CN110964225A - 一种磁性分子印迹光子晶体传感器及其制备方法与应用 - Google Patents

一种磁性分子印迹光子晶体传感器及其制备方法与应用 Download PDF

Info

Publication number
CN110964225A
CN110964225A CN201911295944.5A CN201911295944A CN110964225A CN 110964225 A CN110964225 A CN 110964225A CN 201911295944 A CN201911295944 A CN 201911295944A CN 110964225 A CN110964225 A CN 110964225A
Authority
CN
China
Prior art keywords
magnetic
photonic crystal
crystal sensor
molecularly imprinted
molecular imprinting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911295944.5A
Other languages
English (en)
Other versions
CN110964225B (zh
Inventor
曹玉华
商朦
倪鑫炯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201911295944.5A priority Critical patent/CN110964225B/zh
Publication of CN110964225A publication Critical patent/CN110964225A/zh
Priority to PCT/CN2020/134970 priority patent/WO2021121102A1/zh
Application granted granted Critical
Publication of CN110964225B publication Critical patent/CN110964225B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/10N-Vinyl-pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2339/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7756Sensor type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

本发明公开了一种磁性分子印迹光子晶体传感器及其制备方法与应用。本发明采用非离子型双亲性无规共聚物,兼细乳化体系的乳化剂、磁性纳米粒子的包覆材料、传感器的分子印迹材料三者于一体,实现一步法制备磁性分子印迹光子晶体传感器,解决了目前分子印迹光子晶体传感器制备过程复杂繁琐、耗时耗力、成本高的问题,而且此方法构筑的是基于空间位阻效应的磁响应光子晶体,克服了基于静电排斥体系的缺陷,消除了待测溶液中离子强度、pH等的干扰,拓宽了此磁性分子印迹光子晶体传感器的实际应用。表面印迹的优势更是提高了光子晶体传感器的响应速度,达到了简便、快速的“裸眼检测”的效果。

Description

一种磁性分子印迹光子晶体传感器及其制备方法与应用
技术领域
本发明涉及一种磁性分子印迹光子晶体传感器及其制备方法与应用,属于分子印迹光子晶体和分析检测技术领域。
背景技术
分子印迹技术(Molecularly Imprinted Technique,MIT),是指以某一目标分子为模板,制备出对该目标分子有特异选择性识别能力的聚合物的技术。基本原理是以目标分子为模板,与具有互补结构的功能单体通过共价键或者非共价键作用形成主客体配合物;然后加入交联剂、引发剂,通过聚合反应,得到主客体配合物固定刚性高分子聚合物;最后通常选用洗脱液,洗脱除去模板分子,得到一种对目标分子具有特异选择识别能力的分子印迹聚合物。当模板分子去除后,具备一定刚性的印迹聚合物就形成了与模板分子形状、尺寸、功能基团相匹配的印迹空穴,这些印迹空穴可以特异选择性的识别、结合目标分子。目前,模板分子与功能单体形成的多重作用位点,是通过化学反应聚合过程固定的,然而聚合反应耗时长。
光子晶体是由两种或两种以上不同的介电常数(折射率)在空间上呈周期性排列的有序结构材料。其中响应性光子晶体具备光学信号自表达功能,无需额外的信号转换装置,可以直观反映外界环境变化,达到裸眼可视化检测,这种独特的光学衍射行为和结构色特征,使其在传感检测领域有着广泛的应用前景。而磁响应光子晶体又具有快速、可逆的磁组装优点,并且外界磁场容易施加和调控。因此磁响应光子晶体在提供一种简便、快速、易调控的裸眼可视化检测技术是更具有优势。
将磁响应光子晶体与分子印迹技术相结合,制备得到磁性分子印迹光子晶体(Magnetic Molecularly Imprinted Photonic Crystals,MMIPCs)传感器。分子印迹提供对目标分子的特异选择性功能,而光子晶体则将这一识别过程通过独特的光学信号表达出来,达到“裸眼可视化检测”的效果。分子印迹光子晶体传感器制备的传统方法是通过化学反应聚合过程将模板分子印迹到凝胶的网状结构中,得到具有反蛋白石结构的分子印迹凝胶光子晶体。目前,分子印迹光子晶体传感器的最新制备方法是通过功能单体聚合反应直接表面印迹得到具有高选择性的胶体粒子,但是分子印迹识别点仍然需要通过聚合反应固定,制备过程复杂繁琐,实际应用具有局限性。因此,开发一种制备简便快速、低成本、应用范围广的分子印迹光子晶体传感器是很有必要。
发明内容
为解决上述技术问题,本发明提供一种磁性分子印迹光子晶体传感器及其制备方法。本发明采用非离子型双亲性无规共聚物,兼细乳化体系的乳化剂、磁性纳米粒子的包覆材料、传感器的分子印迹材料三者于一体,实现一步法制备磁性分子印迹光子晶体传感器,解决了目前分子印迹光子晶体传感器制备过程复杂繁琐、耗时耗力、成本高的问题,而且此方法构筑的是基于空间位阻效应的磁响应光子晶体,克服了基于静电排斥体系的缺陷,消除了待测溶液中离子强度、pH等的干扰,拓宽了此磁性分子印迹光子晶体传感器的实际应用。表面印迹的优势更是提高了光子晶体传感器的响应速度,达到了简便、快速的“裸眼检测”的效果。
本发明的第一个目的是提供一种磁性分子印迹光子晶体传感器的制备方法,包括如下步骤:
(1)将疏水性磁性纳米粒子与双亲性无规共聚物分散于有机溶剂中作为油相,将所述油相与水混合后进行细乳化,得到水包油型细乳液;
(2)将所述的水包油型细乳液减压蒸发去除有机溶剂,待有机溶剂挥发50%-90%后加入分子印迹模板,通过双亲性无规共聚物的自组装,得到表面印迹的磁性胶体纳米粒子;
(3)将所述的磁性胶体纳米粒子进行洗涤,脱除分子印迹模板分子,得到所述的磁性分子印迹光子晶体传感器。
进一步地,所述的双亲性无规共聚物为苯乙烯(St)和N-乙烯基吡咯烷酮(VP)单体按照摩尔比1:9-2:8,在引发剂作用下,通过溶液自由基聚合法聚合得到。
进一步地,所述的疏水性磁性纳米粒子包括油酸修饰的四氧化三铁、油胺修饰的四氧化三铁或月桂酸修饰的四氧化三铁。
进一步地,在步骤(1)中,所述的有机溶剂为低沸点有机溶剂,包括氯仿、乙酸乙酯、正己烷或环己烷。
进一步地,所述的疏水性磁性纳米粒子的质量浓度为1.4%-8%,双亲性无规共聚物的质量浓度为0.2%-2%。
进一步地,在步骤(1)中,所述的油相与水的体积比为1:5-15。
进一步地,所述的细乳化是通过功率为150~300W的超声波细胞破碎仪进行超声细乳化1~5min。
进一步地,所述的分子印迹模板为双酚A、雌二醇、雌三醇或乙烯雌酚。
进一步地,所述的分子印迹模板通过乙醇和NaOH混合液进行洗脱。
本发明的第二个目的是提供所述方法制备得到的磁性分子印迹光子晶体传感器。
本发明的第三个目的是提供所述的磁性分子印迹光子晶体传感器在检测领域的应用。
本发明的有益效果是:
1.本发明通过细乳液双亲性无规共聚物自组装法制备磁性分子印迹光子晶体传感器,实现一步法制备磁性分子印迹光子晶体传感器;
2.本发明通过采用非离子型双亲性无规共聚物P(St-co-VP)作为细乳化的乳化剂、光子晶体组装基元磁性胶体纳米粒子的包覆材料和传感器的分子印迹材料,构筑了基于空间位阻效应的分子印迹光子晶体;
3.本发明通过在有机溶剂的挥发过程中加入模板分子,得到表面印迹的磁性胶体纳米粒子;
4.本发明制备的双酚A-磁性分子印迹光子晶体传感器在去除模板后,可以快速再结合双酚A,并且结合后磁组装光子晶体的结构色具有明显变化,根据这一现象实现对双酚A的快速检测。
5.本发明的磁性分子印迹光子晶体传感器的稳定性高、抗环境干扰能力强、重复利用性好、操作简单方便,且合成制备过程简便快速,成本低,可应用于实际水环境中双酚A的检测。
附图说明
图1为双酚A-磁性分子印迹光子晶体传感器组装基元磁性胶体纳米粒子的透射电镜图;
图2为双酚A-磁性分子印迹光子晶体传感器响应不同浓度(0.001g/L-0.10g/L)双酚A标准水溶液和去离子水的光学图片和标准比色卡;
图3为双酚A-磁性分子印迹光子晶体传感器响应不同浓度(0.001g/L-0.10g/L)双酚A标准水溶液和去离子水的反射光谱图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1:双酚A-磁性分子印迹光子晶体传感器的制备
具体制备步骤如下:
(1)油酸修饰四氧化三铁(OA-Fe3O4)的制备:采用改进的化学共沉淀法制备OA-Fe3O4的磁性纳米粒子。首先将0.02mol的氯化亚铁和0.02mol氯化铁,混合溶解于200mL超纯水,机械搅拌、90℃水浴加热并依次加入30mL氨水作为沉淀剂和1.5g油酸作为修饰剂,全程通氮气除氧,反应1h;采用去离子水和无水乙醇分别多次洗涤至中性后,45℃真空干燥得到OA-Fe3O4磁性纳米粒子,常温密封保存备用。
(2)双亲性无规共聚物P(St-co-VP)的制备:将苯乙烯(St)和N-乙烯基吡咯烷酮(VP)单体摩尔比为(1:9)溶解于1,4-二氧六环溶剂中,加入引发剂偶氮二异丁腈通过溶液自由基聚合法进行聚合;产物用无水乙醚多次沉淀纯化后干燥备用。
(3)细乳化:称取75mg OA-Fe3O4磁性纳米粒子和270mg P(St-co-VP)(1:9)充分分散于适量低沸点的有机溶剂三氯甲烷中作为油相,与36mL去离子水混合,用功率200W的超声波细胞破碎仪超声细乳化3min,得到水包油(O/W)型细乳液;
(4)自组装表面印迹:将细乳液在常温下减压蒸发掉有机溶剂,在有机溶剂挥发60%后加入模板分子双酚A,通过双亲性无规共聚物的自组装包覆和自组装印迹,得到表面印迹的磁性胶体纳米粒子;
(5)双酚A-磁性分子印迹光子晶体传感器:将得到的磁性分子印迹胶体纳米粒子洗涤,采用体积比为1:3的乙醇和pH=9.0 NaOH水溶液的混合液作为洗脱液去除模板分子,置于磁场中可快速磁组装得到待响应的双酚A-磁性分子印迹光子晶体传感器。
实施例2:双酚A-磁性分子印迹光子晶体传感器的制备
具体制备步骤如下:
(1)油酸修饰四氧化三铁(OA-Fe3O4)的制备:采用改进的化学共沉淀法制备OA-Fe3O4的磁性纳米粒子。首先将0.02mol的氯化亚铁和0.02mol氯化铁,混合溶解于200mL超纯水,机械搅拌、90℃水浴加热并依次加入30mL氨水作为沉淀剂和1.5g油酸作为修饰剂,全程通氮气除氧,反应1h;采用去离子水和无水乙醇分别多次洗涤至中性后,45℃真空干燥得到OA-Fe3O4磁性纳米粒子,常温密封保存备用。
(2)双亲性无规共聚物P(St-co-VP)的制备:将苯乙烯(St)和N-乙烯基吡咯烷酮(VP)单体摩尔比为(1:9)溶解于1,4-二氧六环溶剂中,加入引发剂偶氮二异丁腈通过溶液自由基聚合法进行聚合;产物用无水乙醚多次沉淀纯化后干燥备用。
(3)细乳化:称取200mg OA-Fe3O4磁性纳米粒子和450mg P(St-co-VP)(1:9)充分分散于适量低沸点的有机溶剂三氯甲烷中作为油相,与36mL去离子水混合,用功率200W的超声波细胞破碎仪超声细乳化2min,得到水包油(O/W)型细乳液;
(4)自组装表面印迹:将细乳液在常温下减压蒸发掉有机溶剂,在有机溶剂挥发80%后加入模板分子双酚A,通过双亲性无规共聚物的自组装包覆和自组装印迹,得到表面印迹的磁性胶体纳米粒子;
(5)双酚A-磁性分子印迹光子晶体传感器:将得到的磁性分子印迹胶体纳米粒子洗涤,采用体积比为1:3的乙醇和pH=10.0 NaOH水溶液的混合液作为洗脱液去除模板分子,置于磁场中可快速磁组装得到待响应的双酚A-磁性分子印迹光子晶体传感器。
实施例3:
将实施例1和实施例2制备得到的双酚A-磁性分子印迹光子晶体传感器置于透射电镜下观察,具体透射电镜图如图1所示。可以看出,所获得的粒子几乎是均匀的,并且具有规则的球形形状,说明样品磁性胶体纳米粒子具有良好的单分散性;在磁场作用下,能够磁组装成有序的周期性链状结构;粒子几乎没有壳层,而是以纳米晶簇形式存在的内核结构,较薄的保护壳层,会使粒子具有高的饱和磁强度,从而使得双酚A-磁性分子印迹光子晶体传感器自组装快速。
实施例4:
应用本发明的双酚A-磁性分子印迹光子晶体传感器检测溶液中双酚A的方法为:
将实施例1制备得到的双酚A-磁性分子印迹光子晶体传感器置于一系列浓度(0.001g/L、0.005g/L、0.01g/L、0.05g/L、0.10g/L、0.40g/L)的双酚A标准水溶液中,分散均匀。施加以固定磁场(0.11T)得到不同结构色的光子晶体传感器,结构色变化的光学图片如图2a所示。随着BPA浓度的增加,双酚A-磁性分子印迹光子晶体传感器的结构色从绿色红移到深红色。为了实现传感器应用的标准化和规范化,本发明将传感器响应不同浓度双酚A的结构色绘制成了一张标准比色卡,如图2b。由此可根据传感器响应待测水溶液双酚A的结构色,来直观快速的判断溶液中双酚A的大致浓度。双酚A-磁性分子印迹光子晶体传感器响应的标准比色卡实现了裸眼可视化的半定量快速检测应用。
将实施例1制备得到的双酚A-磁性分子印迹光子晶体传感器对双酚A标准水溶液的响应,磁组装进行反射光谱测定可得到图3所示的反射光谱图。由此可根据双酚A-磁性分子印迹光子晶体传感器响应待测水溶液双酚A的反射光谱波长,来定量检测待测水溶液中的双酚A含量。
实施例5:雌二醇-磁性分子印迹光子晶体传感器的制备
具体制备步骤如下:
(1)油酸修饰四氧化三铁(OA-Fe3O4)的制备:采用改进的化学共沉淀法制备OA-Fe3O4的磁性纳米粒子。首先将0.02mol的氯化亚铁和0.02mol氯化铁,混合溶解于200mL超纯水,机械搅拌、90℃水浴加热并依次加入30mL氨水作为沉淀剂和1.5g油酸作为修饰剂,全程通氮气除氧,反应1h;采用去离子水和无水乙醇分别多次洗涤至中性后,45℃真空干燥得到OA-Fe3O4磁性纳米粒子,常温密封保存备用。
(2)双亲性无规共聚物P(St-co-VP)的制备:将苯乙烯(St)和N-乙烯基吡咯烷酮(VP)单体摩尔比为(1:9)溶解于1,4-二氧六环溶剂中,加入引发剂偶氮二异丁腈通过溶液自由基聚合法进行聚合;产物用无水乙醚多次沉淀纯化后干燥备用。
(3)细乳化:称取75mg OA-Fe3O4磁性纳米粒子和270mg P(St-co-VP)(1:9)充分分散于适量低沸点的有机溶剂三氯甲烷中作为油相,与36mL去离子水混合,用功率200W的超声波细胞破碎仪超声细乳化3min,得到水包油(O/W)型细乳液;
(4)自组装表面印迹:将细乳液在常温下减压蒸发掉有机溶剂,在有机溶剂挥发60%后加入模板分子雌二醇,通过双亲性无规共聚物的自组装包覆和自组装印迹,得到表面印迹的磁性胶体纳米粒子;
(5)雌二醇-磁性分子印迹光子晶体传感器:将得到的磁性分子印迹胶体纳米粒子洗涤,采用体积比为1:3的乙醇和pH=9.0 NaOH水溶液的混合液作为洗脱液去除模板分子,置于磁场中可快速磁组装得到待响应的雌二醇-磁性分子印迹光子晶体传感器。
本发明对不溶于水或微溶于水,并且能和磁性胶体纳米粒子表面聚合物有作用力的目标分子是可行。
对比例1:
具体制备步骤中双亲性无规共聚物的单体为甲基丙烯酸甲酯(MMA)和N-乙烯基吡咯烷酮(VP)时,双亲性无规共聚物P(MMA-co-VP)的细乳化效果差,不能够作为包覆材料组装成稳定的磁性胶体纳米粒子。
具体制备步骤中双亲性无规共聚物的单体为甲基丙烯酸甲酯(MMA)和甲基丙烯酸(MAA)时,双亲性无规共聚物P(MMA-co-MAA)能够制备成磁性胶体纳米粒子,但磁响应光子晶体是依靠静电排斥力和磁吸引力来稳定平衡组装的,溶液的离子强度和pH会干扰磁性胶体纳米粒子的磁组装。
对比例2:
在具体制备步骤自组装表面印迹中,有机溶剂挥发前,加入模板分子双酚A,通过双亲性无规共聚物的自组装包覆和自组装印迹,得到印迹的磁性胶体纳米粒子。此粒子的模板分子不易洗脱干净,未完全去除模板分子的磁性胶体纳米粒子不能作为传感器应用。
在具体制备步骤自组装表面印迹中,有机溶剂完全挥发完后,加入模板分子双酚A,得到的磁性胶体纳米粒子,对模板分子双酚A的特异选择性响应变弱。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

1.一种磁性分子印迹光子晶体传感器的制备方法,其特征在于,包括如下步骤:
(1)将疏水性磁性纳米粒子与双亲性无规共聚物分散于有机溶剂中作为油相,将所述油相与水混合后进行细乳化,得到水包油型细乳液;
(2)将所述的水包油型细乳液减压蒸发去除有机溶剂,待有机溶剂挥发50%-90%后加入分子印迹模板,通过双亲性无规共聚物的自组装,得到表面印迹的磁性胶体纳米粒子;
(3)将所述的磁性胶体纳米粒子进行洗涤,脱除分子印迹模板分子,得到所述的磁性分子印迹光子晶体传感器。
2.根据权利要求1所述的方法,其特征在于,所述的双亲性无规共聚物为苯乙烯和N-乙烯基吡咯烷酮单体按照摩尔比1:9-2:8,在引发剂作用下,通过溶液自由基聚合法聚合得到。
3.根据权利要求1所述的方法,其特征在于,所述疏水性磁性纳米粒子包括油酸修饰的四氧化三铁、油胺修饰的四氧化三铁或月桂酸修饰的四氧化三铁。
4.根据权利要求1所述的方法,其特征在于,在步骤(1)中,所述的有机溶剂为低沸点有机溶剂,包括氯仿、乙酸乙酯、正己烷或环己烷。
5.根据权利要求1所述的方法,其特征在于,在所述油相中,疏水性磁性纳米粒子的质量浓度为1.4%-8%,双亲性无规共聚物的质量浓度为0.2%-2%。
6.根据权利要求1所述的方法,其特征在于,在步骤(1)中,所述的油相与水的体积比为1:5-15。
7.根据权利要求1所述的方法,其特征在于,所述的分子印迹模板为双酚A、雌二醇、雌三醇或乙烯雌酚。
8.根据权利要求1所述的方法,其特征在于,所述的分子印迹模板通过乙醇和NaOH混合液进行洗脱。
9.一种权利要求1-8任一项所述的方法制备得到的磁性分子印迹光子晶体传感器。
10.权利要求9所述的磁性分子印迹光子晶体传感器在检测领域的应用。
CN201911295944.5A 2019-12-16 2019-12-16 一种磁性分子印迹光子晶体传感器及其制备方法与应用 Active CN110964225B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911295944.5A CN110964225B (zh) 2019-12-16 2019-12-16 一种磁性分子印迹光子晶体传感器及其制备方法与应用
PCT/CN2020/134970 WO2021121102A1 (zh) 2019-12-16 2020-12-09 一种磁性分子印迹光子晶体传感器及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911295944.5A CN110964225B (zh) 2019-12-16 2019-12-16 一种磁性分子印迹光子晶体传感器及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN110964225A true CN110964225A (zh) 2020-04-07
CN110964225B CN110964225B (zh) 2020-12-22

Family

ID=70034510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911295944.5A Active CN110964225B (zh) 2019-12-16 2019-12-16 一种磁性分子印迹光子晶体传感器及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN110964225B (zh)
WO (1) WO2021121102A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021121102A1 (zh) * 2019-12-16 2021-06-24 江南大学 一种磁性分子印迹光子晶体传感器及其制备方法与应用
CN113092453A (zh) * 2021-04-13 2021-07-09 中国热带农业科学院分析测试中心 敌百虫电致化学发光分子印迹传感器及制备方法、应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015102B (zh) * 2021-11-09 2023-01-17 常州大学 反相细乳液修饰膜表面的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103613758A (zh) * 2013-12-03 2014-03-05 江南大学 自组装法制备分子印迹聚苯胺纳米复合物
CN106751304A (zh) * 2016-12-06 2017-05-31 江南大学 一种聚合物乳化法制备胶态磁响应光子晶体的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005153091A (ja) * 2003-11-27 2005-06-16 Hitachi Ltd 転写方法及び転写装置
KR101357065B1 (ko) * 2011-11-11 2014-02-12 (재)한국나노기술원 임프린트 리소그래피와 리프트 오프 공정을 이용한 굴절률이 조절된 다층 나노 구조체 제조방법
CN105754036B (zh) * 2016-03-25 2017-10-20 江南大学 一种检测三聚氰胺的磁性分子印迹光子晶体传感器的制备方法
CN106117458A (zh) * 2016-07-06 2016-11-16 东南大学 双亲性Janus胶体晶体微球及其制备方法、应用
CN110964225B (zh) * 2019-12-16 2020-12-22 江南大学 一种磁性分子印迹光子晶体传感器及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103613758A (zh) * 2013-12-03 2014-03-05 江南大学 自组装法制备分子印迹聚苯胺纳米复合物
CN106751304A (zh) * 2016-12-06 2017-05-31 江南大学 一种聚合物乳化法制备胶态磁响应光子晶体的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MENG SHANG: "Amphiphilic copolymer self-assembly of magnetic nanoparticles for construction of magnetically responsive photonic crystals based on steric hindrance", 《ROYAL SOCIETY OF CHEMISTRY》 *
PAN WANG: "Janus silica nanosheets-based MMIPs platform for synergetic selective capture and fast separation of 2′-deoxyadenosine: Two different components segmented on the surface of one object", 《CHEMICAL ENGINEERING JOURNAL》 *
朱丽丽: "基于磁性分子印迹纳米粒子的电化学传感器的制备及应用", 《中国博士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021121102A1 (zh) * 2019-12-16 2021-06-24 江南大学 一种磁性分子印迹光子晶体传感器及其制备方法与应用
CN113092453A (zh) * 2021-04-13 2021-07-09 中国热带农业科学院分析测试中心 敌百虫电致化学发光分子印迹传感器及制备方法、应用

Also Published As

Publication number Publication date
CN110964225B (zh) 2020-12-22
WO2021121102A1 (zh) 2021-06-24

Similar Documents

Publication Publication Date Title
CN110964225B (zh) 一种磁性分子印迹光子晶体传感器及其制备方法与应用
Xu et al. Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials
Kurkuri et al. Poly (vinyl alcohol) and poly (acrylic acid) sequential interpenetrating network pH-sensitive microspheres for the delivery of diclofenac sodium to the intestine
CN107490576B (zh) 一种快速检测农药、毒素和纳米粒子的光子晶体水凝胶微球及其制备方法和应用
Luo et al. Rotating 1-D magnetic photonic crystal balls with a tunable lattice constant
Men et al. Visualized optical sensors based on two/three-dimensional photonic crystals for biochemicals
CN103409801B (zh) 一种高强度交联型聚合物光子晶体膜的制备方法
Zhang et al. Silica-PMMA core-shell and hollow nanospheres
Cannizzo et al. Boronic acid-functionalized nanoparticles: synthesis by microemulsion polymerization and application as a re-usable optical nanosensor for carbohydrates
Gu et al. Rapid synthesis of monodisperse polymer spheres for self-assembled photonic crystals
CN102304263B (zh) 光子晶体纸及其制备方法
Teoh et al. Self-assembly of stimuli-responsive water-soluble [60] fullerene end-capped ampholytic block copolymer
CN102269693A (zh) 光子晶体湿度传感器及其制备方法
Shen et al. Ultrafast assembly of nanoparticles to form smart polymeric photonic crystal films: A new platform for quick detection of solution compositions
Shen et al. Fabrication of temperature-and alcohol-responsive photonic crystal hydrogel and its application for sustained drug release
KR20070115913A (ko) 다공성 단분산 입자 및 그 제조 방법 및 그 용도
CN106905551B (zh) 一种反蛋白石结构温度感应材料及其制备方法
Herzog Cardoso et al. Elemental distribution within single latex particles: determination by electron spectroscopy imaging
Ezhova et al. Contraction and coagulation of spherical polyelectrolyte brushes in the presence of Ag+, Mg2+, and Ca2+ cations
Sobhanimatin et al. Fast inverse opal humidity sensor based on acrylamide/AMPS hydrogel
Rong et al. Microcapsules with compact membrane structure from gelatin and styrene–maleic anhydride copolymer by complex coacervation
CN103409802B (zh) 一种蛋白石结构聚合物光子晶体的制备方法
Fan et al. Polymer/Nanoparticle Hybrid Materials of Precise Dimensions by Size‐Exclusive Fishing of Metal Nanoparticles
CN112552557A (zh) 磁场响应光子晶体防伪薄膜及其制备方法与应用
Thomas et al. Core-shell based responsive colloidal photonic crystals for facile, rapid, visual detection of acetone

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant