CN110935035A - 靶向nrp受体酸响应mri/荧光对比剂、制法及应用 - Google Patents

靶向nrp受体酸响应mri/荧光对比剂、制法及应用 Download PDF

Info

Publication number
CN110935035A
CN110935035A CN201911248716.2A CN201911248716A CN110935035A CN 110935035 A CN110935035 A CN 110935035A CN 201911248716 A CN201911248716 A CN 201911248716A CN 110935035 A CN110935035 A CN 110935035A
Authority
CN
China
Prior art keywords
acid
receptor
nrp
mri
glioma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911248716.2A
Other languages
English (en)
Inventor
吴波
邓凯
张才菊
陆树婷
敖亚雯
徐海波
黄世文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongnan Hospital of Wuhan University
Original Assignee
Zhongnan Hospital of Wuhan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongnan Hospital of Wuhan University filed Critical Zhongnan Hospital of Wuhan University
Priority to CN201911248716.2A priority Critical patent/CN110935035A/zh
Publication of CN110935035A publication Critical patent/CN110935035A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0054Macromolecular compounds, i.e. oligomers, polymers, dendrimers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0076Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion
    • A61K49/0082Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion micelle, e.g. phospholipidic micelle and polymeric micelle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1806Suspensions, emulsions, colloids, dispersions
    • A61K49/1809Micelles, e.g. phospholipidic or polymeric micelles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nanotechnology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开了一种靶向NRP受体酸响应MRI/荧光对比剂、制法及应用,基于酸敏感两亲聚合物、含tLyP‑1多肽靶向聚合物、酸敏感荧光探针及纳米氧化铁,通过自组装的方式制备靶向跨膜蛋白受体、酸响应触发启动MRI/荧光纳米对比剂。本发明还公开将单分散超顺磁Fe3O4磁性纳米粒子IONPs环己烷溶液以及聚合物PEG‑CH=N‑PAH、靶向胶质瘤NRP1受体的两亲性聚合物DSPE‑PEG2000‑tLyP‑1和酸响应荧光探针Cy7的二甲基亚砜DMSO溶液混合均匀,超声、旋蒸除去环己烷后的剩余溶液滴加超纯水中,室温透析后的胶束溶液经冷冻干燥即得。本发明基于胶质瘤酸性强弱与恶性程度正相关,利用响应成像与胶质瘤恶性程度的定量关系,为胶质瘤的影像学无创分级诊断提供新方法,以获取准确的分子、生理及病理等信息。

Description

靶向NRP受体酸响应MRI/荧光对比剂、制法及应用
技术领域
本发明涉及生物医学工程领域,主要用于细胞工程、核医学显像、纳米器件、纳米探针制作及显像技术等,特别涉及一种靶向NRP受体酸响应MRI/荧光对比剂及其制法与应用。
背景技术
神经胶质瘤是颅内最常见的原发恶性肿瘤,起源于神经胶质细胞。世界卫生组织(WHO)根据其组织病理学特点,将其分为四级:I级:毛细胞星形细胞瘤;II级:弥漫性星形细胞瘤;III级:间变性星形细胞瘤;IV级:胶质母细胞瘤患者的生存时间与肿瘤级别的高低密切相关,不同级别胶质瘤的临床病程与治疗计划差异极大。病理活检是明确胶质瘤分级的金标准,但其为有创性检查,且高级别胶质瘤异质性增加,明显影响到活检的准确性。常规磁共振结合增强成像检查,虽可以通过形态及信号特征,一定程度上提示胶质瘤的恶性程度,但由于临床造影剂特异性不够及胶质瘤的不均一性和多样性,对胶质瘤的分级定性诊断仍存在很大局限性。因此,通过影像学手段无创诊断胶质瘤的病理分级,获取准确的分子、生理及病理等方面的信息,从而制定科学的个体化治疗方案,是建立个体化精准治疗的关键基础。
现有研究发现,胶质瘤组织中色氨酸由IDO1酶和IDO2酶经犬尿氨酸代谢为喹啉酸和邻氨基苯甲酸的代谢途径与胶质瘤的恶性程度具有明显的相关性,奎宁酸累计越多,其恶性程度越高;与此同时,奎宁酸和邻氨基苯甲酸等酸性代谢物的累计对胶质瘤组织的酸度有较大影响,累计越多,pH值越低。此外,胶质瘤增殖过程的快速能量消耗会导致乳酸的累积,且增殖速度与乳酸代谢累计量正相关,胶质瘤增殖越快,累积量越多,pH值越低。因此,胶质瘤组织的酸度与其恶性程度具有明显的相关性,pH值越低,恶性程度越高,利用肿瘤组织酸度值作为胶质瘤恶性程度分级诊断指标具有较大可行性。神经纤毛受体(Neuroplin receptors,NRP)是一种跨膜蛋白受体,主要分为NRP1和NRP2。其中NRP1主要在胶质瘤等肿瘤新生血管中高表达,与血管内皮生长因子(VEGF)共同调节肿瘤血管生成。Osada和Hu等学者研究发现,NRP在人胶质瘤中高度表达,同时表达的高低与胶质瘤恶性程度呈正相关。多肽tLyP-1能特异性地靶向NRP,并与NRP受体高效结合同时能产生跨血管渗透和肿瘤穿膜作用。因此,tLyP-1可作为靶向胶质瘤NRP受体的荧光和MRI显像对比剂的主动靶向基团。
磁性氧化铁纳米颗粒(Iron OxideNanoparticles,IONPs)由于具有更好的生物相容性、可调的纳米尺寸及可修饰性,通过耦合乳铁蛋白等靶向分子,IONPs类对比剂可穿透血脑屏障并用于胶质瘤的MRI成像及诊断。并且,改变IONPs的粒径大小,可响其MRI豫率及成像效果。因此,可通过分子设计响应性改变IONPs在肿瘤组织的粒径,实现其成像效果的响应性启动,进而提示肿瘤病理改变。通过酸敏感聚合物修饰IONPs,制备酸敏感IONPs对比剂,可实现酸触发的粒径改变及MRI成像效果的放大及启动切换,可定量检测肿瘤组织酸性强弱,具有较大的研究价值。除MRI成像外,荧光成像技术有望成为在生物医用领域最普遍的观察手段。近红外荧光成像是指荧光发射波长处于位于650nm-900nm的一类成像模式,具有组织穿透力强及背景干扰小的特点,近红外荧光最大可穿透5cm的成人脑组织。鉴于Always ON型近红外荧光探针存在成像失真、成像信噪比较低等缺陷,利用肿瘤组织弱酸性微环境,确有必要研究可被肿瘤细胞特异性激活的响应性的靶向NRP受体酸响应MRI/荧光对比剂、制法及应用。
发明内容
本发明的目的在于,提供一种靶向NRP受体酸响应MRI/荧光对比剂及其制法与应用,基于胶质瘤酸性强弱与恶性程度正相关,利用响应成像与胶质瘤恶性程度的定量关系,为胶质瘤的影像学无创分级诊断提供新方法,解决临床造影剂特异性不足及准确性欠佳等问题,通过影像学手段无创诊断胶质瘤的病理分级。
本发明为达到上述目的所采用的技术方案是:
一种靶向NRP受体酸响应MRI/荧光对比剂,其由包括如下含量的组分制备而成:
含有质量体积浓度4-8mg/mL的单分散超顺磁Fe3O4磁性纳米粒子的环己烷溶液8-12mL;
含有35-45mg聚合物PEG-CH=N-PAH、8-12mg靶向胶质瘤NRP1受体的两亲性聚合物DSPE-PEG2000-tLyP-1、8-12mg酸响应荧光探针Cy7的18-28mL二甲基亚砜DMSO溶液;
20-30ml超纯水。
优选地,所述的聚合物PEG-CH=N-PAH包括如下含量的组分制备而成:
苯甲醛封端聚乙二醇单甲醚PEGhyde 2.0-4.0g;
棕榈酸酰肼240-280mg;
甲醇10-20mL。
优选地,所述的酸响应荧光探针Cy7包括如下含量的组分制备而成:
Cy7 NHS ester 6-7mmol;
氨基葡萄糖盐酸盐5.98-6.98mmol;
15-25mL无水二甲亚砜DMSO;
N-二异丙基乙胺14.9-15.9mmol;
50-60mL丙酮。
优选地,所述的靶向胶质瘤NRP1受体的两亲性聚合物DSPE-PEG2000-tLyP-1包括如下含量的组分制备而成:摩尔比为1∶1∶1的靶向NRP受体的tLyP-1多肽、中间体N-羟基琥珀酰亚胺NHS以及两亲聚合物DSPE-PEG2000-NH2经缩合反应而制成。
一种前述的靶向NRP受体酸响应MRI/荧光对比剂的制法,其特征在于,包括如下步骤:
S1:称取单分散超顺磁Fe3O4磁性纳米粒子IONPs环己烷溶液以及聚合物PEG-CH=N-PAH、靶向胶质瘤NRP1受体的两亲性聚合物DSPE-PEG2000-tLyP-1和酸响应荧光探针Cy7的二甲基亚砜DMSO溶液,将溶液混合均匀,超声30min,旋蒸除去环己烷,将剩余二甲基亚砜DMSO溶液在超声条件下缓慢滴加至25mL超纯水中得到待透析液;
S2:将待透析液转移至透析袋MW=8000中,于室温在超纯水中透析24h,每间隔2小时换水一次,得到酸敏感型胶束溶液,即得靶向NRP受体酸响应MRI/荧光对比剂。
优选地,所述的聚合物PEG-CH=N-PAH的制法包括将苯甲醛封端聚乙二醇单甲醚PEGhyde 2.0g和棕榈酸酰肼240mg溶于甲醇10mL中,并在50℃下搅拌24h,反应完毕后将反应溶液置于-20℃下放置12h,经减压抽滤、乙醚洗涤、干燥即得两亲性酸敏感聚合物PEG-CH=N-PAH。
优选地,所述的苯甲醛封端聚乙二醇单甲醚PEGhyde采用如下方法制备而得:
S1:称取聚乙二醇单甲醚20.0g,经过甲苯共沸除水后倒入500mL反应瓶中,加入二氯甲烷250mL,在冰水浴中搅拌溶解,同时缓慢滴加TsCl 2.5g和TEA 25mL,滴加完毕一个小时后,将反应瓶移置室温下搅拌过夜,经过滤、乙醚沉降洗涤后得中间产物PEG-OTs;
S2:将中间产物PEGOTs 5.0g和对羟基苯甲醛1.2g搅拌溶解于乙腈100mL中,于80℃下加热反应24h,反应完毕,旋转蒸发仪浓缩至20mL,乙醚沉降洗涤,干燥,即得苯甲醛封端聚乙二醇单甲醚PEGhyde。
优选地,所述的酸响应荧光探针Cy7的制法包括将Cy7 NHS ester 6mmol和D-氨基葡萄糖盐酸盐5.98mmol溶解于15mL无水二甲亚砜DMSO中,并加入N,N-二异丙基乙胺14.9mmol调节反应液至弱碱性,之后再N2保护下室温搅拌5h,得到反应液,之后将所得反应液倒入50mL丙酮中沉降,经过滤、柱层析分离,采用体积比为10∶1的二氯甲烷和甲醇为洗脱剂,旋干后得到酸响应荧光探针Cy7。
优选地,所述的靶向胶质瘤NRP1受体的两亲性聚合物DSPE-PEG2000-tLyP-1的制法包括:以NHS为中间体,利用靶向NRP受体的tLyP-1多肽上的羧基与两亲聚合物DSPE-PEG2000-NH2的氨基缩合反应,得到靶向胶质瘤NRP1受体的两亲性聚合物DSPE-PEG2000-tLyP-1;其中,靶向NRP受体的tLyP-1多肽采用固相化学合成方法合成:以2-氯三苯基氯树脂为载体,以9-芴甲氧羰基氨基为保护基团,按tLyP-1的氨基酸序列Cys-Gly-Asn-Lys-Arg-Thr-Arg从羧基端C端至氨基端N端的顺序连接氨基酸,先将Arg的羧基以共价键与树脂相连,再以吡啶和乙酸酐封闭树脂上剩余的活性位点,之后以Arg的氨基为合成起点与Thr的羧基发生酰化反应形成肽键,后续氨基酸以HOBt/HBTU/DIEA为缩合剂依次连接结束后,以三氟乙酸裂解,即得合成产物靶向NRP受体的tLyP-1多肽。
一种前述的靶向NRP受体酸响应MRI/荧光对比剂的应用,该靶向NRP受体酸响应MRI/荧光对比剂用于构建不同级别原位胶质瘤模型系统,通过酸响应增强成像效果,利用响应成像与胶质瘤恶性程度的定量关系,建立基于成像相关参数的胶质瘤分级数字模型,得到胶质瘤的影像学无创分级诊断,ITSS最大层面分为四级:0级为无ITSS信号;I级为含1-5个点样或线条状ITSS信号;II级含6-10个点样或线条状ITSS信号;III级为含11个及以上点样或线条状ITSS信号。
与现有技术相比,本发明提供的靶向NRP受体酸响应MRI/荧光对比剂、制法及应用,基于酸敏感两亲聚合物、含tLyP-1多肽靶向聚合物、酸敏感荧光探针及纳米氧化铁,通过自组装的方式制备靶向跨膜蛋白受体、酸响应触发启动MRI/荧光纳米对比剂,制备方法简单,可推广应用,基于胶质瘤酸性强弱与恶性程度正相关,利用响应成像与胶质瘤恶性程度的定量关系,为胶质瘤的影像学无创分级诊断提供新方法,以获取准确的分子、生理及病理等信息,对肿瘤治疗方面制定科学的个体化治疗方案和建立个体化精准治疗具有非常重要的经济价值和社会意义。
上述是发明技术方案的概述,以下结合附图与具体实施方式,对本发明做进一步说明。
附图说明
图1为酸敏感两亲聚合物PEG-CH=N-PAH及非敏感两亲聚PEG-CH2-NH-PAH合成路线示意图;
图2为靶向胶质瘤NRP1受体的两亲性聚合物DSPE-PEG2000-tLyP-1的合成路线示意图;
图3为酸敏感荧光探针Sensitive Cy7的合成路线示意图。
具体实施方式:
为了使本发明的目的和技术方案及优点更加清楚明白,以下结合实施例作详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明实施例中涉及的具体化学合成原料均为行业通用称呼或本领域技术人员可以自然得知的化合物。
实施例1:本实施例提供的靶向NRP受体酸响应MRI/荧光对比剂及其制法与应用,在本实施例的具体方法过程如下:
(一)酸响应聚集增强MRI/荧光对比剂的构建,即靶向NRP受体酸响应MRI/荧光对比剂及其制备过程:
1.两亲性酸敏感聚合物PEG-CH=N-PAH的合成,合成路线见图1,具体方法包括如下步骤:
(1)苯甲醛封端聚乙二醇单甲醚PEGhyde的合成:首先聚乙二醇单甲醚(20.0g),经过甲苯共沸除水后倒入500mL圆底烧瓶中,并加入二氯甲烷(250mL),在冰水浴中搅拌溶解,并向其中同时缓慢滴加TsCl(2.5g)和TEA(25mL),滴加完毕一个小时后,将圆底烧瓶移入室温下搅拌过夜。反应混合液过滤后,大量乙醚沉降洗涤三次,得中间产物PEG-OTs。
(2)将PEGOTs(5.0g)和对羟基苯甲醛(1.2g)搅拌溶解于乙腈(100mL)中,于80℃下加热反应24h。反应完毕,旋转蒸发仪浓缩至20mL,后加入大量乙醚沉降洗涤,干燥。
(3)两亲性酸敏感聚合物PEG-CH=N-PAH的合成:将PEGhyde(2.0g)和棕榈酸酰肼(240mg)溶于甲醇(10mL)中,并在50℃下搅拌24h。反应完毕,将反应溶液置于-20℃下12h,迅速减压抽滤并用乙醚洗涤两次,干燥后得到淡黄色粉末PEG-CH=N-PAH。同时合成了非敏感聚合物PEG-CH2-NH-PAH为对照,具体方法同上。
2.靶向NRP受体含多肽tLyP-1配体两亲聚合物DSPE-PEG2000-tLyP-1合成,合成路线见图2,具体方法包括如下步骤:
首先,采用固相化学合成方法合成多肽tLyP-1:以2-氯三苯基氯树脂为载体,以9-芴甲氧羰基氨基为保护基团,按照tLyP-1的氨基酸序列Cys-Gly-Asn-Lys-Arg-Thr-Arg从羧基端(C端)至氨基端(N端)的顺序连接氨基酸,首先将Arg的羧基以共价键与树脂相连,然后以吡啶和乙酸酐封闭树脂上剩余的活性位点;再以Arg的氨基为合成起点,使其与Thr的羧基发生酰化反应,形成肽键;后续氨基酸以HOBt/HBTU/DIEA为缩合剂依次连接,结束后,以三氟乙酸裂解,所得合成产物经高效液相色谱分离、纯化、分析,质谱分析鉴定得到多肽tLyP-1。然后以NHS为中间体,利用多肽tLyP-1上的羧基与两亲聚合物DSPE-PEG2000-NH2的氨基缩合,得到靶向NRP1含多肽tLyP-1两亲性聚合物。
3.酸敏感荧光探针Sensitive Cy7的合成,合成路线见图3,具体方法包括如下步骤:
首先将Cy7 NHS ester(6mmol)和D-氨基葡萄糖盐酸盐(5.98mmol)溶解于15mL无水二甲亚砜(DMSO)中,并加入N,N-二异丙基乙胺(14.9mmol)调节反应液至弱碱性,然后N2保护下室温搅拌5h。将反应液倒入50mL丙酮中沉降,滤纸过滤,柱层析分离,洗脱剂为二氯甲烷∶甲醇=10∶1(V/V),旋干得到目标荧光探针酸敏感Cy7。
靶向NRP受体酸响应MRI/荧光对比剂(tLyP-1-Acid Trigger-IONPs)的制备,具体的制备方法包括如下步骤:
首先,制备单分散超顺磁Fe3O4磁性纳米粒子:在氩气保护下,将0.7g乙酰丙酮铁(2mmol)溶于10mL二苯醚和10mL油胺的混合溶液中。110℃下鼓泡1h除水。快速升高体系温度至300℃,反应2h,自然冷却至室温,向溶液中加50mL无水乙醇,8000rpm离心10min,弃上清,沉淀分散于20mL环己烷中,再次加入无水乙醇对反应物进行沉淀并离心后,得到棕黑色沉淀,即得单分散超顺磁Fe3O4磁性纳米粒子,分散于环己烷保存。
然后,称取5mg/mL的IONPs环己烷溶液10mL,称取40mg聚合物PEG-CH=N-PAH或PEG-CH2-NH-PAH、10mg DSPE-PEG2000-tLyP-1,10mg酸响应荧光探针Cy7,溶于20mL DMSO溶液中,将上述两种溶液混合均匀,超声30min,旋蒸除去环己烷,将剩余DMSO溶液在超声条件下将其缓慢滴加至25mL超纯水中。将此溶液转移至透析袋(MW=8000)中,室温下在超纯水中透析24h,间隔一定时间换水,得到酸敏感IONPs-PEG-CH=N-PAH胶束溶液,冷冻干燥法计算胶束溶液的浓度,即得靶向NRP受体酸响应MRI/荧光对比剂。
实施例2:本实施例提供的靶向NRP受体酸响应MRI/荧光对比剂及其制法与应用,与实施例1基本相同,不同之处在于在本实施例的具体方法过程如下:
一种靶向NRP受体酸响应MRI/荧光对比剂,其由包括如下含量的组分制备而成:
含有质量体积浓度4mg/mL的单分散超顺磁Fe3O4磁性纳米粒子的环己烷溶液12mL;
含有35mg聚合物PEG-CH=N-PAH、8mg靶向胶质瘤NRP1受体的两亲性聚合物DSPE-PEG2000-tLyP-1、12mg酸响应荧光探针Cy7的18mL二甲基亚砜DMSO溶液;
30ml超纯水。
优选地,所述的聚合物PEG-CH=N-PAH包括如下含量的组分制备而成:
苯甲醛封端聚乙二醇单甲醚PEGhyde 4.0g;
棕榈酸酰280mg;
甲醇20mL。
优选地,所述的酸响应荧光探针Cy7包括如下含量的组分制备而成:
Cy7 NHS ester 7mmol;
氨基葡萄糖盐酸盐6.98mmol;
25mL无水二甲亚砜DMSO;
N-二异丙基乙胺15.9mmol;
60mL丙酮。
实施例3:本实施例提供的靶向NRP受体酸响应MRI/荧光对比剂及其制法与应用,与实施例1基本相同,不同之处在于在本实施例的具体方法过程如下:
一种靶向NRP受体酸响应MRI/荧光对比剂,其由包括如下含量的组分制备而成:
含有质量体积浓度8mg/mL的单分散超顺磁Fe3O4磁性纳米粒子的环己烷溶液8mL;
含有45mg聚合物PEG-CH=N-PAH、12mg靶向胶质瘤NRP1受体的两亲性聚合物DSPE-PEG2000-tLyP-1、8mg酸响应荧光探针Cy7的28mL二甲基亚砜DMSO溶液;
20ml超纯水。
优选地,所述的聚合物PEG-CH=N-PAH包括如下含量的组分制备而成:
苯甲醛封端聚乙二醇单甲醚PEGhyde 3.0g;
棕榈酸酰肼260mg;
甲醇18mL。
优选地,所述的酸响应荧光探针Cy7包括如下含量的组分制备而成:
Cy7 NHS ester 6.3mmol;
氨基葡萄糖盐酸盐6.2mmol;
20mL无水二甲亚砜DMSO;
N-二异丙基乙胺15mmol;
50mL丙酮。
实施例4:本实施例提供的靶向NRP受体酸响应MRI/荧光对比剂及其制法与应用,与实施例1基本相同,不同之处在于在本实施例的具体方法过程如下:
一种靶向NRP受体酸响应MRI/荧光对比剂,其由包括如下含量的组分制备而成:
含有质量体积浓度7mg/mL的单分散超顺磁Fe3O4磁性纳米粒子的环己烷溶液11mL;
含有40mg聚合物PEG-CH=N-PAH、10mg靶向胶质瘤NRP1受体的两亲性聚合物DSPE-PEG2000-tLyP-1、9mg酸响应荧光探针Cy7的23mL二甲基亚砜DMSO溶液;
26ml超纯水。
优选地,所述的聚合物PEG-CH=N-PAH包括如下含量的组分制备而成:
苯甲醛封端聚乙二醇单甲醚PEGhyde 3.2g;
棕榈酸酰肼256mg;
甲醇16mL。
优选地,所述的酸响应荧光探针Cy7包括如下含量的组分制备而成:
Cy7 NHS ester 6.6mmol;
氨基葡萄糖盐酸盐6.5mmol;
23mL无水二甲亚砜DMSO;
N-二异丙基乙胺15.1mmol;
55mL丙酮。
而且,靶向NRP受体酸响应MRI/荧光对比剂的表征测试与具体应用可以参考如下方式进行:
(1)靶向NRP受体酸响应MRI/荧光对比剂的物理化学性质表征及生物安全、相容性等表征,包括通过透射电镜、动态激光粒度仪、激光共聚焦、荧光分光光度计等手段表征对比剂的粒径、形貌、稳定性等物理化学性质。
1.1靶向NRP受体酸响应MRI/荧光对比剂的粒径分布的测定:胶束的粒径及粒径分布由动态光散射仪(DLS)测定。将1mL胶束溶液置于玻璃比色皿中,在25℃,测量角度为173°,波长为633nm的氦-氖激光光源下进行测定。每个测定三次取平均值。
1.2靶向NRP受体酸响应MRI/荧光对比剂的形貌表征:利用透射电子显微镜(TEM)观察胶束的形貌。样品制备过程如下:将胶束水溶液(1mg/mL)滴在镀有
Figure BDA0002308020510000131
膜的铜网上,使用透射电子显微镜观察颗粒形貌。
(2)靶向NRP受体酸响应MRI/荧光对比剂纳米对比剂的酸响应聚集能力及响应性MR/荧光成像评价:
2.1聚集形貌评价:采用动态光散射仪器(DLS)测量对比剂于不同pH值的醋酸缓冲液(pH 5.0,pH 6.5,pH 7.4)中颗粒粒径跟随时间的变化趋势。具体步骤:将1mg酸敏感对比剂置于不同pH值的醋酸缓冲液(pH 5.0,pH 6.5,pH 7.4)中(1mg/mL),超声并震荡,放入37℃摇床中,速度为120/min。一定时间点取出部分对比剂溶液,并使用DLS及透射电子显微镜(TEM)测量观察其粒径及聚集形貌,并初步评价对比剂的酸响应性聚集能力。
2.2材料酸响应性MRI成像:为评价酸敏感tLyP-1-acid trigger-IONPs的酸敏感触发启动MRI/荧光成像能力,以1mL酸响应对比剂(1mg/mL)置于不同pH值(pH 5.0,pH 6.5,pH 7.4)的醋酸缓冲液模拟肿瘤酸性微环境4h,并通过3.0T Siemens Prisma医用磁共振测试不同pH值条件下其酸响应聚集能力及横向弛豫时间变化,评价酸触发成像效果,并通过不同浓度得到横向弛豫率r2。材料酸响应性荧光成像:对于酸响应荧光成像而言,步骤同上,最后以荧光分光光度计测试其不同pH值下的荧光强度及成像效果。
(3)不同级别胶质瘤细胞系的培养:选用不同级别胶质瘤细胞系细胞,包括正常人脑胶质细胞株(HEB细胞),星形细胞瘤(U251细胞),胶质母细胞瘤(SW1783细胞),胶质母细胞瘤(SHG44细胞),多形性胶质母细胞瘤(BT325细胞)。细胞培养:使用含10%胎牛血清2mM谷氨酰胺和1%青霉素-链霉素的DMEM高糖培养基,放入37℃恒温、5%CO2培养箱内培养。
(4)靶向NRP受体酸响应MRI/荧光对比剂纳米对比剂与细胞靶向结合能力试验:等细胞数(1×104)的不同细胞系(HEB细胞,U251细胞,SW1783细胞,SHG44细胞)分别种于16孔板中,待细胞贴壁后,每孔分别加入梯度浓度的纳米对比剂tLyP-1-acid trigger-IONPs溶液(0μM、IμM、2μM、5μM、I0μM、20μM、40μM),在4℃的结合缓冲液中孵化1小时使对比剂与细胞充分结合,经缓冲液清洗3次后,倒置荧光显微镜观察,激发波长:630nm。
(5)tLyP-1-acid trigger-IONPs对比剂的体外癌细胞酸响应MRI/荧光成像效果评价:以正常及不同级别胶质瘤细胞系细胞(HEB细胞,U251,SW1783细胞,SHG44细胞)为模型,评价tLyP-1-acid trigger-IONPs对比剂的酸响应成像效果。将一系列浓度的酸敏感对比剂与细胞共培养,离心1000rmp收集细胞后,以PBS吹散为细胞悬液,分为两组,一组用细胞裂解液裂解细胞2h,裂解细胞液装入1.5mL离心管,首先测试其pH值并记录,并以3.0TSiemens Prisma进行T2-weighted MRI弛豫时间及成像效果测试,比较分析其在不同级别胶质瘤细胞中的成像效果及其与pH值对应关系。另一组,以激光共聚焦显微镜观察其荧光强度,并以流式细胞仪定量分析不同细胞组荧光强度差别及其与pH值对应关系。
(6)脑胶质瘤原位动物模型建立:
6.1模型建立:10%水合氯醛麻醉SD大鼠,去毛发,立体定位仪固定,消毒后沿内眦连线中点向后纵向切开头皮1cm,暴露颅骨,在前囟冠状缝与矢状缝交点前1.0mm、右3.0mm处用三棱针钻开一直径为1.0mm的小孔。微量注射器抽取50μL(1×106)的细胞悬液(HEB细胞,U251,SW1783细胞,SHG44细胞),针尖调节至触及硬脑膜,沿钻孔垂直进针5.5mm,后退1mm,缓慢将细胞悬液注入尾状核内,推注时间为10min,注射完毕后留针10min后,缓慢退针。用无菌骨蜡封闭骨孔,生理盐水冲洗,缝合皮肤,常规饲养。在不同时间点,利用磁共振观察胶质瘤生长情况。
6.2组织病理学检查:为了确认所得的肿瘤模型是否符合分级要求,将大鼠处死,取肿瘤组织,多聚甲醛固定,石腊包埋,切片机制备3μm厚的组织切片,置于载玻片上,37℃干燥过夜,分别做HE染色,普鲁士蓝染色和伊红复染,然后用光学显微镜观察。
(7)体内成像研究
7.1 MRI响应成像研究:对不同级别的胶质瘤小鼠,尾静脉注射纳米对比剂,在注射前及注射后的不同时间点,接受异氟烷气体深度麻醉后,采用西门子公司生产的3.0TSiemens Prisma磁共振设备扫描,所用线圈为64通道头颅线圈,梯度场强为80mT/m,梯度切换率为2000mT/m/ms。扫描时小鼠头部置于线圈中心,使其正中矢状面与线圈纵轴保持一致,定位线大致位于双侧眉弓连线水平(所有轴位扫描序列定位线位置一致)。扫描序列包括T2加权横轴位及T2加权冠状位,扫描所用参数:TR为4000ms,TE为67ms,层厚为1.0mm,FOV为150mm×150mm,矩阵410×512,NEX为2次,反转角为150°。
7.2荧光响应成像研究:采用PerkinElmer IVIS活体成像系统,异氟烷气体麻醉剂深度麻醉后,激发波长:750nm,发射波长:775nm,进行活体成像扫描。
(8)图像后处理及分析
将MRI扫描获得的DICOM原始数据利用Syngo fastView、MRIcron等软件将查看原始数据且转换成JPG及nii格式并画取类圆形感兴趣区(Regions of Interest,ROI),测量肿瘤实质区部分ROI的测得肿瘤实质区信号值(Max,Min,mean,SD)及T2弛豫时间(Max,Min,mean,SD)。肿瘤实质ROI的选取,尽量避开出血、坏死区域,为避免ROI过大造成的误差,每个ROI的面积大小为4mm2,同时多次取点测量以减小误差。检测方法将肿瘤ITSS最大层面分为四级:0级为无ITSS信号;I级为含1~5个点样或线条状ITSS信号;II级含6~10个点样或线条状ITSS信号;III级为含11个及以上点样或线条状ITSS信号。
(9)统计学分析
用Excel表格记录数据,采用SPSS17.0软件分析处理数据,以P<0.05作为差异有统计学意义,以P<0.01作为差异有显著统计学意义。根据病理结果(金标准)将胶质瘤分为高级别组、低级别组,各诊断方法与病理分级均属高级别组者为真阳性者,各诊断方法与病理分级均属低级别组者为真阴性者。测得肿瘤实质区信号值(Max,Min,mean,SD)及T2弛豫时间(Max,Min,mean,SD),均采用均数±标准差(x±s)表示,利用单样本Kolmogorov-SmirnovTest及Levene Statis分别进行正态分布检验及方差分析检验,采用独立样本t检验分析两组间各参数值是否具有统计学差异。肿瘤内的ITSS分级数据采用Mann-Whitney U检验比较,采用Spearman等级相关分析ITSS分级与病理分级之间相关性。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。

Claims (10)

1.一种靶向NRP受体酸响应MRI/荧光对比剂,其特征在于,由包括如下含量的组分制备而成:
含有质量体积浓度4-8mg/mL的单分散超顺磁Fe304磁性纳米粒子的环己烷溶液8-12mL;
含有35-45mg聚合物PEG-CH=N-PAH、8-12mg靶向胶质瘤NRP1受体的两亲性聚合物DSPE-PEG2000-tLyP-1、8-12mg酸响应荧光探针Cy7的18-28mL二甲基亚砜DMSO溶液;
20-30ml超纯水。
2.如权利要求1所述的靶向NRP受体酸响应MRI/荧光对比剂,其特征在于,所述的聚合物PEG-CH=N-PAH包括如下含量的组分制备而成:
苯甲醛封端聚乙二醇单甲醚PEGhyde 2.0-4.0g;
棕榈酸酰肼240-280mg;
甲醇10-20mL。
3.如权利要求1所述的靶向NRP受体酸响应MRI/荧光对比剂,其特征在于,所述的酸响应荧光探针Cy7包括如下含量的组分制备而成:
Cy7 NHS ester 6-7mmol;
氨基葡萄糖盐酸盐5.98-6.98mmol;
15-25mL无水二甲亚砜DMSO;
N-二异丙基乙胺14.9-15.9mmol;
50-60mL丙酮。
4.如权利要求1所述的靶向NRP受体酸响应MRI/荧光对比剂,其特征在于,所述的靶向胶质瘤NRP1受体的两亲性聚合物DSPE-PEG2000-tLyP-1包括如下含量的组分制备而成:摩尔比为1∶1∶1的靶向NRP受体的tLyP-1多肽、中间体N-羟基琥珀酰亚胺NHS以及两亲聚合物DSPE-PEG2000-NH2经缩合反应而制成。
5.一种如权利要求1-4任一所述的靶向NRP受体酸响应MRI/荧光对比剂的制法,其特征在于,包括如下步骤:
S1:称取单分散超顺磁Fe304磁性纳米粒子IONPs环己烷溶液以及聚合物PEG-CH=N-PAH、靶向胶质瘤NRP1受体的两亲性聚合物DSPE-PEG2000-tLyP-1和酸响应荧光探针Cy7的二甲基亚砜DMSO溶液,将溶液混合均匀,超声30min,旋蒸除去环己烷,将剩余二甲基亚砜DMSO溶液在超声条件下缓慢滴加至超纯水中得到待透析液;
S2:将待透析液转移至透析袋MW=8000中,于室温在超纯水中透析24h,每间隔2小时换水一次,即得到酸敏感型胶束溶液,冷冻干燥,得到靶向NRP受体酸响应MRI/荧光对比剂。
6.如权利要求5所述的靶向NRP受体酸响应MRI/荧光对比剂的制法,其特征在于,所述的聚合物PEG-CH=N-PAH的制法包括将苯甲醛封端聚乙二醇单甲醚PEGhyde和棕榈酸酰肼溶于甲醇中,并在50℃下搅拌24h,反应完毕后将反应溶液置于-20℃下放置12h,经减压抽滤、乙醚洗涤、干燥即得两亲性酸敏感聚合物PEG-CH=N-PAH。
7.如权利要求6所述的靶向NRP受体酸响应MRI/荧光对比剂的制法,其特征在于,所述的苯甲醛封端聚乙二醇单甲醚PEGhyde采用如下方法制备而得:
S1:称取聚乙二醇单甲醚20.0g,经过甲苯共沸除水后倒入500mL反应瓶中,加入二氯甲烷250mL,在冰水浴中搅拌溶解,同时缓慢滴加TsCl 2.5g和TEA 25mL,滴加完毕一个小时后,将反应瓶移置室温下搅拌过夜,经过滤、乙醚沉降洗涤后得中间产物PEG-OTs;
S2:将中间产物PEGOTs 5.0g和对羟基苯甲醛1.2g搅拌溶解于乙腈100mL中,于80℃下加热反应24h,反应完毕,旋转蒸发仪浓缩至20mL,乙醚沉降洗涤,干燥,即得苯甲醛封端聚乙二醇单甲醚PEGhyde。
8.如权利要求5所述的靶向NRP受体酸响应MRI/荧光对比剂的制法,其特征在于,所述的酸响应荧光探针Cy7的制法包括将Cy7 NHS ester 6mmol和D-氨基葡萄糖盐酸盐5.98mmol溶解于15mL无水二甲亚砜DMSO中,并加入N,N-二异丙基乙胺14.9mmol调节反应液至弱碱性,之后再N2保护下室温搅拌5h,得到反应液,之后将所得反应液倒入50mL丙酮中沉降,经过滤、柱层析分离,采用体积比为10∶1的二氯甲烷和甲醇为洗脱剂,旋干后得到酸响应荧光探针Cy7。
9.如权利要求5所述的靶向NRP受体酸响应MRI/荧光对比剂的制法,其特征在于,所述的靶向胶质瘤NRP1受体的两亲性聚合物DSPE-PEG2000-tLyP-1的制法包括:以NHS为中间体,利用靶向NRP受体的tLyP-1多肽上的羧基与两亲聚合物DSPE-PEG2000-NH2的氨基缩合反应,得到靶向胶质瘤NRP1受体的两亲性聚合物DSPE-PEG2000-tLyP-1;其中,靶向NRP受体的tLyP-1多肽采用固相化学合成方法合成:以2-氯三苯基氯树脂为载体,以9-芴甲氧羰基氨基为保护基团,按tLyP-1的氨基酸序列Cys-Gly-Asn-Lys-Arg-Thr-Arg从羧基端C端至氨基端N端的顺序连接氨基酸,先将Arg的羧基以共价键与树脂相连,再以吡啶和乙酸酐封闭树脂上剩余的活性位点,之后以Arg的氨基为合成起点与Thr的羧基发生酰化反应形成肽键,后续氨基酸以HOBt/HBTU/DIEA为缩合剂依次连接结束后,以三氟乙酸裂解,即得合成产物靶向NRP受体的tLyP-1多肽。
10.一种如权利要求1-4任一所述的靶向NRP受体酸响应MRI/荧光对比剂的应用,该靶向NRP受体酸响应MRI/荧光对比剂用于构建不同级别原位胶质瘤模型系统,通过酸响应增强成像效果,利用响应成像与胶质瘤恶性程度的定量关系,建立基于成像相关参数的胶质瘤分级数字模型,得到胶质瘤的影像学无创分级诊断,ITSS最大层面分为四级:0级为无ITSS信号;I级为含1-5个点样或线条状ITSS信号;II级含6-10个点样或线条状ITSS信号;III级为含11个及以上点样或线条状ITSS信号。
CN201911248716.2A 2019-12-09 2019-12-09 靶向nrp受体酸响应mri/荧光对比剂、制法及应用 Pending CN110935035A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911248716.2A CN110935035A (zh) 2019-12-09 2019-12-09 靶向nrp受体酸响应mri/荧光对比剂、制法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911248716.2A CN110935035A (zh) 2019-12-09 2019-12-09 靶向nrp受体酸响应mri/荧光对比剂、制法及应用

Publications (1)

Publication Number Publication Date
CN110935035A true CN110935035A (zh) 2020-03-31

Family

ID=69909885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911248716.2A Pending CN110935035A (zh) 2019-12-09 2019-12-09 靶向nrp受体酸响应mri/荧光对比剂、制法及应用

Country Status (1)

Country Link
CN (1) CN110935035A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2744344A1 (en) * 2008-11-26 2010-06-03 National Research Council Of Canada Antibody-targeted carrier for contrast agents
CN104164079A (zh) * 2013-08-14 2014-11-26 长春工业大学 磁性荧光发光pH敏感聚氨酯材料的制备方法
EP2813246A1 (en) * 2013-06-11 2014-12-17 Albert-Ludwigs-Universität Freiburg Compositions for detecting analytes by magnetic resonance imaging
CN109481700A (zh) * 2018-12-29 2019-03-19 广州贝奥吉因生物科技有限公司 一种用于肝癌早期诊断的分子探针及其制备方法
CN110141668A (zh) * 2019-04-27 2019-08-20 钟士江 一种靶向标记nrp-1的磁共振分子探针及其构建方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2744344A1 (en) * 2008-11-26 2010-06-03 National Research Council Of Canada Antibody-targeted carrier for contrast agents
EP2813246A1 (en) * 2013-06-11 2014-12-17 Albert-Ludwigs-Universität Freiburg Compositions for detecting analytes by magnetic resonance imaging
CN104164079A (zh) * 2013-08-14 2014-11-26 长春工业大学 磁性荧光发光pH敏感聚氨酯材料的制备方法
CN109481700A (zh) * 2018-12-29 2019-03-19 广州贝奥吉因生物科技有限公司 一种用于肝癌早期诊断的分子探针及其制备方法
CN110141668A (zh) * 2019-04-27 2019-08-20 钟士江 一种靶向标记nrp-1的磁共振分子探针及其构建方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI LI,ET AL.: "Bombesin-functionalized superparamagnetic iron oxide nanoparticles for dual-modality MR/NIRFI in mouse models of breast cancer", 《INTERNATIONAL JOURNAL OF NANOMEDICINE》 *
刘磊: "刺激响应型生物材料在抗癌药物输送和细胞荧光成像中的研究", 《中国优秀博硕士学位论文全文数据库(博士)医药卫生科技辑》 *
赵旭: "生物成像用pH激活型近红外荧光探针的构建及应用", 《中国优秀博硕士学位论文全文数据库(博士)医药卫生科技辑》 *

Similar Documents

Publication Publication Date Title
Hu et al. Dysprosium-modified tobacco mosaic virus nanoparticles for ultra-high-field magnetic resonance and near-infrared fluorescence imaging of prostate cancer
Moros et al. Engineering biofunctional magnetic nanoparticles for biotechnological applications
Gao et al. Affibody-based nanoprobes for HER2-expressing cell and tumor imaging
CN102406949B (zh) 一种靶向示踪的多模式诊断纳米影像药物
Bulte Intracellular endosomal magnetic labeling of cells
CN111450264B (zh) 一种靶向脑胶质母细胞瘤的双模态纳米探针及其制备方法
CN103083689A (zh) 一种用于脑肿瘤诊断的跨血脑屏障靶向多模态纳米药物
JP2009533061A (ja) 細胞の標識を評価する方法
CN101991867B (zh) 用于早期肝纤维化诊断的多模式靶向探针及其制备方法
CN111450263A (zh) 一种磁共振/荧光双模态纳米探针及其制备方法
CN109529059A (zh) 一种荧光-磁共振双模态量子点及其制备和应用方法
Liu et al. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin–avidin-specific binding
Wu et al. Affibody-modified Gd@ C-dots with efficient renal clearance for enhanced MRI of EGFR expression in non-small-cell lung cancer
CN109395101A (zh) 靶向血脑屏障和脑胶质瘤的磁共振对比剂的制备方法
CN107096042A (zh) 用于检测早期肝细胞癌的磁共振分子探针
CN102145177A (zh) 叶酸分子靶向磁性纳米药物载体及靶向基因药物的制备方法
CN102350002B (zh) 一种胶质瘤靶向分子磁共振对比剂及其制备方法和应用
CN110354281A (zh) 一种双靶向多模态分子影像探针及其制备方法和应用
CN110935035A (zh) 靶向nrp受体酸响应mri/荧光对比剂、制法及应用
WO2014145573A1 (en) Coated magnetic nanoparticles for imaging enhancement and drug delivery
Wen et al. Preparation and quality test of superparamagnetic iron oxide labeled antisense oligodeoxynucleotide probe: a preliminary study
CN106310297A (zh) 多功能高分子前药纳米递药系统及制备方法和用途
CN106813965B (zh) 具有肿瘤细胞染色的裸眼可视纳米微粒制备及微粒和应用
CN113786496A (zh) 一种靶向药物纳米体系及其制备方法和应用
CN115429900A (zh) Cd40靶向的磁共振/光学双模态成像探针

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200331

RJ01 Rejection of invention patent application after publication