CN110922179B - 一种高磁导率低损耗铁氧体材料及其制备方法 - Google Patents

一种高磁导率低损耗铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN110922179B
CN110922179B CN201911240612.7A CN201911240612A CN110922179B CN 110922179 B CN110922179 B CN 110922179B CN 201911240612 A CN201911240612 A CN 201911240612A CN 110922179 B CN110922179 B CN 110922179B
Authority
CN
China
Prior art keywords
percent
nano material
solution
temperature
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911240612.7A
Other languages
English (en)
Other versions
CN110922179A (zh
Inventor
刘立新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Xinyi Magnetic Material Co ltd
Original Assignee
Shenzhen Xinyi Magnetic Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Xinyi Magnetic Material Co ltd filed Critical Shenzhen Xinyi Magnetic Material Co ltd
Priority to CN201911240612.7A priority Critical patent/CN110922179B/zh
Publication of CN110922179A publication Critical patent/CN110922179A/zh
Application granted granted Critical
Publication of CN110922179B publication Critical patent/CN110922179B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明公开了一种高磁导率低损耗锰锌铁氧体材料及其制备方法。该材料是由Fe2O3 50‑60%、ZnO 5‑10%、煤矸石5‑10%、磁性纳米材料1.2‑2.1%、InN 0.025‑0.038%、Bi2O3 0.8‑1.2%、MoS2/Dy纳米材料0.05‑0.08%、SnS2 0.4‑0.8%、余量Mn3O4制成。该材料的初始磁导率在30000‑55000之间,且在3MHz‑15MHz频率范围内保持低损耗,在f≤15MHz,50mT下100℃功耗≤200Kw/m3,是一种综合性能良好的锰锌铁氧体材料。

Description

一种高磁导率低损耗铁氧体材料及其制备方法
技术领域
本发明涉及一种锰锌铁氧体材料,具体的说是一种高磁导率低损耗铁氧体材料及其制备方法。
背景技术
锰锌铁氧体是软磁铁氧体的一种,属尖晶石型结构。由铁、锰、锌的氧化物及其盐类,采用陶瓷工艺制成。它具有高的起始导磁率。一般在1千赫至10兆赫的频率范围内使用。可制作电感器、变压器、滤波器的磁芯、磁头及天线棒,通常被称为铁氧体磁芯。软磁铁氧体材料是电子工业及信息产业的基础材料,应用广泛。
电子产品是现代社会发展的产物,现如今人们的生活越来越依赖于各种各样的电子产品。而小型化、轻量化、集成化是现代电子产品发展不可逆的趋势,因此作为其内部重要功能模块的开关电源的小型化也成为了现今迫在眉睫的任务。对于开关电源的小型化,目前有两种方法可以实现:一是提高工作频率,频率越高则需要的开关电源模块尺寸就越小;二是采用各种微电子工艺将各个分立器件集成为一块芯片。对于应用在开关电源中的变压器而言,其损耗大小对于整个开关电源模块的效率有着非常重大的影响。变压器的损耗由两部分组成:一是由高频趋肤效应和线圈的等效电阻等因素引起的损耗,称为铜损;二是由磁芯材料在不同工作条件下产生的损耗,称为铁损。对于铜损,通常通过减少绕线匝数、优化线圈结构等方法使其值尽量小;对于铁损,则需要通过选用功耗较低的磁芯材料来改善。随着开关电源开关频率发展得越来越高,对于应用在其中的变压器而言,磁芯材料需要采用比金属磁性材料电阻率更高的软磁铁氧体材料。锰锌铁氧体因其高起始磁导率、高饱和磁感应强度、低功耗等优点一直被广泛地用作开关电源中的变压器磁芯材料。但随着开关电源的开关频率向着MHz级的高频方向发展,传统锰锌铁氧体因其较低的电阻率,其在高频环境下涡流损耗变得显著,其原有的优势也不再明显。且传统的铁氧体的磁导率μi一般在10000-20000左右,对于高磁导率的锰锌铁氧体而言磁导率较低。通常在锰锌铁氧体中掺杂一定量的单一金属或稀土元素可以改善铁氧体材料的某个或某几个性能,不能有效改善其综合性能,而通常对于同时添加多种元素的复合掺杂时,其最终材料的综合性能改善与所选择添加的元素组合配比息息相关,组合中某种元素用量或组合形式均可能对材料性能产生重要的影响。
发明内容
针对现有技术中存在的问题,本发明提供了一种高磁导率低损耗铁氧体材料,该材料的初始磁导率在30000-55000之间,且在3MHz-15MHz频率范围内保持低损耗,在f≤15MHz,50mT下100℃功耗≤200Kw/m3
本发明还提供了一种高磁导率低损耗铁氧体材料的制备方法。
本发明采用以下技术方案:
一种高磁导率低损耗铁氧体磁性材料,它是由以下质量百分比的原料制成:Fe2O350-60%、ZnO 5-10%、煤矸石5-10%、磁性纳米材料1.2-2.1%、、InN 0.025-0.038%、Bi2O30.8-1.2%、MoS2/Dy纳米材料0.05-0.08%、SnS2 0.4-0.8%、余量Mn3O4
所述磁性纳米材料是采用下述方法制备得到的:称取10.0g九水硅酸钠搅拌溶解于100ml蒸馏水中配成硅酸钠溶液,调节硅酸钠溶液的pH值至5.5,静置活化3小时后,称取4.24g AlCl3、2.22g CaCl2、5.40g FeCl3·6H2O加入到硅酸钠溶液中,加热搅拌至完全溶解后继续搅拌2小时,然后静置24小时,得到聚硅酸铝铁钙溶液;在氮气环境下,向溶液中加入3.5g纳米四氧化三铁粉,超声分散0.5小时,磁铁分离取下层黑色沉淀,使用去离子水反复清洗沉淀至pH为7.0,真空干燥,研磨得到的粉末即为磁性纳米材料。
所述MoS2/Dy纳米材料是采用下述方法制备得到的:取0.1mol的(NH4)2MoO4和0.1mol的Dy(CH3COO)3溶解于150ml的二次水中得到混合液,将混合液置于硫化氢气体氛围下,在循环水浴温度为70℃下反应1h,反应结束后将反应液转移到旋转蒸发仪中旋转蒸发1h,完全去除溶剂得到固体前驱物,然后将固体前驱物以速率4℃/min升温,N2保护下500℃退火2h得到最终产物。
所述硫化氢气体是由稀盐酸和硫化钠反应制得的硫化氢。
所述旋转蒸发仪的水浴温度为60℃,真空度为900mbr,转速为80rpm。
优选的,所述的高磁导率低损耗铁氧体磁性材料,是由以下质量百分比的原料制成:Fe2O3 55%、ZnO 8%、煤矸石8%、磁性纳米材料1.8%、、InN 0.032%、Bi2O3 1.0%、MoS2/Dy纳米片0.07%、SnS2 0.6%、余量Mn3O4
一种高磁导率低损耗铁氧体磁性材料的制备方法,它包括以下步骤:
(1)取0.1mol的(NH4)2MoO4和0.1mol的Dy(CH3COO)3溶解于150ml的二次水中得到混合液,将混合液置于硫化氢气体氛围下,在循环水浴温度为70℃下反应1h,反应结束后将反应液转移到旋转蒸发仪中旋转蒸发1h,完全去除溶剂得到固体前驱物,然后将固体前驱物以速率4℃/min升温,N2保护下500℃退火2h得到MoS2/Dy纳米材料,备用;
(2)称取10.0g九水硅酸钠搅拌溶解于100ml蒸馏水中配成硅酸钠溶液,调节硅酸钠溶液的pH值至5.5,静置活化3小时后,称取4.24g AlCl3、2.22g CaCl2、5.40g FeCl3·6H2O加入到硅酸钠溶液中,加热搅拌至完全溶解后继续搅拌2小时,然后静置24小时,得到聚硅酸铝铁钙溶液;在氮气环境下,向溶液中加入3.5g纳米四氧化三铁粉,超声分散0.5小时,磁铁分离取下层黑色沉淀,使用去离子水反复清洗沉淀至pH为7.0,真空干燥,研磨得到的粉末即为磁性纳米材料,备用;
(3)取步骤(1)所得的MoS2/Dy纳米材料分散于乙醇溶液中,超声4小时,然后将步骤(2)所得的磁性纳米材料按比例也加入其中,继续超声处理1小时后,离心分离干燥得到混合纳米材料;
(4)准确称取除磁性纳米材料和MoS2/Dy纳米材料外的其他原料置于球磨机中,加入占粉料总重量1.2%的二次水进行球磨,球磨转速固定位250r/min,球磨4小时后烘干得到一次球磨产物;
(5)将一次球磨产物置于高温电炉中进行预烧结,预烧结采用程序升温至800℃,保温反应2小时后,采用程序降温至600℃,然后自然降至室温,得到预烧结产物;
(6)将得到的预烧结产物与步骤(3)所制得的混合纳米材料混合,再次置于球磨机中并加入粉料总重1.2%的二次水进行二次球磨,球磨转速固定位250r/min,球磨4小时后烘干得到二球磨产物;
(7)将二次球磨产物加入到浓度为10wt%的聚乙烯醇溶液中形成悬浮液,将悬浮液进行球磨混合得到粉体浆料,然后将浆料注入模具中,压力机压制后送入电阻炉中进行烧结,烧结程序由升温、降温、和保温3个阶段组成,烧结程序完成后自然冷却到室温后脱模即得到本发明高磁导率低损耗铁氧体磁性材料。
所述步骤(3)中离心转速为8000r/min。
所述步骤(5)中程序升温和程序降温的速率均为3℃/min。
所述步骤(7)中烧结程序依次为4℃/min升温至200℃,保温1h,继续4℃/min升温至600℃,保温2h,继续4℃/min升温至950℃,保温3h后,4℃/min程序降温至600℃完成烧结程序。
本发明的有益效果是:本发明通过添加特定配比的磁性纳米材料和MoS2/Dy纳米材料,通过稀土元素镝掺杂MoS2制得的纳米材料,可显著提高铁氧体材料的磁导率,而磁性纳米粒子的加入由于其较高的比表面能及磁偶极子力,对MoS2/Dy纳米材料改善磁导率起到协同作用,共同提高了材料的整体磁导率;且研究还发现适量磁性纳米粒子的加入使铁氧体材料在高频3MHz-15MHz频率范围内保持较低的损耗,使得本发明制备的铁氧体材料磁导率较高且在高频范围内损耗较低,显著提高铁氧体材料的综合性能。
具体实施方式
下面结合具体实施例对本发明做进一步的详细说明。
实施例1
一种高磁导率低损耗铁氧体磁性材料,它是由以下质量百分比的原料制成:Fe2O350%、ZnO 5%、煤矸石5%、磁性纳米材料1.2%、、InN 0.025%、Bi2O3 0.8%、MoS2/Dy纳米材料0.05%、SnS2 0.4%、余量Mn3O4
上述材料的制备方法,包括如下步骤:
(1)取0.1mol的(NH4)2MoO4和0.1mol的Dy(CH3COO)3溶解于150ml的二次水中得到混合液,将混合液置于硫化氢气体氛围下,在循环水浴温度为70℃下反应1h,反应结束后将反应液转移到旋转蒸发仪中旋转蒸发1h,完全去除溶剂得到固体前驱物,然后将固体前驱物以速率4℃/min升温,N2保护下500℃退火2h得到MoS2/Dy纳米材料,备用;
(2)称取10.0g九水硅酸钠搅拌溶解于100ml蒸馏水中配成硅酸钠溶液,调节硅酸钠溶液的pH值至5.5,静置活化3小时后,称取4.24g AlCl3、2.22g CaCl2、5.40g FeCl3·6H2O加入到硅酸钠溶液中,加热搅拌至完全溶解后继续搅拌2小时,然后静置24小时,得到聚硅酸铝铁钙溶液;在氮气环境下,向溶液中加入3.5g纳米四氧化三铁粉,超声分散0.5小时,磁铁分离取下层黑色沉淀,使用去离子水反复清洗沉淀至pH为7.0,真空干燥,研磨得到的粉末即为磁性纳米材料,备用;
(3)取步骤(1)所得的MoS2/Dy纳米材料分散于乙醇溶液中,超声4小时,然后将步骤(2)所得的磁性纳米材料按比例也加入其中,继续超声处理1小时后,离心分离干燥得到混合纳米材料;
(4)准确称取除磁性纳米材料和MoS2/Dy纳米材料外的其他原料置于球磨机中,加入占粉料总重量1.2%的二次水进行球磨,球磨转速固定位250r/min,球磨4小时后烘干得到一次球磨产物;
(5)将一次球磨产物置于高温电炉中进行预烧结,预烧结采用程序升温至800℃,保温反应2小时后,采用程序降温至600℃,然后自然降至室温,得到预烧结产物;
(6)将得到的预烧结产物与步骤(3)所制得的混合纳米材料混合,再次置于球磨机中并加入粉料总重1.2%的二次水进行二次球磨,球磨转速固定位250r/min,球磨4小时后烘干得到二球磨产物;
(7)将二次球磨产物加入到浓度为10wt%的聚乙烯醇溶液中形成悬浮液,将悬浮液进行球磨混合得到粉体浆料,然后将浆料注入模具中,压力机压制后送入电阻炉中进行烧结,烧结程序由升温、降温、和保温3个阶段组成,烧结程序完成后自然冷却到室温后脱模即得到本发明高磁导率低损耗铁氧体磁性材料。所制得的材料初始磁导率(μi)为30000。
所述步骤(3)中离心转速为8000r/min。
所述步骤(5)中程序升温和程序降温的速率均为3℃/min。
所述步骤(7)中烧结程序依次为4℃/min升温至200℃,保温1h,继续4℃/min升温至600℃,保温2h,继续4℃/min升温至950℃,保温3h后,4℃/min程序降温至600℃完成烧结程序。
实施例2
一种高磁导率低损耗铁氧体磁性材料,它是由以下质量百分比的原料制成:Fe2O360%、ZnO10%、煤矸石10%、磁性纳米材料2.1%、、InN 0.038%、Bi2O3 1.2%、MoS2/Dy纳米材料0.08%、SnS2 0.8%、余量Mn3O4
上述材料的制备方法,包括如下步骤:
(1)取0.1mol的(NH4)2MoO4和0.1mol的Dy(CH3COO)3溶解于150ml的二次水中得到混合液,将混合液置于硫化氢气体氛围下,在循环水浴温度为70℃下反应1h,反应结束后将反应液转移到旋转蒸发仪中旋转蒸发1h,完全去除溶剂得到固体前驱物,然后将固体前驱物以速率4℃/min升温,N2保护下500℃退火2h得到MoS2/Dy纳米材料,备用;
(2)称取10.0g九水硅酸钠搅拌溶解于100ml蒸馏水中配成硅酸钠溶液,调节硅酸钠溶液的pH值至5.5,静置活化3小时后,称取4.24g AlCl3、2.22g CaCl2、5.40g FeCl3·6H2O加入到硅酸钠溶液中,加热搅拌至完全溶解后继续搅拌2小时,然后静置24小时,得到聚硅酸铝铁钙溶液;在氮气环境下,向溶液中加入3.5g纳米四氧化三铁粉,超声分散0.5小时,磁铁分离取下层黑色沉淀,使用去离子水反复清洗沉淀至pH为7.0,真空干燥,研磨得到的粉末即为磁性纳米材料,备用;
(3)取步骤(1)所得的MoS2/Dy纳米材料分散于乙醇溶液中,超声4小时,然后将步骤(2)所得的磁性纳米材料按比例也加入其中,继续超声处理1小时后,离心分离干燥得到混合纳米材料;
(4)准确称取除磁性纳米材料和MoS2/Dy纳米材料外的其他原料置于球磨机中,加入占粉料总重量1.2%的二次水进行球磨,球磨转速固定位250r/min,球磨4小时后烘干得到一次球磨产物;
(5)将一次球磨产物置于高温电炉中进行预烧结,预烧结采用程序升温至800℃,保温反应2小时后,采用程序降温至600℃,然后自然降至室温,得到预烧结产物;
(6)将得到的预烧结产物与步骤(3)所制得的混合纳米材料混合,再次置于球磨机中并加入粉料总重1.2%的二次水进行二次球磨,球磨转速固定位250r/min,球磨4小时后烘干得到二球磨产物;
(7)将二次球磨产物加入到浓度为10wt%的聚乙烯醇溶液中形成悬浮液,将悬浮液进行球磨混合得到粉体浆料,然后将浆料注入模具中,压力机压制后送入电阻炉中进行烧结,烧结程序由升温、降温、和保温3个阶段组成,烧结程序完成后自然冷却到室温后脱模即得到本发明高磁导率低损耗铁氧体磁性材料。所制得的材料初始磁导率(μi)为45000。
所述步骤(3)中离心转速为8000r/min。
所述步骤(5)中程序升温和程序降温的速率均为3℃/min。
所述步骤(7)中烧结程序依次为4℃/min升温至200℃,保温1h,继续4℃/min升温至600℃,保温2h,继续4℃/min升温至950℃,保温3h后,4℃/min程序降温至600℃完成烧结程序。
实施例3
一种高磁导率低损耗铁氧体磁性材料,它是由以下质量百分比的原料制成:Fe2O355%、ZnO 8%、煤矸石8%、磁性纳米材料1.8%、、InN 0.032%、Bi2O3 1.0%、MoS2/Dy纳米片0.07%、SnS2 0.6%、余量Mn3O4
上述材料的制备方法,包括如下步骤:
(1)取0.1mol的(NH4)2MoO4和0.1mol的Dy(CH3COO)3溶解于150ml的二次水中得到混合液,将混合液置于硫化氢气体氛围下,在循环水浴温度为70℃下反应1h,反应结束后将反应液转移到旋转蒸发仪中旋转蒸发1h,完全去除溶剂得到固体前驱物,然后将固体前驱物以速率4℃/min升温,N2保护下500℃退火2h得到MoS2/Dy纳米材料,备用;
(2)称取10.0g九水硅酸钠搅拌溶解于100ml蒸馏水中配成硅酸钠溶液,调节硅酸钠溶液的pH值至5.5,静置活化3小时后,称取4.24g AlCl3、2.22g CaCl2、5.40g FeCl3·6H2O加入到硅酸钠溶液中,加热搅拌至完全溶解后继续搅拌2小时,然后静置24小时,得到聚硅酸铝铁钙溶液;在氮气环境下,向溶液中加入3.5g纳米四氧化三铁粉,超声分散0.5小时,磁铁分离取下层黑色沉淀,使用去离子水反复清洗沉淀至pH为7.0,真空干燥,研磨得到的粉末即为磁性纳米材料,备用;
(3)取步骤(1)所得的MoS2/Dy纳米材料分散于乙醇溶液中,超声4小时,然后将步骤(2)所得的磁性纳米材料按比例也加入其中,继续超声处理1小时后,离心分离干燥得到混合纳米材料;
(4)准确称取除磁性纳米材料和MoS2/Dy纳米材料外的其他原料置于球磨机中,加入占粉料总重量1.2%的二次水进行球磨,球磨转速固定位250r/min,球磨4小时后烘干得到一次球磨产物;
(5)将一次球磨产物置于高温电炉中进行预烧结,预烧结采用程序升温至800℃,保温反应2小时后,采用程序降温至600℃,然后自然降至室温,得到预烧结产物;
(6)将得到的预烧结产物与步骤(3)所制得的混合纳米材料混合,再次置于球磨机中并加入粉料总重1.2%的二次水进行二次球磨,球磨转速固定位250r/min,球磨4小时后烘干得到二球磨产物;
(7)将二次球磨产物加入到浓度为10wt%的聚乙烯醇溶液中形成悬浮液,将悬浮液进行球磨混合得到粉体浆料,然后将浆料注入模具中,压力机压制后送入电阻炉中进行烧结,烧结程序由升温、降温、和保温3个阶段组成,烧结程序完成后自然冷却到室温后脱模即得到本发明高磁导率低损耗铁氧体磁性材料。所制得的材料初始磁导率(μi)为55000。
所述步骤(3)中离心转速为8000r/min。
所述步骤(5)中程序升温和程序降温的速率均为3℃/min。
所述步骤(7)中烧结程序依次为4℃/min升温至200℃,保温1h,继续4℃/min升温至600℃,保温2h,继续4℃/min升温至950℃,保温3h后,4℃/min程序降温至600℃完成烧结程序。
对比例1
一种高磁导率低损耗铁氧体磁性材料,其原料组成及制备方法同实施例3,唯一不同的是:不含有磁性纳米材料及相应制备方法的步骤。
对比例2
一种铁氧体磁性材料,其原料组成及制备方法同实施例3,唯一不同的是:不含有MoS2/Dy纳米材料及相应制备方法的步骤。
对比3
一种高磁导率低损耗铁氧体磁性材料,其原料组成及制备方法同实施例3,唯一不同的是:磁性纳米材料用量为0.8%。
对比例4
一种高磁导率低损耗铁氧体磁性材料,其原料组成及制备方法同实施例3,唯一不同的是:磁性纳米材料用量为1.0%。
对比例5
一种高磁导率低损耗铁氧体磁性材料,其原料组成及制备方法同实施例3,唯一不同的是:磁性纳米材料用量为2.3%。
对比例6
一种高磁导率低损耗铁氧体磁性材料,其原料组成及制备方法同实施例3,唯一不同的是:磁性纳米材料用量为2.5%。
对上述实施例3和对比例1-6所制备的铁氧体磁性材料进行性能测试,检测结果如表1所示。
表1性能测试结果
Figure BDA0002306109890000081
从上述表1的内容可以看出,本发明制备的高磁导率低损耗铁氧体磁性材料得初始磁导率在55000,且在5-15MHz较高频段范围内的功率损耗较低,且功率损耗随着特定量的磁性纳米材料和MoS2/Dy纳米材料的添加而呈现变化。稀土元素镝掺杂MoS2制得的纳米材料,可显著提高铁氧体材料的磁导率,而磁性纳米粒子的加入由于其较高的比表面能及磁偶极子力,对MoS2/Dy纳米材料改善磁导率起到协同作用,共同提高了材料的整体磁导率;且适量磁性纳米粒子的加入使铁氧体材料在高频3MHz-15MHz频率范围内保持较低的损耗,使得本发明制备的铁氧体材料磁导率较高且在高频范围内损耗较低,因而本发明获得一种高磁导率低损耗的锰锌铁氧体磁性材料。

Claims (8)

1.一种高磁导率低损耗铁氧体磁性材料,其特征在于,它是由以下质量百分比的原料制成:Fe2O350-60%、ZnO 5-10%、煤矸石5-10%、磁性纳米材料1.2-2.1%、InN 0.025-0.038%、Bi2O3 0.8-1.2%、MoS2 /Dy纳米材料0.05-0.08%、SnS 2 0.4-0.8%、余量Mn3O4
所述磁性纳米材料是采用下述方法制备得到的:称取10.0g九水硅酸钠搅拌溶解于100ml蒸馏水中配成硅酸钠溶液,调节硅酸钠溶液的pH值至5.5,静置活化3小时后,称取4.24g AlCl3、2.22gCaCl2、5.40g FeCl3·6H2O加入到硅酸钠溶液中,加热搅拌至完全溶解后继续搅拌2小时,然后静置24小时,得到聚硅酸铝铁钙溶液;在氮气环境下,向溶液中加入3.5g纳米四氧化三铁粉,超声分散0.5小时,磁铁分离取下层黑色沉淀,使用去离子水反复清洗沉淀至pH为7.0,真空干燥,研磨得到的粉末即为磁性纳米材料;
所述MoS2/Dy纳米材料是采用下述方法制备得到的:取0.1mol的(NH4) 2 MoO4和0.1mol的Dy(CH3COO) 3溶解于150ml的二次水中得到混合液,将混合液置于硫化氢气体氛围下,在循环水浴温度为70℃下反应1h,反应结束后将反应液转移到旋转蒸发仪中旋转蒸发1h,完全去除溶剂得到固体前驱物,然后将固体前驱物以速率4℃/min升温,N2保护下500℃退火2h得到最终产物。
2.根据权利要求1所述的高磁导率低损耗铁氧体磁性材料,其特征在于,所述硫化氢气体是由稀盐酸和硫化钠反应制得的硫化氢。
3.根据权利要求1所述的高磁导率低损耗铁氧体磁性材料,其特征在于,所述旋转蒸发仪的水浴温度为60℃,真空度为900mbr,转速为80rpm。
4.根据权利要求1所述的高磁导率低损耗铁氧体磁性材料,其特征在于,它是由以下质量百分比的原料制成:Fe2O3 55%、ZnO 8%、煤矸石8%、磁性纳米材料1 .8%、InN0.032%、Bi2O3 1.0%、MoS2 /Dy纳米片0.07%、SnS2 0.6%、余量Mn3O4
5.一种权利要求1-4中任一项所述的高磁导率低损耗铁氧体磁性材料的制备方法,其特征在于,它包括以下步骤:
(1)取0.1mol的(NH4) 2MoO4 和0.1mol的Dy(CH3COO) 3溶解于150ml的二次水中得到混合液,将混合液置于硫化氢气体氛围下,在循环水浴温度为70℃下反应1h,反应结束后将反应液转移到旋转蒸发仪中旋转蒸发1h,完全去除溶剂得到固体前驱物,然后将固体前驱物以速率4℃/min升温,N2保护下500℃退火2h得到MoS2/Dy纳米材料,备用;
(2)称取10.0g九水硅酸钠搅拌溶解于100ml蒸馏水中配成硅酸钠溶液,调节硅酸钠溶液的pH值至5.5,静置活化3小时后,称取4.24g AlCl3、2.22g CaCl2、5.40gFeCl3·6H2O加入到硅酸钠溶液中,加热搅拌至完全溶解后继续搅拌2小时,然后静置24小时,得到聚硅酸铝铁钙溶液;在氮气环境下,向溶液中加入3.5g纳米四氧化三铁粉,超声分散0.5小时,磁铁分离取下层黑色沉淀,使用去离子水反复清洗沉淀至pH为7.0,真空干燥,研磨得到的粉末即为磁性纳米材料,备用;
(3)取步骤(1)所得的MoS2/Dy纳米材料分散于乙醇溶液中,超声4小时,然后将步骤(2)所得的磁性纳米材料按比例也加入其中,继续超声处理1小时后,离心分离干燥得到混合纳米材料;
(4)准确称取除磁性纳米材料和MoS2/Dy纳米材料外的其他原料置于球磨机中,加入占粉料总重量1.2%的二次水进行球磨,球磨转速固定位250r/min,球磨4小时后烘干得到一次球磨产物;
(5)将一次球磨产物置于高温电炉中进行预烧结,预烧结采用程序升温至800℃,保温反应2小时后,采用程序降温至600℃,然后自然降至室温,得到预烧结产物;
(6)将得到的预烧结产物与步骤(3)所制得的混合纳米材料混合,再次置于球磨机中并加入粉料总重1.2%的二次水进行二次球磨,球磨转速固定位250r/min,球磨4小时后烘干得到二球磨产物;
(7)将二次球磨产物加入到浓度为10wt%的聚乙烯醇溶液中形成悬浮液,将悬浮液进行球磨混合得到粉体浆料,然后将浆料注入模具中,压力机压制后送入电阻炉中进行烧结,烧结程序由升温、降温、和保温3个阶段组成,烧结程序完成后自然冷却到室温后脱模即得到本发明高磁导率低损耗铁氧体磁性材料。
6.根据权利要求5所述的高磁导率低损耗铁氧体磁性材料的制备方法,其特征在于,所述步骤(3)中离心转速为8000r/min。
7.根据权利要求5所述的高磁导率低损耗铁氧体磁性材料的制备方法,其特征在于,所述步骤(5)中程序升温和程序降温的速率均为3℃/min。
8.根据权利要求5所述的高磁导率低损耗铁氧体磁性材料的制备方法,其特征在于,所述步骤(7)中烧结程序依次为4℃/min升温至200℃,保温1h,继续4℃/min升温至600℃,保温2h,继续4℃/min升温至950℃,保温3h后,4℃/min程序降温至600℃完成烧结程序。
CN201911240612.7A 2019-12-06 2019-12-06 一种高磁导率低损耗铁氧体材料及其制备方法 Active CN110922179B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911240612.7A CN110922179B (zh) 2019-12-06 2019-12-06 一种高磁导率低损耗铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911240612.7A CN110922179B (zh) 2019-12-06 2019-12-06 一种高磁导率低损耗铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110922179A CN110922179A (zh) 2020-03-27
CN110922179B true CN110922179B (zh) 2021-01-29

Family

ID=69858138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911240612.7A Active CN110922179B (zh) 2019-12-06 2019-12-06 一种高磁导率低损耗铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110922179B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062163B (zh) * 2020-09-18 2022-11-25 浙江理工大学 一种Fe3O4@MoxSn1-xS2@SnO2双功能磁性复合结构及其制备方法
CN112479699B (zh) * 2020-12-22 2022-04-15 深圳信义磁性材料有限公司 一种低损耗纳米铁氧体磁性材料及其制备方法
CN116013678B (zh) * 2023-03-02 2023-10-17 深圳信义磁性材料有限公司 一种低损耗的铁硅磁粉芯材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102390989A (zh) * 2011-08-09 2012-03-28 中国科学院宁波材料技术与工程研究所 一种铁氧体基陶瓷复合材料、其制备方法以及用途
WO2012121528A2 (en) * 2011-03-04 2012-09-13 Samsung Life Public Welfare Foundation Magnetic nanocomposite specific for thyroid cancer and use thereof
CN103288432A (zh) * 2013-05-20 2013-09-11 天长市昭田磁电科技有限公司 一种负载氧化钯的软磁铁磁芯的制作方法
CN105976970A (zh) * 2016-03-16 2016-09-28 天长市昭田磁电科技有限公司 一种用于变压器的铁氧体磁芯材料
CN109704745A (zh) * 2019-02-20 2019-05-03 三桥惠(佛山)新材料有限公司 一种宽温高磁导率低损耗MnZn功率铁氧体材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121528A2 (en) * 2011-03-04 2012-09-13 Samsung Life Public Welfare Foundation Magnetic nanocomposite specific for thyroid cancer and use thereof
CN102390989A (zh) * 2011-08-09 2012-03-28 中国科学院宁波材料技术与工程研究所 一种铁氧体基陶瓷复合材料、其制备方法以及用途
CN103288432A (zh) * 2013-05-20 2013-09-11 天长市昭田磁电科技有限公司 一种负载氧化钯的软磁铁磁芯的制作方法
CN105976970A (zh) * 2016-03-16 2016-09-28 天长市昭田磁电科技有限公司 一种用于变压器的铁氧体磁芯材料
CN109704745A (zh) * 2019-02-20 2019-05-03 三桥惠(佛山)新材料有限公司 一种宽温高磁导率低损耗MnZn功率铁氧体材料的制备方法

Also Published As

Publication number Publication date
CN110922179A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
CN110922179B (zh) 一种高磁导率低损耗铁氧体材料及其制备方法
CN103058643B (zh) 宽温高叠加低功耗Mn-Zn软磁铁氧体材料及制备方法
CN101388268B (zh) 一种高磁导率低温烧结NiCuZn铁氧体材料
CN108424136B (zh) MHz级开关电源用MnZn功率铁氧体及其制备方法
CN112479699B (zh) 一种低损耗纳米铁氧体磁性材料及其制备方法
CN107352991B (zh) 一种核壳结构锰锌/镍锌复合铁氧体及其制备方法
CN108947513B (zh) 一种低压低温烧结制备的功率镍锌铁氧体及其制备方法
CN110818402B (zh) 一种超细铁氧体粉末的制备方法
CN105198395A (zh) 一种耐热冲击功率镍锌铁氧体及其制备方法
CN102211929A (zh) 一种低温烧结高磁导率NiCuZn铁氧体材料
CN108395233A (zh) 大功率低功耗高频变压器用锰锌铁氧体材料及制备方法
CN113735573A (zh) 一种NFC用低损耗NiCuZn软磁铁氧体材料及其制备方法和应用
CN110981460B (zh) 一种高磁导率铁氧体磁性材料的制备方法
CN103295766B (zh) 一种含有改性碳化铝的铁磁芯的制作方法
CN102690111A (zh) 一种低温共烧用镍铜锌软磁铁氧体材料及其制备方法
CN105777094A (zh) 一种nfc手机支付铁氧体磁屏蔽材料及其制备方法
CN108911733A (zh) 一种低功耗高Bs高频MnZn铁氧体材料及其制备方法
WO2012151714A1 (zh) 一种高磁导率NiCuZn铁氧体材料
CN101811861A (zh) 一种高饱和磁感应强度和高电阻率的纳米晶MnZn铁氧体材料及其制备方法
CN114853461A (zh) 一种宽温低损耗NiZn软磁铁氧体材料及其制备方法
CN110723967B (zh) 一种抗直流偏置低温烧结铁氧体材料及其制备方法
CN109320230B (zh) 一种具有四高特性的锰锌软磁铁氧体材料的制备方法
CN112500149A (zh) 一种高饱和磁感应强度低损耗锰锌铁氧体材料的制备方法
CN108101527B (zh) 一种高频细晶粒软磁铁氧体材料及其制备方法
CN112562958A (zh) 一种低温烧结锰锌软磁铁氧体材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant