CN110931259B - 一种银镓铟硒/氧化物薄膜电极的制备方法 - Google Patents

一种银镓铟硒/氧化物薄膜电极的制备方法 Download PDF

Info

Publication number
CN110931259B
CN110931259B CN201911185396.0A CN201911185396A CN110931259B CN 110931259 B CN110931259 B CN 110931259B CN 201911185396 A CN201911185396 A CN 201911185396A CN 110931259 B CN110931259 B CN 110931259B
Authority
CN
China
Prior art keywords
gallium
indium
selenium
silver
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911185396.0A
Other languages
English (en)
Other versions
CN110931259A (zh
Inventor
舒婷
曾德福
周亮
朱晓明
王诗
吴诗
李向华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Science and Technology
Original Assignee
Hubei University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Science and Technology filed Critical Hubei University of Science and Technology
Priority to CN201911185396.0A priority Critical patent/CN110931259B/zh
Publication of CN110931259A publication Critical patent/CN110931259A/zh
Application granted granted Critical
Publication of CN110931259B publication Critical patent/CN110931259B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

本发明公开了一种银镓铟硒/氧化物薄膜电极的制备方法,包括以下步骤:(1)在导电基底上制备氧化物多孔薄膜;(2)合成油溶性银镓铟硒纳米粒;(3)将油溶性银镓铟硒纳米粒通过表面改性制成巯基丙酸包覆的纳米粒后分散在水中制成分散液;(4)惰性气体氛围中将氧化物多孔薄膜浸泡在水溶性银镓铟硒纳米粒分散液中,使银镓铟硒纳米粒吸附到氧化物多孔薄膜内;(5)再经洗涤、吹干得到银镓铟硒/氧化物薄膜电极。本发明的有益效果:银镓铟硒纳米粒的合成反应温度低,时间短,节省能耗和时间,制得的银镓铟硒颗粒均匀,尺寸小,改性后易于吸附到氧化物薄膜内;本发明所制备的银镓铟硒/氧化物电极具有可调的光学和电学性能,可用于改善电池性能。

Description

一种银镓铟硒/氧化物薄膜电极的制备方法
技术领域
本发明属于太阳能电池材料领域,具体涉及一种银镓铟硒/氧化物薄膜电极的制备方法。
背景技术
随着化石能源的不断消耗及其引起的环境问题的日益严重,再加上人类对能源需求的持续增长,研究太阳能电池意义重大,势在必行。
量子点敏化太阳能电池(QDSSC)具有较高的理论转化效率,近年来受到人们的广泛关注。量子点半导体作为光敏剂,起到吸收太阳光并产生光生电子的作用,理想的量子点的能带要与地面光伏利用要求的最佳带隙(1.5eV)接近,才能更好的吸收太阳能。量子点的能带调节是提高该类太阳能电池转化效率的重要举措。
近红外AgInSe2量子点已被用于QDSSC中,但电池的能量转化效率不高。AgInSe2半导体的带隙是1.2eV,小于1.5eV。为了调节带隙,可往AgInSe2里面掺入镓元素(AgGaSe2的带隙为1.8eV),形成银镓铟硒(Ag-Ga-In-Se)四元半导体。银镓铟硒纳米粒的合成报道极少,CN201610551532.3报道了用液相回流发在200-270℃合成AgIn1-xGaxSe2纳米粒。尚未见将银镓铟硒纳米粒制成薄膜电极的报道。
发明内容
为了调节AgInSe2的带隙,改善其光电性能,本发明提供一种银镓铟硒/氧化物薄膜电极的制备方法。该方法首先在导电基底上制备氧化物多孔薄膜;然后合成油溶性银镓铟硒纳米粒,并将其转化为水溶性;最后在惰性气体氛围中将氧化物多孔薄膜浸泡在水溶性银镓铟硒纳米粒分散液中,使其吸附到氧化物多孔薄膜内,再洗涤、吹干得到银镓铟硒/氧化物薄膜电极。
本发明采用温和的热注入方法合成了银镓铟硒半导体纳米粒,进行表面改性后进一步制备了银镓铟硒/氧化物薄膜电极。本发明中银镓铟硒纳米粒的合成反应温度低,时间短,节省能耗和时间,制得的银镓铟硒颗粒均匀,尺寸小,改性后易于吸附到氧化物薄膜内;由于组成可调,本发明制备的银镓铟硒/氧化物电极具有可调的光学和电学性能。
本发明提供的技术方案如下:
一种银镓铟硒/氧化物薄膜电极的制备方法,包括以下步骤:
(1)在导电基底上制备氧化物多孔薄膜;
(2)合成油溶性银镓铟硒纳米粒;
(3)将油溶性银镓铟硒纳米粒通过表面改性后制成巯基丙酸包覆的纳米粒,再分散在水中制成水溶性银镓铟硒纳米粒分散液;
(4)惰性气体氛围中将氧化物多孔薄膜浸泡在水溶性银镓铟硒纳米粒分散液中,使银镓铟硒纳米粒吸附到氧化物多孔薄膜内;
(5)先后用水和乙醇冲洗吸附银镓铟硒后的氧化物多孔薄膜,氮气吹干得到银镓铟硒/氧化物薄膜电极。
具体的,
所述氧化物多孔薄膜的制备方法如下:将二氧化钛浆料丝网印刷于导电基底上,经煅烧即得;
所述导电基底为掺F的SnO2导电玻璃(FTO)、掺Sn的In2O3导电玻璃(ITO)或金属片。
具体的,所述油溶性银镓铟硒纳米粒改性成巯基丙酸包覆的纳米粒的方法如下:
(1)将巯基丙酸溶于去离子水和甲醇中配成溶液,用NaOH溶液调节pH值至强碱性;
(2)将碱性的巯基丙酸溶液加入到银镓铟硒氯仿分散液中,充分搅拌得到沉淀;在沉淀中加水,继续搅拌使液体分层,银镓铟硒纳米粒由氯仿层转入水层;
(3)弃掉氯仿层,在水层中加入丙酮得到沉淀,倒掉清液,将沉淀重新分散在水中得到巯基丙酸包覆的水溶性银镓铟硒纳米粒分散液。
具体的,所述的油溶性银镓铟硒纳米粒的制备方法如下:
(1)将银源、铟源、镓源在溶剂中加热溶解形成金属离子前驱体溶液;
(2)将硒粉溶于有机膦中形成硒前驱体溶液;
(3)在无水无氧、氮气保护条件下,将硒前驱体溶液注入金属离子前驱体溶液中,加热反应一定时间;
(4)产物经洗涤、沉淀、离心后分散在氯仿中得到油溶性的银镓铟硒纳米粒。
进一步地,油溶性银镓铟硒纳米粒合成步骤(1)中所述银源选自乙酰丙酮银或醋酸银,所述铟源选自乙酰丙酮铟或醋酸铟,所述镓源选自乙酰丙酮镓或醋酸镓。
进一步地,油溶性银镓铟硒纳米粒合成步骤(1)所述的溶剂为油胺与十八烯的混合溶剂,油胺与十八烯的体积比为2:1。
进一步地,油溶性银镓铟硒纳米粒合成步骤(1)所述的铟源与镓源的投料摩尔比为1:2-4。
进一步地,油溶性银镓铟硒纳米粒合成步骤(2)所述的有机磷为二苯基膦(DPP),硒前驱体为DPP-Se。
进一步地,油溶性银镓铟硒纳米粒合成步骤(3)所述的反应温度为170-190℃,反应的时间为5-10min。
本发明的另一目的在于提供利用上述方法制备的银镓铟硒/氧化物薄膜电极。
本发明的有益效果:
(1)本发明中银镓铟硒纳米粒的合成设备要求低,反应温度低(170-190℃),反应时间短(5-10min),节省能耗和时间。银镓铟硒纳米粒由热注入法制得,其颗粒均匀,粒径分布窄,尺寸小(4-6nm),改性后易于吸附到氧化物薄膜上;
(2)相比银铟硒,银镓铟硒半导体具有可调节的带隙,因此本发明制备的银镓铟硒/氧化物电极具有可调的光学和电学性能。
(3)本发明中银镓铟硒/氧化物电极的制备采用偶联剂辅助吸附法,提供了改善电池性能的思路和参考。
附图说明
图1为银镓铟硒的透射电镜图(TEM)图;
图2为银镓铟硒的元素成分扫描(EDS)图。
图3为银镓铟硒/氧化物薄膜电极图
具体实施方式
下面结合实施例对本发明作进一步说明,但本发明的内容不限于此。
实施例1
(1)在ITO上制备TiO2多孔薄膜(ITO/TiO2)
将二氧化钛浆料(P25)丝网印刷在ITO上,厚度约9μm,在500℃马弗炉加热煅烧30min得到TiO2多孔薄膜(ITO/TiO2)。
(2)合成油胺包覆的银镓铟硒纳米粒
将醋酸银0.3mmol,醋酸镓0.2mmol,醋酸铟0.1mmol加入含有10mL油胺和5mL十八烯的三口烧瓶中,通氮气加热到130℃,抽真空30min。充入氮气升温至170℃,另将0.6mmol硒粉溶于2mL DPP中,快速注入到上述反应液中,在170℃反应10min。移去热源,快速冷却至室温。加适量环己烷清洗,用甲醇沉淀离心后,将银镓铟硒纳米粒分散在氯仿中。
(3)将(2)中合成的油胺包覆的银镓铟硒纳米粒通过表面改性后制成巯基丙酸包覆的纳米粒分散在水中。
将0.4mmol巯基丙酸溶于0.3mL去离子水和1.0mL甲醇中配成溶液,用40%NaOH调节溶液的pH至12。将上述巯基丙酸溶液加入5.0mL银镓铟硒纳米粒的氯仿分散液中(含银镓铟锡0.2mmol),搅拌30min得到沉淀,加10mL水,继续搅拌15min,溶液分层,银镓铟硒纳米粒由氯仿层转入水层。弃掉氯仿层,在水层中加入丙酮得到沉淀,倒掉上清液,将沉淀重新溶在水中得到水溶性银镓铟硒纳米粒分散液,使其在起始吸收波长处的吸光度为2,pH值约为11。
(4)惰性气体氛围中将氧化物多孔薄膜浸泡在水溶性银镓铟硒纳米粒分散液中,使银镓铟硒纳米粒吸附到氧化物多孔薄膜内。
(5)先后用水和乙醇冲洗吸附银镓铟硒后的氧化物多孔薄膜,氮气吹干得到银镓铟硒/氧化物薄膜电极1。
实施例2
(1)在Ti片上制备TiO2多孔薄膜(Ti/TiO2),方法同实施例1(1),只是将基底改为Ti片.
(2)合成油胺包覆的银镓铟硒纳米粒
将乙酰丙酮银0.3mmol,乙酰丙酮镓0.225mmol,乙酰丙酮铟0.075mmol加入含有10mL油胺和5mL十八烯的三口烧瓶中,通氮气加热到130℃,抽真空30min。充入氮气升温至180℃,另将0.6mmol硒粉溶于2mL DPP中,快速注入到上述反应液中,在180℃反应7min。移去热源,快速冷却至室温。加适量环己烷清洗,用甲醇沉淀离心后,将银镓铟硒纳米粒分散在氯仿中。
步骤(3)-(5)参照实施例1(3)-(5),制备得到银镓铟硒/氧化物薄膜电极2。
实施例3
(1)在FTO上制备TiO2多孔薄膜(FTO/TiO2),方法同实施例1(1),只是将基底改为FTO。
(2)合成油胺包覆的银镓铟硒纳米粒
将醋酸银0.3mmol,乙酰丙酮镓0.24mmol,醋酸铟0.06mmol加入含有10mL油胺和5mL十八烯的三口烧瓶中,通氮气加热到130℃,抽真空30min。充入氮气升温至190℃,另将0.6mmol硒粉溶于2mL DPP中,快速注入到上述反应液中,在190℃反应5min。移去热源,快速冷却至室温。加适量环己烷清洗,用甲醇沉淀离心后,将银镓铟硒纳米粒分散在氯仿中。其TEM图见图1,EDS图见图2。
步骤(3)-(5)参照实施例1(3)-(5),制备得到银镓铟硒/氧化物薄膜电极3,见图3。
各实施例的制备条件及所制备的银镓铟硒纳米粒参数如表1所示:
表1不同反应条件制得的银镓铟硒纳米粒情况
Figure GDA0003163145610000051
以上所述,仅为本发明较佳的具体实施方式,但本发明保护的范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内所做的任何修改,等同替换和改进等,均应包含在发明的保护范围之内。

Claims (9)

1.一种银镓铟硒/氧化物薄膜电极的制备方法,其特征在于,包括以下步骤:
(1)在导电基底上制备氧化物多孔薄膜;
(2)合成油溶性银镓铟硒纳米粒;
(3)将油溶性银镓铟硒纳米粒通过表面改性后制成巯基丙酸包覆的纳米粒,再分散在水中制成水溶性银镓铟硒纳米粒分散液;
所述油溶性银镓铟硒纳米粒改性成巯基丙酸包覆的水溶性纳米粒的方法如下:
(3.1)将巯基丙酸溶于去离子水和甲醇中配成溶液,用NaOH溶液调节pH值至强碱性;
(3.2)将碱性的巯基丙酸溶液加入到银镓铟硒氯仿分散液中,充分搅拌得到沉淀;在沉淀中加水,继续搅拌使液体分层,银镓铟硒纳米粒由氯仿层转入水层;
(3.3)弃掉氯仿层,在水层中加入丙酮得到沉淀,倒掉清液,将沉淀重新分散在水中得到巯基丙酸包覆的水溶性银镓铟硒纳米粒分散液;
(4)惰性气体氛围中将氧化物多孔薄膜浸泡在水溶性银镓铟硒纳米粒分散液中,使银镓铟硒纳米粒吸附到氧化物多孔薄膜内;
(5)先后用水和乙醇冲洗吸附银镓铟硒后的氧化物多孔薄膜,氮气吹干得到银镓铟硒/氧化物薄膜电极。
2.根据权利要求1所述的银镓铟硒/氧化物薄膜电极的制备方法,其特征在于:
所述氧化物多孔薄膜的制备方法如下:将二氧化钛浆料丝网印刷于导电基底上,经煅烧即得;
所述导电基底为掺F的SnO2导电玻璃(FTO)、掺Sn的In2O3导电玻璃(ITO)或金属片。
3.根据权利要求1所述的银镓铟硒/氧化物薄膜电极的制备方法,其特征在于,所述的油溶性银镓铟硒纳米粒的制备方法如下:
(1)将银源、铟源、镓源在溶剂中加热溶解形成金属离子前驱体溶液;
(2)将硒粉溶于有机膦中形成硒前驱体溶液;
(3)在无水无氧、氮气保护条件下,将硒前驱体溶液注入金属离子前驱体溶液中,加热反应一定时间;
(4)产物经洗涤、沉淀、离心后分散在氯仿中得到油溶性银镓铟硒纳米粒。
4.根据权利要求3所述的银镓铟硒/氧化物薄膜电极的制备方法,其特征在于:所述银源选自乙酰丙酮银或醋酸银;所述铟源选自乙酰丙酮铟或醋酸铟;所述镓源选自乙酰丙酮镓或醋酸镓。
5.根据权利要求3所述的银镓铟硒/氧化物薄膜电极的制备方法,其特征在于:所述步骤(1)的溶剂为油胺与十八烯的混合溶剂,油胺与十八烯的体积比为2:1。
6.根据权利要求3所述的银镓铟硒/氧化物薄膜电极的制备方法,其特征在于:所述铟源与镓源的投料摩尔比为1:2-4。
7.根据权利要求3所述的银镓铟硒/氧化物薄膜电极的制备方法,其特征在于:所述步骤(2)中有机磷为二苯基膦(DPP),硒前驱体为DPP-Se。
8.根据权利要求3所述的银镓铟硒/氧化物薄膜电极的制备方法,其特征在于:所述步骤(3)中反应温度为170-190℃,反应的时间为5-10min。
9.一种银镓铟硒/氧化物薄膜电极,其特征在于:采用权利要求1-8任一项所述的方法制备。
CN201911185396.0A 2019-11-27 2019-11-27 一种银镓铟硒/氧化物薄膜电极的制备方法 Active CN110931259B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911185396.0A CN110931259B (zh) 2019-11-27 2019-11-27 一种银镓铟硒/氧化物薄膜电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911185396.0A CN110931259B (zh) 2019-11-27 2019-11-27 一种银镓铟硒/氧化物薄膜电极的制备方法

Publications (2)

Publication Number Publication Date
CN110931259A CN110931259A (zh) 2020-03-27
CN110931259B true CN110931259B (zh) 2022-02-08

Family

ID=69846727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911185396.0A Active CN110931259B (zh) 2019-11-27 2019-11-27 一种银镓铟硒/氧化物薄膜电极的制备方法

Country Status (1)

Country Link
CN (1) CN110931259B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465320A (zh) * 2014-11-04 2015-03-25 湖南红太阳光电科技有限公司 一种cigs薄膜的非真空制备方法
CN104810159A (zh) * 2015-05-12 2015-07-29 中国工程物理研究院材料研究所 一种锡掺杂磷化铟量子点敏化太阳能电池的制备方法
CN106191986A (zh) * 2016-07-13 2016-12-07 中国科学技术大学 液相回流一步法可控制备正交相银镓硒及银铟镓硒单晶纳米颗粒的方法
CN107418564A (zh) * 2017-05-26 2017-12-01 温州大学 一种锌掺杂铜铟硫量子点的合成方法
CN108831939A (zh) * 2018-06-14 2018-11-16 电子科技大学中山学院 一种四元共蒸aigs薄膜及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1826788A1 (en) * 2006-02-22 2007-08-29 Sony Deutschland Gmbh A method of optimizing the band edge positions of the conduction band and the valence band of a semiconductor material for use in photoactive devices
US20100059385A1 (en) * 2008-09-06 2010-03-11 Delin Li Methods for fabricating thin film solar cells
CN105154084A (zh) * 2015-07-21 2015-12-16 东华大学 一种水相合成颜色可调的三元银铟硒AgInSe2荧光量子点的制备方法
CN106009930B (zh) * 2016-04-25 2019-07-26 苏州星烁纳米科技有限公司 量子点墨水
CN106830054B (zh) * 2017-02-21 2018-07-17 湖北科技学院 一种不同发射波长的水溶性CdS量子点原位可控辐射合成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465320A (zh) * 2014-11-04 2015-03-25 湖南红太阳光电科技有限公司 一种cigs薄膜的非真空制备方法
CN104810159A (zh) * 2015-05-12 2015-07-29 中国工程物理研究院材料研究所 一种锡掺杂磷化铟量子点敏化太阳能电池的制备方法
CN106191986A (zh) * 2016-07-13 2016-12-07 中国科学技术大学 液相回流一步法可控制备正交相银镓硒及银铟镓硒单晶纳米颗粒的方法
CN107418564A (zh) * 2017-05-26 2017-12-01 温州大学 一种锌掺杂铜铟硫量子点的合成方法
CN108831939A (zh) * 2018-06-14 2018-11-16 电子科技大学中山学院 一种四元共蒸aigs薄膜及其制备方法和应用

Also Published As

Publication number Publication date
CN110931259A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
Kakiuchi et al. Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719
Saito et al. Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells
US8415556B2 (en) Copper delafossite transparent P-type semiconductor thin film devices
Su et al. Recent advances in quantum dot catalysts for hydrogen evolution: Synthesis, characterization, and photocatalytic application
CN107799316B (zh) 一种PbS量子点敏化TiO2薄膜的制备方法及其应用
CN112186107B (zh) 一种空穴传输层的锡基钙钛矿太阳能电池及其制备方法
Song et al. Aqueous synthesis of alloyed CdSexTe1-x colloidal quantum dots and their In-situ assembly within mesoporous TiO2 for solar cells
Ren et al. Near-infrared heavy-metal-free SnSe/ZnSe quantum dots for efficient photoelectrochemical hydrogen generation
An et al. Introducing of MnS passivation layer on TiO2 mesoporous film for improving performance of quantum dot sensitized solar cells
Gao et al. ZnO/TiO2 core–shell heterojunction for CdS and PbS quantum dot-cosensitized solar cells
CN113130756A (zh) 复合材料及其制备方法、薄膜和光伏器件
Acchutharaman et al. Enhanced electron harvesting in next generation solar cells by employing TiO2 nanoparticles prepared through hydrolysis catalytic process
CN108615671B (zh) 一种铜锌锡硫光电薄膜的制备方法
CN102254702A (zh) 一种复合光阳极材料及在染料敏化电池制备中的应用
CN110931259B (zh) 一种银镓铟硒/氧化物薄膜电极的制备方法
Khan et al. Synthesis and characterization of nanostructured photoanodes for dye sensitized solar cells
Kiran et al. Preparation and thickness optimization of TiO2/Nb2O5 photoanode for dye sensitized solar cells
Wang et al. A strategy of adjusting band alignment to improve photocatalytic degradation and photocatalytic hydrogen evolution of CuSbS2
CN109879307B (zh) 一种钙钛矿太阳能电池中介孔SnO2的制备方法
CN109054837B (zh) 一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法
Du et al. TiO2 hierarchical pores/nanorod arrays composite film as photoanode for quantum dot-sensitized solar cells
CN106548873B (zh) 一种ZnSe量子点敏化纳米TiO2薄膜的制备方法
Krishnaswamy et al. Photoluminescence quenching of green synthesized manganese doped zinc oxide by sodium iodide doped Polypyrrole polymer
Wang et al. Quantum dot sensitized solar cells: Light harvesting versus charge recombination, a film thickness consideration
CN116536048B (zh) 一种尺寸、化学组分可调的CuInSe2/CuInS2核壳结构量子点合成方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant