011
Figure IDA0001099853530000021
Figure IDA0001099853530000031

Claims (5)

1. A rapid isothermal detection method of yersinia pseudotuberculosis for non-diagnostic purposes, comprising the steps of:
(1) extracting genome DNA from a sample to be detected;
(2) taking the genome DNA as a template, taking a primer group capable of amplifying the specific base sequence of the Yersinia pseudotuberculosis genome as a primer, and carrying out constant-temperature amplification reaction in an enzyme reaction system;
(3) determining whether the sample to be detected has yersinia pseudotuberculosis or not by judging whether the reaction result is positive or not;
wherein the Yersinia pseudotuberculosis genome specific alkali sequence is 768567-768785 bp bit sequence of the Yersinia pseudotuberculosis genome with GI number of 153946813;
wherein the primer group capable of amplifying the specific base sequence of the Yersinia pseudotuberculosis genome is a primer group A or a primer group A';
primer set a:
upstream outer primer F3_ a: 5'-GTTGTTGTATGAATTGCTGG-3' (SEQ ID NO: 1);
downstream outer primer B3_ a: 5'-GCGGATAACTCCTGTTCT-3' (SEQ ID NO: 2);
upstream inner primer FIP _ A: 5'-GTAACGCTGAAATACCGAACTGTAAATGGTTGATGAAGGTGG-3' (SEQ ID NO: 3);
the downstream inner primer BIP _ A: 5'-CACCTTTATCTCTGATAATTTCCGCCTTTCCAGCTCATGTTGAT-3' (SEQ ID NO: 4);
primer set a':
upstream outer primer F3_ a: 5'-GTTGTTGTATGAATTGCTGG-3', respectively;
downstream outer primer B3_ a: 5'-GCGGATAACTCCTGTTCT-3', respectively;
upstream inner primer FIP _ A: 5'-GTAACGCTGAAATACCGAACTGTAAATGGTTGATGAAGGTGG-3', respectively;
the downstream inner primer BIP _ A: 5'-CACCTTTATCTCTGATAATTTCCGCCTTTCCAGCTCATGTTGAT-3', respectively;
upstream loop primer LF _ a: 5'-TATGCTCATCCAGGCGTTTC-3' (SEQ ID NO: 9);
and/or, the downstream loop primer LB _ A: 5'-TGATGGCGATGGGGAAAATT-3' (SEQ ID NO: 10).
2. The method of claim 1, wherein in step (2), the enzymatic reaction system comprises: 1 XBstDNA polymerase reaction buffer, 2-9mmol/L Mg2+1.0-1.6mmol/L dNTP, 0.8-2.0. mu. mol/L FIP _ A and BIP _ A primers, 0.15-0.3. mu. mol/L F3_ A and B3_ A primers, 0.16-0.64U/. mu.L Bst DNA polymerase, 0-1.5mol/L betaine, and 0.4-1.0. mu. mol/L LF _ A and/or LB _ A primers.
3. The method of claim 1, wherein the isothermal amplification reaction is performed by incubating at ① 60-65 ℃ for 10-90 min and terminating at ② 80 ℃ for 2-20 min.
4. The primer used in the method for detecting Yersinia pseudotuberculosis at constant temperature according to claim 1, wherein the primer is a primer group capable of amplifying Yersinia pseudotuberculosis genome-specific base sequence having a part of nucleic acid sequence at positions 768567-768785 bp of Yersinia pseudotuberculosis genome with GI number 153946813 or a part of complementary strand thereof;
wherein the primer group capable of amplifying the specific base sequence of the Yersinia pseudotuberculosis genome is a primer group A or a primer group A';
primer set a:
upstream outer primer F3_ a: 5'-GTTGTTGTATGAATTGCTGG-3', respectively;
downstream outer primer B3_ a: 5'-GCGGATAACTCCTGTTCT-3', respectively;
upstream inner primer FIP _ A: 5'-GTAACGCTGAAATACCGAACTGTAAATGGTTGATGAAGGTGG-3', respectively;
the downstream inner primer BIP _ A: 5'-CACCTTTATCTCTGATAATTTCCGCCTTTCCAGCTCATGTTGAT-3', respectively; primer set a':
upstream outer primer F3_ a: 5'-GTTGTTGTATGAATTGCTGG-3', respectively;
downstream outer primer B3_ a: 5'-GCGGATAACTCCTGTTCT-3', respectively;
upstream inner primer FIP _ A: 5'-GTAACGCTGAAATACCGAACTGTAAATGGTTGATGAAGGTGG-3', respectively;
the downstream inner primer BIP _ A: 5'-CACCTTTATCTCTGATAATTTCCGCCTTTCCAGCTCATGTTGAT-3', respectively;
upstream loop primer LF _ a: 5'-TATGCTCATCCAGGCGTTTC-3', respectively;
and/or, the downstream loop primer LB _ A: 5'-TGATGGCGATGGGGAAAATT-3' are provided.
5. Use of a primer for isothermal detection of yersinia pseudotuberculosis for non-diagnostic purposes, said primer being according to claim 4.
CN201610780457.8A 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature Active CN106434898B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010035792.1A CN111100906A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for yersinia pseudotuberculosis
CN202010036128.9A CN111020046A (en) 2015-09-02 2016-08-30 Nucleic acid rapid constant temperature detection method for yersinia pseudotuberculosis and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015105569174 2015-09-02
CN201510556917 2015-09-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202010036128.9A Division CN111020046A (en) 2015-09-02 2016-08-30 Nucleic acid rapid constant temperature detection method for yersinia pseudotuberculosis and application
CN202010035792.1A Division CN111100906A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for yersinia pseudotuberculosis

Publications (2)

Publication Number Publication Date
CN106434898A CN106434898A (en) 2017-02-22
CN106434898B true CN106434898B (en) 2020-02-21

Family

ID=57899245

Family Applications (54)

Application Number Title Priority Date Filing Date
CN202010042446.6A Active CN111057780B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus
CN202010043523.XA Active CN111100939B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method for nucleic acid of staphylococcus aureus and application thereof
CN201610780460.XA Active CN106434899B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting bacillus cereus at constant temperature
CN201610780425.8A Active CN106434895B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio parahaemolyticus at constant temperature
CN202010035808.9A Active CN111041115B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus
CN201610780457.8A Active CN106434898B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature
CN202010004055.5A Active CN110964787B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and kit for cronobacter sakazakii
CN201911281772.6A Active CN110938677B (en) 2015-09-02 2016-08-30 Quick constant-temperature detection method for yersinia pseudotuberculosis nucleic acid and application
CN202010003957.7A Pending CN110951841A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for vibrio cholerae O1 group
CN202010036148.6A Active CN111020048B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for shigella
CN202010036105.8A Active CN111020008B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method and kit for nucleic acid of vibrio cholerae O1 group
CN202010042440.9A Pending CN111020011A (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio parahaemolyticus and application
CN202010004057.4A Pending CN110964789A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio cholerae O1 group, primer set and application
CN201610767426.9A Active CN106434884B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting listeria monocytogenes at constant temperature
CN202010035791.7A Active CN111073956B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio vulnificus
CN202010004056.XA Active CN110964788B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of cronobacter sakazakii, primer group and application
CN201911281105.8A Active CN110938676B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature
CN202010036130.6A Active CN111020009B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio parahaemolyticus and application
CN202010035775.8A Active CN111041112B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio vulnificus, primer set and application
CN202010042444.7A Active CN111057779B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for vibrio vulnificus and application
CN201610780447.4A Active CN106434896B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio parahaemolyticus at constant temperature, primer and application
CN202010035771.XA Active CN111073955B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method for nucleic acid of vibrio cholerae O1 group and application
CN202010043524.4A Active CN111041116B (en) 2015-09-02 2016-08-30 Nucleic acid rapid constant temperature detection method and kit for vibrio vulnificus
CN201610767491.1A Active CN106434885B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio cholerae O1 group at constant temperature, primer and application
CN201610780421.XA Active CN106367500B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio vulnificus at constant temperature, primer and application
CN201610767354.8A Active CN106244706B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapid constant temperature detection of cronobacter sakazakii
CN202010003956.2A Pending CN110951840A (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method and kit for vibrio cholerae O1 group
CN202010035795.5A Active CN111041114B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for Listeria monocytogenes nucleic acid and application
CN202010036143.3A Active CN111020010B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method, primer set and kit for listeria monocytogenes
CN202010042443.2A Active CN111057778B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio vulnificus and application
CN201610767402.3A Active CN106434883B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio vulnificus at constant temperature and application of primer and kit
CN202010035792.1A Pending CN111100906A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for yersinia pseudotuberculosis
CN201911337926.9A Active CN110951837B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for Listeria monocytogenes nucleic acid and application
CN201610767436.2A Active CN106367492B (en) 2015-09-02 2016-08-30 Method, primer and application for rapidly detecting listeria monocytogenes at constant temperature
CN202010042445.1A Active CN111020049B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for staphylococcus aureus
CN201610767506.4A Active CN106434886B (en) 2015-09-02 2016-08-30 Method for rapidly detecting yersinia pseudotuberculosis at constant temperature, primer and application
CN201610767579.3A Active CN106434889B (en) 2015-09-02 2016-08-30 Method for rapidly detecting bacillus cereus at constant temperature, primers and application
CN201911167632.6A Active CN110760569B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and kit for nucleic acid of cronobacter sakazakii
CN201911167633.0A Active CN110760570B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapid constant-temperature detection of cronobacter sakazakii
CN202010036127.4A Active CN111020045B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method
CN202010042450.2A Active CN111057781B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio parahaemolyticus, primer group and application
CN201610780456.3A Active CN106434897B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio cholerae O1 group at constant temperature
CN201610767389.1A Active CN106434882B (en) 2015-09-02 2016-08-30 Method for rapidly detecting cronobacter sakazakii at constant temperature, primer and application
CN202010035788.5A Active CN111041113B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for bacillus cereus
CN202010286794.8A Pending CN111334595A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method
CN201911337898.0A Active CN110938678B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapidly detecting listeria monocytogenes at constant temperature
CN202010036128.9A Pending CN111020046A (en) 2015-09-02 2016-08-30 Nucleic acid rapid constant temperature detection method for yersinia pseudotuberculosis and application
CN202010004054.0A Active CN110964786B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for cronobacter sakazakii
CN201610767576.XA Active CN106434888B (en) 2015-09-02 2016-08-30 Method, primer and application for rapidly detecting staphylococcus aureus at constant temperature
CN202010286793.3A Active CN111304348B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for bacillus cereus
CN202010035787.0A Active CN111041071B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio cholerae O1 group, primer group and application
CN202010036146.7A Active CN111020047B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio parahaemolyticus, primer set and application
CN202010035812.5A Active CN111073989B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and application of shigella nucleic acid
CN201610767703.6A Active CN106434891B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting shigella at constant temperature

Family Applications Before (5)

Application Number Title Priority Date Filing Date
CN202010042446.6A Active CN111057780B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus
CN202010043523.XA Active CN111100939B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method for nucleic acid of staphylococcus aureus and application thereof
CN201610780460.XA Active CN106434899B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting bacillus cereus at constant temperature
CN201610780425.8A Active CN106434895B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio parahaemolyticus at constant temperature
CN202010035808.9A Active CN111041115B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus

Family Applications After (48)

Application Number Title Priority Date Filing Date
CN202010004055.5A Active CN110964787B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and kit for cronobacter sakazakii
CN201911281772.6A Active CN110938677B (en) 2015-09-02 2016-08-30 Quick constant-temperature detection method for yersinia pseudotuberculosis nucleic acid and application
CN202010003957.7A Pending CN110951841A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for vibrio cholerae O1 group
CN202010036148.6A Active CN111020048B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for shigella
CN202010036105.8A Active CN111020008B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method and kit for nucleic acid of vibrio cholerae O1 group
CN202010042440.9A Pending CN111020011A (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio parahaemolyticus and application
CN202010004057.4A Pending CN110964789A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio cholerae O1 group, primer set and application
CN201610767426.9A Active CN106434884B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting listeria monocytogenes at constant temperature
CN202010035791.7A Active CN111073956B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio vulnificus
CN202010004056.XA Active CN110964788B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of cronobacter sakazakii, primer group and application
CN201911281105.8A Active CN110938676B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature
CN202010036130.6A Active CN111020009B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio parahaemolyticus and application
CN202010035775.8A Active CN111041112B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio vulnificus, primer set and application
CN202010042444.7A Active CN111057779B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for vibrio vulnificus and application
CN201610780447.4A Active CN106434896B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio parahaemolyticus at constant temperature, primer and application
CN202010035771.XA Active CN111073955B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method for nucleic acid of vibrio cholerae O1 group and application
CN202010043524.4A Active CN111041116B (en) 2015-09-02 2016-08-30 Nucleic acid rapid constant temperature detection method and kit for vibrio vulnificus
CN201610767491.1A Active CN106434885B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio cholerae O1 group at constant temperature, primer and application
CN201610780421.XA Active CN106367500B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio vulnificus at constant temperature, primer and application
CN201610767354.8A Active CN106244706B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapid constant temperature detection of cronobacter sakazakii
CN202010003956.2A Pending CN110951840A (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method and kit for vibrio cholerae O1 group
CN202010035795.5A Active CN111041114B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for Listeria monocytogenes nucleic acid and application
CN202010036143.3A Active CN111020010B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method, primer set and kit for listeria monocytogenes
CN202010042443.2A Active CN111057778B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio vulnificus and application
CN201610767402.3A Active CN106434883B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio vulnificus at constant temperature and application of primer and kit
CN202010035792.1A Pending CN111100906A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for yersinia pseudotuberculosis
CN201911337926.9A Active CN110951837B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for Listeria monocytogenes nucleic acid and application
CN201610767436.2A Active CN106367492B (en) 2015-09-02 2016-08-30 Method, primer and application for rapidly detecting listeria monocytogenes at constant temperature
CN202010042445.1A Active CN111020049B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for staphylococcus aureus
CN201610767506.4A Active CN106434886B (en) 2015-09-02 2016-08-30 Method for rapidly detecting yersinia pseudotuberculosis at constant temperature, primer and application
CN201610767579.3A Active CN106434889B (en) 2015-09-02 2016-08-30 Method for rapidly detecting bacillus cereus at constant temperature, primers and application
CN201911167632.6A Active CN110760569B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and kit for nucleic acid of cronobacter sakazakii
CN201911167633.0A Active CN110760570B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapid constant-temperature detection of cronobacter sakazakii
CN202010036127.4A Active CN111020045B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method
CN202010042450.2A Active CN111057781B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio parahaemolyticus, primer group and application
CN201610780456.3A Active CN106434897B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio cholerae O1 group at constant temperature
CN201610767389.1A Active CN106434882B (en) 2015-09-02 2016-08-30 Method for rapidly detecting cronobacter sakazakii at constant temperature, primer and application
CN202010035788.5A Active CN111041113B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for bacillus cereus
CN202010286794.8A Pending CN111334595A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method
CN201911337898.0A Active CN110938678B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapidly detecting listeria monocytogenes at constant temperature
CN202010036128.9A Pending CN111020046A (en) 2015-09-02 2016-08-30 Nucleic acid rapid constant temperature detection method for yersinia pseudotuberculosis and application
CN202010004054.0A Active CN110964786B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for cronobacter sakazakii
CN201610767576.XA Active CN106434888B (en) 2015-09-02 2016-08-30 Method, primer and application for rapidly detecting staphylococcus aureus at constant temperature
CN202010286793.3A Active CN111304348B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for bacillus cereus
CN202010035787.0A Active CN111041071B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio cholerae O1 group, primer group and application
CN202010036146.7A Active CN111020047B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio parahaemolyticus, primer set and application
CN202010035812.5A Active CN111073989B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and application of shigella nucleic acid
CN201610767703.6A Active CN106434891B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting shigella at constant temperature

Country Status (1)

Country Link
CN (54) CN111057780B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111057780B (en) * 2015-09-02 2022-07-22 上海旺旺食品集团有限公司 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus
CN107058599A (en) * 2017-06-22 2017-08-18 上海速创诊断产品有限公司 A kind of Primer composition, kit and its dual signal channel detection methods for detecting staphylococcus aureus
CN107475401B (en) * 2017-09-08 2021-03-19 江苏农林职业技术学院 Method and primer for detecting food-borne bacillus cereus by using loop-mediated isothermal amplification technology
CN108285925A (en) * 2017-12-29 2018-07-17 广东环凯微生物科技有限公司 A kind of rugged Cronobacter sakazakii quick detection kit of slope
CN108192988B (en) * 2018-03-06 2020-05-19 青岛大学 Staphylococcus aureus strand exchange amplification detection method
CN108611402A (en) * 2018-05-12 2018-10-02 浙江工商大学 Shigella flexneri visible detection method based on aptamers magnetic capture and direct LAMP
CN109680079A (en) * 2018-06-08 2019-04-26 深圳市计量质量检测研究院(国家高新技术计量站、国家数字电子产品质量监督检验中心) Detect RPA primer, probe, kit and the method for vibrio parahemolyticus
CN109593866A (en) * 2018-06-20 2019-04-09 齐鲁工业大学 Primer, kit and the detection method of ring mediated isothermal amplification Listeria monocytogenes
CN109517914A (en) * 2018-12-27 2019-03-26 广东环凯微生物科技有限公司 The dry powdered double PCR detection kit of the rugged Cronobacter sakazakii of slope
CN110257541B (en) * 2019-07-25 2022-08-09 沈阳农业大学 CAMP detection primer group and kit for enterotoxin gene of bacillus cereus
CN110358851B (en) * 2019-08-14 2023-01-17 河南科技学院 Nucleic acid sequence, primer, method and kit for detecting bacillus cereus
CN111172325A (en) * 2020-02-21 2020-05-19 北京天恩泽基因科技有限公司 Multi-target double-dye isothermal amplification rapid detection method and kit
CN111690757A (en) * 2020-05-19 2020-09-22 广东岭南职业技术学院 Primer and detection method for rapidly identifying vomitoxin-producing bacillus cereus
CN112538549A (en) * 2020-12-07 2021-03-23 菲吉乐科(南京)生物科技有限公司 On-site rapid detection test method for phage activity
CN112646908A (en) * 2020-12-31 2021-04-13 广州赛哲生物科技股份有限公司 Vibrio vulnificus isothermal amplification primer, probe, kit and detection method
CN113512554B (en) * 2021-07-09 2022-07-12 合肥工业大学 Protein for regulating sakazakii cronobacter sakazakii pressure-resistant strong stress, encoding gene thereof and application thereof
CN113846173A (en) * 2021-09-01 2021-12-28 东北农业大学 Novel target, primer group and detection method for cronobacter sakazakii detection
CN113957164B (en) * 2021-10-29 2023-05-23 上海市质量监督检验技术研究院 CRISPR One post detection method and kit thereof for Cronobacter in infant formula powder
CN114182029A (en) * 2021-11-30 2022-03-15 石家庄君乐宝乳业有限公司 Primer combination and application thereof in detection of cronobacter sakazakii in dairy products
CN114540516B (en) * 2022-03-08 2023-06-20 河南中检食安生物科技有限公司 LAMP double-strand detection probe, kit and detection method for staphylococcus aureus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101182575A (en) * 2007-11-19 2008-05-21 天津出入境检验检疫局动植物与食品检测中心 Method for detecting food-borne pseudotuberculosis yersinia genus by loop-mediated isothermal amplification
CN101492733A (en) * 2008-12-15 2009-07-29 天津出入境检验检疫局动植物与食品检测中心 Reagent kit and method for detection of artificial tuberculosis yersinia genus with ring mediated isothermality amplification method

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030108872A1 (en) * 2000-08-23 2003-06-12 Mark Sulavik Genomics-assisted rapid identification of targets
US20040029129A1 (en) * 2001-10-25 2004-02-12 Liangsu Wang Identification of essential genes in microorganisms
JP2003199572A (en) * 2001-12-28 2003-07-15 Eiken Chem Co Ltd Primer for detection of salmonella and detection method using the same
JP4226984B2 (en) * 2003-09-26 2009-02-18 日本ハム株式会社 LAMP primer for detection of Listeria monocytogenes
JP2007129935A (en) * 2005-11-09 2007-05-31 Ishikawa Pref Gov Primer specifically detecting microorganism in sample
CN101020927A (en) * 2007-03-09 2007-08-22 中国科学院南海海洋研究所 Reagent kit and process for detecting Vibrio vulnificus in circular mediated constant temperature amplification method
CN101153329B (en) * 2007-09-21 2010-11-03 珠海市疾病预防控制中心 Primer, detection method and detection reagent kit for detecting staphylococcus aureus
CN101153326B (en) * 2007-09-21 2011-03-23 珠海市疾病预防控制中心 Primer, detection method and detection reagent kit for detecting shigella
CN101153332B (en) * 2007-09-21 2011-03-23 珠海市疾病预防控制中心 Primer, detection method and detection reagent kit for detecting cholera vibrio
CN101153330B (en) * 2007-09-21 2011-07-13 珠海市疾病预防控制中心 Primer, detection method and detection reagent kit for detecting vibrio parahemolyticus
CN101140243B (en) * 2007-09-29 2010-04-14 上海水产大学 Method for detecting vibrio parahaemolyticus
CN101245375A (en) * 2007-12-13 2008-08-20 山东出入境检验检疫局检验检疫技术中心 Method for producing and using trauma vibrio fast detection kit
CN101200760A (en) * 2007-12-13 2008-06-18 中国检验检疫科学研究院 Preparation and utilization method of yersinia genus rapid detection reagent kit
CN101307351A (en) * 2008-04-29 2008-11-19 广州华峰生物科技有限公司 Rapid diagnosis kit for listeria monocytogenes gene based on loop-mediated isothermal amplification technology and detecting method thereof
CN101319249B (en) * 2008-06-10 2011-05-11 山东出入境检验检疫局检验检疫技术中心 Fast detecting reagent kit for enterobacter sakazakii and detecting method thereof
CN101348835B (en) * 2008-09-09 2011-08-17 南开大学 Reagent kit for detecting vibrio vulnificus by loop-mediated isothermal amplification technology
CN101368204B (en) * 2008-09-16 2011-08-31 中国计量学院 Fast detection primer and reagent kit for enterobacter sakazakii hymenial veil mediated isothermality amplification technique
CN101403004B (en) * 2008-09-26 2011-08-24 广州华峰生物科技有限公司 Rapid diagnosis reagent kit and detection method for vibrio vulnficus gene
CN101402997B (en) * 2008-11-06 2010-08-11 中华人民共和国天津出入境检验检疫局 Reagent kit and method for detecting bacillus cereus with loop mediated isothermality amplification method
CN101748201B (en) * 2008-11-28 2012-06-27 中华人民共和国黑龙江出入境检验检疫局检验检疫技术中心 Method of loop-mediated isothermal amplification (LAMP) for detecting Listeria monocytogenes
CN101831493B (en) * 2009-11-06 2012-05-23 武汉工业学院 Loop-mediated isothermal amplification (LAMP) primer pair of bacillus cereus and detection method
CN101845493A (en) * 2010-01-29 2010-09-29 华南农业大学 Primer for detection of shigella and detection method
CN101864483B (en) * 2010-04-12 2012-09-19 广州华峰生物科技有限公司 Salmonella and shigella joint detection kit and detection method thereof
CN101824482B (en) * 2010-06-07 2012-09-19 广州华峰生物科技有限公司 Detection kit for vibrio cholerae O1 group and detection method thereof
US10357577B2 (en) * 2010-07-16 2019-07-23 Auckland Uniservices Limited Bacterial nitroreductase enzymes and methods relating thereto
CN102094090B (en) * 2010-12-13 2013-03-13 华东师范大学 Cholera toxin virulence gene detection kit and detection method thereof
CN102154451B (en) * 2010-12-30 2013-07-31 广东省微生物研究所 Loop-mediated isothermal amplification detection primer group, detection method and detection kit for enterobacter sakazakii
CN102206703A (en) * 2011-01-23 2011-10-05 浙江省质量技术监督检测研究院 Multiple rapid detection method for three food borne pathogenic bacteria, and detection primer set and kit thereof
CN102277422A (en) * 2011-06-20 2011-12-14 黑龙江省乳品工业技术开发中心 Method for rapid detection of Listeria monocytogenes viable bacteria in liquid milk
CN102329861B (en) * 2011-08-29 2013-06-05 中国疾病预防控制中心传染病预防控制所 Primer for detecting serotype of shigella flexneri and multiplex amplification using same
US8883488B2 (en) * 2011-11-15 2014-11-11 Tuskegee University Detection of food threat agents and food-borne pathogens
ITMI20112177A1 (en) * 2011-11-29 2013-05-30 Genefast S R L METHOD OF DETECTING SYNTHESIS AND / OR AMPLIFICATION OF A NUCLEIC ACID
CN102719535B (en) * 2012-06-01 2014-02-26 南昌大学 Method for rapidly detecting listeria monocytogenes in food
CN102925588B (en) * 2012-08-02 2014-04-23 四川农业大学 LAMP kit used for rapidly detecting porcine cytomegalovirus
CN102936621B (en) * 2012-08-27 2014-06-11 上海交通大学 Bacillus cereus detection method and kit
CN102851382A (en) * 2012-09-21 2013-01-02 武汉真福医药科技发展有限公司 LAMP kit for rapid detection of Shigella
CN102851381A (en) * 2012-09-21 2013-01-02 武汉真福医药科技发展有限公司 LAMP kit for rapid detection of Listeria monocytogenes
CN102864228A (en) * 2012-09-21 2013-01-09 武汉真福医药科技发展有限公司 Loop-mediated isothermal amplification (LAMP) kit for rapidly detecting vibrio parahaemolyticus
CN103160606B (en) * 2013-04-08 2014-07-30 北京出入境检验检疫局检验检疫技术中心 LAMP (loop-mediated isothermal amplification) detection kit of vibrio cholerae and detection method thereof
CN103160604A (en) * 2013-04-08 2013-06-19 北京出入境检验检疫局检验检疫技术中心 LAMP (loop-mediated isothermal amplification) detection kit for Vibrio vulnificus and detection method using same
CN103243168A (en) * 2013-05-16 2013-08-14 汇智泰康生物技术(北京)有限公司 Kit for detecting vibrio parabaemolyticus in food and using method for kit
CN103243171A (en) * 2013-05-29 2013-08-14 光明乳业股份有限公司 Method for detecting cronobacter sakazakii as well as kit and primer thereof
CN103320435B (en) * 2013-06-28 2015-04-22 华南理工大学 Listeria monocytogenes LAMP (loop-mediated isothermal amplification) detection kit containing internal standard
CN103484536B (en) * 2013-07-10 2015-03-04 东北农业大学 Kit used for rapid detection of enterobacter sakazakii in milk, and applications thereof
CN103421904B (en) * 2013-08-14 2015-04-29 华中农业大学 Listeria monocytogenes LAMP (loop-medicated isothermal amplification) visualized detection method
CN103614466B (en) * 2013-11-11 2015-08-26 宁波大学 The primer detected for the LAMP-LFD of Vibrio vulnificus and probe sequence
CN103571961B (en) * 2013-11-12 2015-04-15 光明乳业股份有限公司 Method, primer pair, target probe, internal standard probe and kit for detecting Cronobacter sakazakii
CN104212885B (en) * 2014-06-26 2016-06-22 舟山出入境检验检疫局综合技术服务中心 The LAMP kit of vibrio cholera in a kind of aquatic products
CN104293954A (en) * 2014-10-13 2015-01-21 河北省食品检验研究院 LAMP primer of staphylococcus aureus and application method of LAMP primer
CN104313173B (en) * 2014-11-11 2016-05-04 舟山市质量技术监督检测研究院 The real-time turbidity LAMP of Listeria Monocytogenes detection method
CN104328208A (en) * 2014-11-24 2015-02-04 武汉明曼基因工程有限公司 Rapid detection kit of Shigella and application of rapid detection kit
CN104513857A (en) * 2014-12-22 2015-04-15 广东省微生物研究所 Loop-mediated isothermal amplification detection primer group, detection method and kit of vibrio parahaemolyticus
CN104911249A (en) * 2014-12-22 2015-09-16 浙江海隆生物科技有限公司 Kit for rapidly detecting staphylococcus aureus in milk animal and raw milk
CN104593516A (en) * 2015-02-09 2015-05-06 江南大学 Isothermal amplification method for rapid detection of listeria monocytogenes
CN104862399B (en) * 2015-05-21 2018-06-19 渤海大学 Detect the PCR method and kit containing amplification interior label of bacillus cereus in food
CN111057780B (en) * 2015-09-02 2022-07-22 上海旺旺食品集团有限公司 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus
CN105861702A (en) * 2016-05-16 2016-08-17 昆明理工大学 Specific gene of staphylococcus aureus and loop-mediated isothermal amplification kit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101182575A (en) * 2007-11-19 2008-05-21 天津出入境检验检疫局动植物与食品检测中心 Method for detecting food-borne pseudotuberculosis yersinia genus by loop-mediated isothermal amplification
CN101492733A (en) * 2008-12-15 2009-07-29 天津出入境检验检疫局动植物与食品检测中心 Reagent kit and method for detection of artificial tuberculosis yersinia genus with ring mediated isothermality amplification method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Loop-Mediated Isothermal Amplification Assays for Detecting Yersinia pseudotuberculosis in Milk Powders;Hongwei Zhang等;《Journal of Food Science》;20140402;第79卷(第5期);第M968页左栏第2段-右栏第3段,表1,表2,第M970页左栏第2段-右栏第2段 *
Yersinia pseudotuberculosis IP 31758,complete genome;Eppinger,M.等;《Genbank database》;20150730;accession NO:NC_009708.1 *

Also Published As

Publication number Publication date
CN106434886B (en) 2020-01-21
CN111020048A (en) 2020-04-17
CN106434891A (en) 2017-02-22
CN111020047B (en) 2022-07-26
CN111020010B (en) 2023-05-02
CN106434897B (en) 2020-02-21
CN111304348A (en) 2020-06-19
CN106434889A (en) 2017-02-22
CN106434895A (en) 2017-02-22
CN111073955B (en) 2022-10-21
CN106434891B (en) 2020-02-18
CN110938678B (en) 2022-08-26
CN111057778B (en) 2022-07-26
CN111100906A (en) 2020-05-05
CN111041071B (en) 2022-10-21
CN111020045A (en) 2020-04-17
CN106434884A (en) 2017-02-22
CN106434882B (en) 2020-02-21
CN110938677B (en) 2022-07-22
CN111073956A (en) 2020-04-28
CN111041114A (en) 2020-04-21
CN106434885B (en) 2020-02-14
CN106434888A (en) 2017-02-22
CN106434897A (en) 2017-02-22
CN106434899B (en) 2020-02-21
CN111041114B (en) 2023-03-28
CN111100939B (en) 2022-07-26
CN111020045B (en) 2022-10-21
CN111057779B (en) 2022-08-26
CN106434898A (en) 2017-02-22
CN110964788B (en) 2022-08-26
CN111057779A (en) 2020-04-24
CN111020046A (en) 2020-04-17
CN106434885A (en) 2017-02-22
CN111020049A (en) 2020-04-17
CN111041115B (en) 2022-07-26
CN106367500B (en) 2020-02-21
CN110964786A (en) 2020-04-07
CN106434896B (en) 2020-02-18
CN106434886A (en) 2017-02-22
CN111057778A (en) 2020-04-24
CN110964787B (en) 2022-08-26
CN110964786B (en) 2022-08-26
CN110938676A (en) 2020-03-31
CN106244706B (en) 2020-01-10
CN110951837A (en) 2020-04-03
CN111020008A (en) 2020-04-17
CN106434883B (en) 2020-02-21
CN111334595A (en) 2020-06-26
CN106434899A (en) 2017-02-22
CN110951837B (en) 2022-08-26
CN106434896A (en) 2017-02-22
CN111020009A (en) 2020-04-17
CN110938676B (en) 2022-07-26
CN110760569A (en) 2020-02-07
CN111020010A (en) 2020-04-17
CN111073956B (en) 2022-09-20
CN110951841A (en) 2020-04-03
CN111020047A (en) 2020-04-17
CN110938678A (en) 2020-03-31
CN106434895B (en) 2020-02-21
CN111041071A (en) 2020-04-21
CN111041112B (en) 2022-09-20
CN110760570B (en) 2023-01-24
CN111057781B (en) 2022-07-26
CN111073955A (en) 2020-04-28
CN106434888B (en) 2020-02-21
CN106434882A (en) 2017-02-22
CN110964787A (en) 2020-04-07
CN111020049B (en) 2022-07-26
CN111020008B (en) 2022-10-28
CN111041113A (en) 2020-04-21
CN111057780A (en) 2020-04-24
CN111041113B (en) 2022-10-21
CN111041116A (en) 2020-04-21
CN111020011A (en) 2020-04-17
CN110760570A (en) 2020-02-07
CN111041115A (en) 2020-04-21
CN106434889B (en) 2020-06-09
CN110951840A (en) 2020-04-03
CN106434883A (en) 2017-02-22
CN111304348B (en) 2022-07-26
CN106367492A (en) 2017-02-01
CN106367500A (en) 2017-02-01
CN110938677A (en) 2020-03-31
CN111100939A (en) 2020-05-05
CN110964789A (en) 2020-04-07
CN106244706A (en) 2016-12-21
CN111057781A (en) 2020-04-24
CN110760569B (en) 2023-01-24
CN111073989B (en) 2023-05-02
CN111020048B (en) 2023-03-10
CN110964788A (en) 2020-04-07
CN111057780B (en) 2022-07-22
CN106367492B (en) 2020-02-07
CN106434884B (en) 2020-02-21
CN111041116B (en) 2022-07-22
CN111020009B (en) 2022-07-22
CN111073989A (en) 2020-04-28
CN111041112A (en) 2020-04-21

Similar Documents

Publication Publication Date Title
CN106434898B (en) Method, primer and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature
CN106367493B (en) Method, primer and application for rapid constant-temperature detection of salmonella
CN106434890B (en) Method, primer and kit for rapidly detecting yersinia enterocolitica at constant temperature
CN106367501B (en) Method, primer and kit for rapid constant-temperature detection of salmonella
CN106434887B (en) Method, primer and kit for rapidly detecting staphylococcus aureus at constant temperature
CN111004856B (en) Rapid constant-temperature detection method, primer group and kit for vibrio vulnificus

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant