CN109054837B - 一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法 - Google Patents

一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法 Download PDF

Info

Publication number
CN109054837B
CN109054837B CN201810957335.0A CN201810957335A CN109054837B CN 109054837 B CN109054837 B CN 109054837B CN 201810957335 A CN201810957335 A CN 201810957335A CN 109054837 B CN109054837 B CN 109054837B
Authority
CN
China
Prior art keywords
nayf
biocl
solution
core
shell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810957335.0A
Other languages
English (en)
Other versions
CN109054837A (zh
Inventor
郝树伟
侯月丹
杨春晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810957335.0A priority Critical patent/CN109054837B/zh
Publication of CN109054837A publication Critical patent/CN109054837A/zh
Application granted granted Critical
Publication of CN109054837B publication Critical patent/CN109054837B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)

Abstract

一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法,本发明涉及NaYF4:Yb3+/Er3+@BiOCl复合材料的制备方法。本发明是要解决现有的NaYF4:Yb3+/Er3+上转换基染料敏化太阳能电池的光电转换效率低的技术问题。本方法:一、配制BiCl3溶液;二、将NaYF4:Yb3+/Er3+加入到BiCl3溶液中反应,得到BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶;三、将BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶烧结,得到稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶。用该纳米晶制备的染料敏化太阳能电池的光阳极,电池效率比未处理的NaYF4:Yb3+/Er3+提高10%~14%,可用于染料敏化太阳能电池中。

Description

一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备 方法
技术领域
本发明涉及NaYF4:Yb3+/Er3+@BiOCl复合材料的制备方法。
背景技术
目前有效利用的太阳光仅占到达地球表面太阳能的万分之一,人们期望太阳能将来能够满足大部分能量需求。染料敏化太阳能电池(DSSCs)因其价格低廉、无污染和相对较高的光电转换效率被认为是硅基太阳能电池的理想替代者,N719作为其核心染料,仅能吸收400-700nm可见波段太阳光光子而无法利用占太阳光谱中约55%的红外太阳光光子,致使电池光电转换效率的提升受到限制。上转换过程能将两个低于N719带隙能量的光子进行叠加,并发射出一个大于N719带隙能量的上转换光子,在染敏太阳能电池中应用上转换材料能有效提高电池效率。NaYF4:Yb3+/Er3+上转换纳米晶是目前发光效率最高的上转换材料,并已被广泛用于增强染料敏化太阳能电池对红外光的响应,尽管上转换基染料敏化太阳能电池的光电转换效率得到了一定提升,但是增加的幅度非常有限,这是因为 NaYF4纳米晶是绝缘物质所造成的,当其掺杂到光阳极中会严重阻碍光电子在光阳极中传输,从而使电池效率提高受阻。
发明内容
本发明是要解决现有的NaYF4:Yb3+/Er3+上转换基染料敏化太阳能电池的光电转换效率低的技术问题,而提供一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法。
本发明的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法,按以下步骤进行:
一、将BiCl3加入到乙二醇中,加热至60~65℃并搅均匀,得到BiCl3溶液;
二、将NaYF4:Yb3+/Er3+加入到BiCl3溶液中,搅拌均匀,冷却至室温,并调节溶液的pH=8~9,重新加热至60~65℃并搅拌反应0.5~1h后,冷却静置,除去上层清液,加入乙醇搅拌均匀后,放在烘箱中,在40~60℃的条件下进行干燥处理,得到BiOCl包覆的 NaYF4:Yb3 +/Er3+纳米晶;
三、将步骤二制备的BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶放在氧化铝坩埚中,再将氧化铝坩埚放在马弗炉中,在空气气氛中升温至200~300℃烧结1~3h,自然降温,得到稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶。
本发明的方法是将六棱柱NaYF4:Yb3+/Er3+内核直接掺入到BiCl3乙二醇溶液中,以NaYF4:Yb3+/Er3+内核作为晶种,在其外表面外延生长一层BiOCl的壳层结构,再将BiOCl 包覆的NaYF4:Yb3+/Er3+纳米晶粉末进行烧结处理,从而获得结构稳定的 NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶。NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶是一种灰白色粉末,六方相NaYF4:Yb3+/Er3+@BiOCl纳米晶体尺寸约为0.6~1.5μm。通过烧结处理,可促进壳层BiOCl牢固包覆在NaYF4:Yb3+/Er3+表面,将其应用于染料敏化太阳能电池的光阳极,电池效率比未处理前的NaYF4:Yb3+/Er3+提高10%~14%,这是因为NaYF4本身不具有导电性质,对光阳极中电子的传输无促进作用,而BiOCl是一种半导体材料,可促进光电子传输并提高上转换效率,从而有效提升染料敏化太阳能电池的光电转换效率。
本发明所用设备简单,原料成本低廉,操作过程方便,反应过程所需原料低毒,无害,
本发明制备的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶可用于染料敏化太阳能电池中。
附图说明
图1是实施例1中步骤二中原材料NaYF4:Yb3+/Er3+的扫描电镜照片;
图2是实施例1中步骤二中得到的BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶的扫描电镜照片;
图3是实施例1中步骤三中得到的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的扫描电镜照片;
图4是实施例1中NaYF4:Yb3+/Er3+、步骤二得到的BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶、步骤三得到的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的XRD谱图;
图5是实施例1中,NaYF4:Yb3+/Er3+纳米晶、BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶、稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶修饰的染料敏化太阳能电池的伏安特性曲线;
图6是实施例2中步骤三中得到的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的扫描电镜照片;
图7是实施例2中步骤三中得到的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的扫描电镜照片。
具体实施方式
具体实施方式一:本实施方式的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法,按以下步骤进行:
一、将BiCl3加入到乙二醇中,加热至60~65℃并搅均匀,得到BiCl3溶液;
二、将NaYF4:Yb3+/Er3+加入到BiCl3溶液中,搅拌均匀,冷却至室温,并调节溶液的pH=8~9,重新加热至60~65℃并搅拌反应0.5~1h后,冷却静置,除去上层清液,加入乙醇搅拌均匀后,放在烘箱中,在40~60℃的条件下进行干燥处理,得到BiOCl包覆的 NaYF4:Yb3 +/Er3+纳米晶;
三、将步骤二制备的BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶放在氧化铝坩埚中,再将氧化铝坩埚放在马弗炉中,在空气气氛中升温至200~300℃烧结1~3h,自然降温,得到稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一中BiCl3的物质的量与乙二醇的体积的比为1mmol:(15~20)mL。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是步骤二中 NaYF4:Yb3+/Er3+与BiCl3的摩尔比为1:(0.1~0.2)。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤一中所述的 NaYF4:Yb3+/Er3+中,Yb3+的掺杂摩尔百分数为10%~20%,Er3+的掺杂摩尔百分数为0.5%~2%。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤一中所述的 NaYF4:Yb3+/Er3+是通过下面的方法制备的:
一、按Y(NO3)3、Yb(NO3)3和Er(NO3)3的总摩尔浓度为2~2.5mol/L、Yb3+的摩尔百分数为10%~20%、Er3+的摩尔百分数为0.5%~2%、Y3+的摩尔百分数为78%~89.5%,将 Y(NO3)3、Yb(NO3)3和Er(NO3)3加入去离子水中,溶解,得到稀土溶液;
二、向稀土溶液中加入柠檬酸钠水溶液;其中柠檬酸钠与稀土的摩尔比为1:(1~1.2);搅拌均匀后,再加入氟化钠水溶液;其中氟化钠与稀土的摩尔比为(1.1~1.2):1;再搅拌均匀后,得到混合液;
三、将混合液移入至反应釜中,在180~190℃的条件下水热反应24~28小时,清洗、干燥后,得到NaYF4:Yb3+/Er3+纳米晶。
其它与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是步骤三中升温速率为5~15℃/min。其它与具体实施方式一至五之一相同。
用下面的实施例验证本发明的有益效果:
实施例1:本实施例的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法,按以下步骤进行:
一、将0.0315g BiCl3加入到15ml乙二醇中,加热至60℃并搅搅拌5分钟,得到均匀的BiCl3溶液;
二、将0.1845gNaYF4:Yb3+/Er3+加入到步骤一得到的BiCl3溶液中,搅拌均匀,冷却至室温,并调节溶液的pH=8,重新加热至60℃并搅拌反应1h后,冷却静置,除去上层清液,加入10ml乙醇搅拌均匀后,放在烘箱中,在60℃的条件下进行干燥8小时,得到 BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶;
三、将步骤二制备的BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶放在氧化铝坩埚中,再将氧化铝坩埚放在马弗炉中,在空气气氛中以10℃/min的升温速率升温至200℃烧结2h,自然降温,得到稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶。
其中步骤二中所述的NaYF4:Yb3+/Er3+是通过下面的方法制备的:
在一个50mL烧杯中加入4mL浓度为4mol/L的柠檬酸钠水溶液和6mL Ln(NO3)3溶液,其中Ln(NO3)3溶液是按Y(NO3)3、Yb(NO3)3和Er(NO3)3的总摩尔浓度为 0.2mol/L、Yb3+的摩尔百分数为20%、Er3+的摩尔百分数为2%、Y3+的摩尔百分数为80%,将Y(NO3)3、Yb(NO3)3和Er(NO3)3加入去离子水中配制而成的;搅拌20分钟,随后加入28.8mL浓度为0.5mol/L的氟化钠水溶液,再搅拌30分钟后,将混合液移入50mL 反应釜中,在180℃下水热反应24小时,清洗、干燥后,得到NaYF4:Yb3+/Er3+纳米晶。
本实施例在步骤二中所用的原料NaYF4:Yb3+/Er3+的扫描电镜照片如图1所示,步骤二中得到的BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶的扫描电镜照片如图2所示,步骤三中得到的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的扫描电镜照片如图3所示,从图 1可以看出,NaYF4:Yb3+/Er3+纳米晶核外表面很干净,无杂质,从图2可以看出,BiOCl 包覆的NaYF4:Yb3+/Er3+纳米晶,其表面很粗糙,且明显看出表面有附着的松散的BiOCl 颗粒,结合不稳固;由图3可以看出,经过进一步热处理得到的NaYF4:Yb3+/Er3+@BiOCl 核壳结构纳米晶表面很均匀的包覆了一层BiOCl,未包覆上的BiOCl明显减少,且结构更加稳固。
本实施例步骤二的原料NaYF4:Yb3+/Er3+、步骤三得到的稳固的 NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的XRD谱图如图4所示,对比 NaYF4:Yb3+/Er3+@BiOCl和NaYF4以及BiOCl的两个标准XRD图可知,掺杂Yb3+/Er3+的NaYF4表面的确包覆了BiOCl,由于Yb3+/Er3+的掺杂量比较少,对NaYF4的晶相不会产生影响,因而看不到Yb3+和Er3+的衍射峰。
为证实稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶更有利于提升染料敏化太阳能电池性能,用原料NaYF4:Yb3+/Er3+、步骤二得到的BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶、步骤三得到的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶同时制备染料敏化太阳能电池,其中所述的染料敏化太阳能电池是通过下面的方法制备的:
a、制备浆料:称取0.25g乙基纤维素超声溶于10mL乙醇中,加入0.50g P25型TiO2粉体、2.17mL松油醇和0.0315g NaYF4:Yb3+/Er3+,搅拌1h,加热80℃除去多余乙醇,得到NaYF4:Yb3+/Er3+的浆料;再将NaYF4:Yb3+/Er3+替换为BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶,采用相同步骤得到BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶浆料;再将NaYF4:Yb3+/Er3+替换为稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶,得到稳固的 NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶浆料;得到三种浆料;
b、制备光阳极:吸取一滴浆料置于丝网印刷网面上,用刮刀进行刮涂,晾干后刮涂新的一层,共涂覆6层,马弗炉程序升温进行烧结,升温程序如表1所示,得到三种光阳极;
表1程序升温烧结步骤
Figure BDA0001772967770000051
c、将烧结完成的光阳极在70℃的浓度为30mmol/L的极稀的TiCl4水溶液中浸渍1h,取出并用去离子水冲洗3次,再在500℃条件下烧结30min。
d、染料的制备与浸渍:称取0.0119g N719溶于10mL无水乙醇中,超声分散,配成0.5mmol/L的溶液,将经步骤c烧好的光阳极降温至80℃,浸没于染料中放置24h。
e、制备对电极:称取0.052g H2PtCl6溶于10mL异丙醇中,超声分散,在FTO玻璃导电面合适位置上滴加一滴H2PtCl6溶液,空气中晾置10min,450℃下烧结0.5h,得到对电极。
f、电池的封装:将经步骤d处理后的光阳极置于回字形热封膜中央,然后将制作好的对电极放置在热封膜上方,并确保小孔在回字形内部,105℃按压热封。通过小孔向光阳极和对电极之间注入I3 /I电解质溶液,然后用热熔胶对小孔进行密封,得到三种染料敏化太阳能电池。
对三种电池进行J-V曲线测试,结果如图5所示,其数据如表2所示。
表2三种电池的性能
Figure BDA0001772967770000061
从图5和表1可以看出,以原料NaYF4:Yb3+/Er3+制备的电池,其电池效率达到6.232%,电流密度为12.425mA/cm2。而利用步骤二的BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶制备的电池,电池效率提升到6.658%,电流密度却降到11.766mA/cm2,电流密度的降低是由BiOCl与NaYF4:Yb3+/Er3+层间结构不稳定,致使加入光阳极后两种材料结构分离,会对光电子有淬灭作用所致。但是由于其依然具有较好的散射和吸收红外光源能量的作用使得电池效率得到有效的提高;当进一步采用步骤三得到的稳固的NaYF4:Yb3+/Er3+@BiOCl 核壳结构纳米晶制备的电池,电池的光电转换效率提升到6.886%,短路电流密度提升到 12.836mA/cm2,较NaYF4:Yb3+/Er3+提高了电池基础效率的10.49%,该结果表明步骤三制备的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶兼具吸收近红外光同时有助于光阳极电子传输,从而有效的提高了染料敏化太阳能电池的光电转换效率。
实施例2:本实施例的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法,按以下步骤进行:
一、将0.0315g BiCl3加入到15ml乙二醇中,加热至60℃并搅搅拌5分钟,得到均匀的BiCl3溶液;
二、将0.1845gNaYF4:Yb3+/Er3+加入到步骤一得到的BiCl3溶液中,搅拌均匀,冷却至室温,并调节溶液的pH=8.5,重新加热至60℃并搅拌反应1h后,冷却静置,除去上层清液,加入10ml乙醇搅拌均匀后,放在烘箱中,在60℃的条件下进行干燥8小时,得到BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶;其中NaYF4:Yb3+/Er3+的制备方法与实施例1 相同;
三、将步骤二制备的BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶放在氧化铝坩埚中,再将氧化铝坩埚放在马弗炉中,在空气气氛中以15℃/min的升温速率升温至280℃烧结2h,自然降温,得到稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶。
本实施例制备的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的扫描电镜照片如图6所示,由图6可以看出,本实施例得到的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的表面均匀牢固地包覆了一层BiOCl。
利用本实施例制备的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶制备染料敏化太阳能电池进行测试,其电流密度为12.647mA/cm2,开路电压为0.745V,电池效率为6.860%。
实施例3:本实施例的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法,按以下步骤进行:
一、将0.0315g BiCl3加入到15ml乙二醇中,加热至60℃并搅搅拌5分钟,得到均匀的BiCl3溶液;
二、将0.1845gNaYF4:Yb3+/Er3+加入到步骤一得到的BiCl3溶液中,搅拌均匀,冷却至室温,并调节溶液的pH=9,重新加热至60℃并搅拌反应1h后,冷却静置,除去上层清液,加入10ml乙醇搅拌均匀后,放在烘箱中,在60℃的条件下进行干燥8小时,得到 BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶;其中NaYF4:Yb3+/Er3+的制备方法与实施例1相同;
三、将步骤二制备的BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶放在氧化铝坩埚中,再将氧化铝坩埚放在马弗炉中,在空气气氛中以15℃/min的升温速率升温至300℃烧结3h,自然降温,得到稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶。
本实施例制备的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的扫描电镜照片如图7所示,由图7可以看出,本实施例得到的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的表面均匀牢固地包覆了一层BiOCl。
利用本实施例制备的稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶制备染料敏化太阳能电池进行测试,其电流密度为12.772mA/cm2,开路电压为0.745V,电池效率为6.872%。

Claims (6)

1.一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法,其特征在于该方法按以下步骤进行:
一、将BiCl3加入到乙二醇中,加热至60~65℃并搅均匀,得到BiCl3溶液;
二、将NaYF4:Yb3+/Er3+加入到BiCl3溶液中,搅拌均匀,冷却至室温,并调节溶液的pH=8~9,重新加热至60~65℃并搅拌反应0.5~1h后,冷却静置,除去上层清液,加入乙醇搅拌均匀后,放在烘箱中,在40~60℃的条件下进行干燥处理,得到BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶;
三、将步骤二制备的BiOCl包覆的NaYF4:Yb3+/Er3+纳米晶放在氧化铝坩埚中,再将氧化铝坩埚放在马弗炉中,在空气气氛中升温至200~300℃烧结1~3h,自然降温,得到稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶。
2.根据权利要求1所述的一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法,其特征在于步骤一中BiCl3的物质的量与乙二醇的体积的比为1mmol:(15~20)mL。
3.根据权利要求1或2所述的一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法,其特征在于步骤二中NaYF4:Yb3+/Er3+与BiCl3的摩尔比为1:(0.1~0.2)。
4.根据权利要求1或2所述的一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法,其特征在于步骤二中所述的NaYF4:Yb3+/Er3+中,Yb3+的掺杂摩尔百分数为10%~20%,Er3+的掺杂摩尔百分数为0.5%~2%。
5.根据权利要求1或2所述的一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法,其特征在于步骤二中所述的NaYF4:Yb3+/Er3+是按以下步骤制备的:
一、按Y(NO3)3、Yb(NO3)3和Er(NO3)3的总摩尔浓度为2~2.5mol/L、Yb3+的摩尔百分数为10%~20%、Er3+的摩尔百分数为0.5%~2%、Y3+的摩尔百分数为78%~89.5%,将Y(NO3)3、Yb(NO3)3和Er(NO3)3加入去离子水中,溶解,得到稀土溶液;
二、向稀土溶液中加入柠檬酸钠水溶液;其中柠檬酸钠与稀土的摩尔比为1:(1~1.2);搅拌均匀后,再加入氟化钠水溶液;其中氟化钠与稀土的摩尔比为(1.1~1.2):1;再搅拌均匀后,得到混合液;
三、将混合液移入至反应釜中,在180~190℃的条件下水热反应24~28小时,清洗、干燥后,得到NaYF4:Yb3+/Er3+纳米晶。
6.根据权利要求1或2所述的一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法,其特征在于步骤三中升温速率为5~15℃/min。
CN201810957335.0A 2018-08-22 2018-08-22 一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法 Active CN109054837B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810957335.0A CN109054837B (zh) 2018-08-22 2018-08-22 一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810957335.0A CN109054837B (zh) 2018-08-22 2018-08-22 一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法

Publications (2)

Publication Number Publication Date
CN109054837A CN109054837A (zh) 2018-12-21
CN109054837B true CN109054837B (zh) 2021-05-25

Family

ID=64686798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810957335.0A Active CN109054837B (zh) 2018-08-22 2018-08-22 一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法

Country Status (1)

Country Link
CN (1) CN109054837B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545224A (zh) * 2020-05-13 2020-08-18 重庆大学 一种上转换光催化材料及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130115172A1 (en) * 2011-11-08 2013-05-09 Korea Institute Of Science And Technology Magnetic nanophosphor having core/shell structure and the synthetic method thereof
CN104393099A (zh) * 2014-10-09 2015-03-04 浙江大学 一种四氟钇钠碘氧铋复合太阳能薄膜的制备方法
WO2017074260A1 (en) * 2015-10-26 2017-05-04 Singapore University Of Technology And Design Photoconductive nanocomposite for near-infrared detection
CN107818870A (zh) * 2017-09-10 2018-03-20 哈尔滨工业大学 一种上转换NaYF4:Yb3+/Er3+@YOF核壳微米晶材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130115172A1 (en) * 2011-11-08 2013-05-09 Korea Institute Of Science And Technology Magnetic nanophosphor having core/shell structure and the synthetic method thereof
CN104393099A (zh) * 2014-10-09 2015-03-04 浙江大学 一种四氟钇钠碘氧铋复合太阳能薄膜的制备方法
WO2017074260A1 (en) * 2015-10-26 2017-05-04 Singapore University Of Technology And Design Photoconductive nanocomposite for near-infrared detection
CN107818870A (zh) * 2017-09-10 2018-03-20 哈尔滨工业大学 一种上转换NaYF4:Yb3+/Er3+@YOF核壳微米晶材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Low temperature preparation of flower-like BiOCl film and its photocatalytic activity;LIU XiaoXia et al.,;《Sci. China. Chem.》;20120402;第55卷(第11期);第2438-2444页 *
Synthesis, properties and mechanism of photodegradation of core-shell structured upconversion luminescent NaYF4:Yb3+, Er3+@BiOCl;Shiyu Zhou et al.,;《Appl Organometal Chem.》;20180119;第32卷;第1-13页 *

Also Published As

Publication number Publication date
CN109054837A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
Hao et al. Enhancing dye-sensitized solar cell efficiency through broadband near-infrared upconverting nanoparticles
Liang et al. Double-shell β-NaYF 4: Yb 3+, Er 3+/SiO 2/TiO 2 submicroplates as a scattering and upconverting layer for efficient dye-sensitized solar cells
Kakiuchi et al. Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719
Wu et al. Enhancing photoelectrical performance of dye-sensitized solar cell by doping with europium-doped yttria rare-earth oxide
Jia et al. Improved photovoltaic performance of perovskite solar cells by utilizing down-conversion NaYF 4: Eu 3+ nanophosphors
Hou et al. Visible-light-response iodine-doped titanium dioxide nanocrystals for dye-sensitized solar cells
Li et al. Preparation of Gd 2 O 3: Eu 3+ downconversion luminescent material and its application in dye-sensitized solar cells
Jin et al. Improving efficiency and light stability of perovskite solar cells by incorporating YVO4: Eu3+, Bi3+ nanophosphor into the mesoporous TiO2 layer
Zhang et al. Preparation of long persistent phosphor SrAl 2 O 4: Eu 2+, Dy 3+ and its application in dye-sensitized solar cells
Chander et al. Enhancement of dye sensitized solar cell efficiency via incorporation of upconverting phosphor nanoparticles as spectral converters
Guo et al. Performance enhancement in dye-sensitized solar cells by utilization of a bifunctional layer consisting of core–shell β-NaYF4: Er3+/Yb3+@ SiO2 submicron hexagonal prisms
Ran et al. Positive effects in perovskite solar cells achieved using down-conversion NaEuF4 nanoparticles
Yao et al. Improving the photovoltaic performance of dye sensitized solar cells based on a hierarchical structure with up/down converters
Liu et al. Enhanced power conversion efficiency of dye-sensitized solar cells with samarium doped TiO2 photoanodes
CN108878657B (zh) 一种高效率碳基钙钛矿太阳能电池的制备方法
Seo et al. Improvement of Si adhesion and reduction of electron recombination for Si quantum dot-sensitized solar cells
CN107818870B (zh) 一种上转换β-NaYF4:Yb3+/Er3+@YOF核壳微米晶材料及其制备方法
CN101996771B (zh) 一种二氧化锡陶瓷电极及其制备方法和一种染料敏化太阳能电池
Han et al. Synthesis of amorphous Er3+-Yb3+ co-doped TiO2 and its application as a scattering layer for dye-sensitized solar cells
CN109054837B (zh) 一种稳固的NaYF4:Yb3+/Er3+@BiOCl核壳结构纳米晶的制备方法
CN102737852B (zh) 一种用于太阳能电池中双功能核壳上转换材料的制备方法
Wei et al. Supercritical fluid processing of mesoporous crystalline TiO 2 thin films for highly efficient dye-sensitized solar cells
CN105244172B (zh) 一种染料敏化太阳能电池光阳极的制备方法及其应用
Zhang et al. Titanium mesh-supported “TiO2 nanowire arrays/Yb-Er-F tri-doped TiO2 up-conversion nanoparticles” composite structure: designation for high efficient flexible dye-sensitized solar cells
Xu et al. Octahedron shaped lead sulfide nanocrystals as counter electrodes for quantum dot sensitized solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Hao Shuwei

Inventor after: Jiao Dandan

Inventor after: Hou Yuedan

Inventor after: Yang Chunhui

Inventor after: Na Hongzhuang

Inventor before: Hao Shuwei

Inventor before: Hou Yuedan

Inventor before: Yang Chunhui