CN110904356A - 网络互穿型石墨烯-铜复合材料的制备方法 - Google Patents

网络互穿型石墨烯-铜复合材料的制备方法 Download PDF

Info

Publication number
CN110904356A
CN110904356A CN201911040359.0A CN201911040359A CN110904356A CN 110904356 A CN110904356 A CN 110904356A CN 201911040359 A CN201911040359 A CN 201911040359A CN 110904356 A CN110904356 A CN 110904356A
Authority
CN
China
Prior art keywords
copper
graphene
powder
temperature
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911040359.0A
Other languages
English (en)
Other versions
CN110904356B (zh
Inventor
李铁军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Carbon Yuan New Mstar Technology Ltd
Original Assignee
Beijing Carbon Yuan New Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Carbon Yuan New Mstar Technology Ltd filed Critical Beijing Carbon Yuan New Mstar Technology Ltd
Priority to CN201911040359.0A priority Critical patent/CN110904356B/zh
Publication of CN110904356A publication Critical patent/CN110904356A/zh
Application granted granted Critical
Publication of CN110904356B publication Critical patent/CN110904356B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种网络互穿型石墨烯‑铜复合材料的制备方法,包括:采用常压化学气相沉积,使用气态或液态碳源在铜或铜合金粉末上原位生长石墨烯;将完成沉积的铜或铜合金粉末与碳纳米管粉末球磨混合;将混合粉末在室温下冷挤压成挤压坯料;对挤压坯料依次进行热挤压和室温下多道次拉拔,或者冷轧的变形加工;对变形加工后的材料进行快速再结晶连续退火,制得网络互穿型石墨烯‑铜复合材料。本发明通过在铜合金粉末表面原位生长高质量石墨烯,同时与碳纳米管粉末混合,结合球磨与大塑性变形,解决了石墨烯团聚形成裂纹源及石墨烯与铜的分散与团聚问题,其获得的三维网络互穿结构,可实现材料进行力学与电学的同时增强。

Description

网络互穿型石墨烯-铜复合材料的制备方法
技术领域
本发明涉及金属复合材料制造技术领域,特别涉及一种网络互穿型石墨烯-铜复合材料的制备方法。
背景技术
随着现代工业技术的高速发展,对铜及铜合金的力学性能和导电性能提出了更高要求。如何在铜及铜合金中引入合适的增强相制备高性能的铜基复合材料,并且可以更好地发挥基体与增强相的协同作用,成为研究者关注的热点问题。
关于铜基复合材料的研究中,多采用合金元素(如Ti、W、Ni等元素)、碳纤维、碳纳米管等作为增强相提升铜基复合材料的性能。使用合金元素作为增强相,可以显著提高铜基复合材料的力学性能,但是会大幅度降低材料的导电性能;使用碳纤维作为增强相制备的铜基复合材料,具有高导热、高导电性能以及优异的耐磨损性能,但是由于碳纤维与铜基体的界面润湿性差,使得碳纤维增强铜基复合材料的力学性能有大幅度的降低。碳纳米管对铜基体的力学性能有小幅度提高,但是碳纳米管制备难度大,成本高,且碳纳米管在铜基体中易团聚,同时在碳纳米管增强铜基复合材料的拉伸断面中经常发现大量处于拔出脱落状态的碳纳米管,说明碳纳米管与铜基体的结合状态不够牢固,界面结合仍需进一步增强。因此,选用新型增强相材料是提高铜基复合材料性能的关键。
目前,石墨烯-铜复合材料得到了越来越多的关注,石墨烯拥有优异的力学性能和超高导电性能,其理论强度高达130GPa,单层石墨烯具有高于铜4-5个数量级的载流子迁移率,与石墨烯接触的铜可以对石墨烯进行有效的电子掺杂,因此,石墨烯是最有潜力的铜基复合材料增强体,最有可能实现对铜基体强度和导电性的协同增强。但是,由于石墨烯密度小、分散性差、与熔融铜界面张力不同以及界面结合问题,很难实现石墨烯在铜基材料中均匀分散以及石墨烯与铜的强界面结合。
发明内容
本发明的目的是为解决以上问题,本发明提供一种三维网络互穿结构的石墨烯-铜复合材料的制备方法。
根据本发明的第一方面,提供一种网络互穿型石墨烯-铜复合材料的制备方法,包括以下步骤:a.采用常压化学气相沉积方法,使用气态或液态碳源在铜或铜合金粉末上原位生长石墨烯;b.将原位生长有石墨烯的铜或铜合金粉末与碳纳米管粉末球磨混合;c.将球磨混合后的混粉在室温下进行冷挤压致密制成挤压坯料;d.对挤压坯料依次进行压力变形加工;e.对压力变形后的材料进行快速再结晶连续退火,制得网络互穿型石墨烯-铜复合材料。
其中,该压力变形加工包括对挤压坯料依次进行的热挤压步骤和室温下多道次拉拔步骤。
其中,该压力变形加工包括对挤压坯料进行多道次冷轧的步骤。
其中,步骤a包括:将铜或铜合金粉末送入化学气相沉积炉内,封闭炉管;抽出炉内残留空气后通入定量的氢气和氩气;在室温下开始匀速升温至生长温度,恒温一段时间后,通入碳源进行保温生长,生长结束后关闭碳源并将温度降至室温,完成沉积。
其中生长温度为1020-1070℃,升温生长的时间为10-50min,恒温室时间为30-150min,保温生长时间为20-50min,石墨烯的生长层数为1-3层;冷却方式为快速匀速降温或慢速分梯度降温,其中快速匀速降温的时间为50-100min,慢速分梯度降温包括第一降温阶段、保温阶段和第二降温阶段,第一降温阶段的时间为25-50min,保温阶段的时间为50-100min,第二降温阶段的时间为50-100min。
其中,步骤a中,铜或铜合金粉末为颗粒状粉末或者片状粉末,其中颗粒状粉末的粒径为5-100微米,片状粉末的厚度为5-100微米,片状粉末的截面的X轴方向和y轴方向的长度均位于2-500微米以内。
其中,步骤b中,碳纳米管粉末与铜或铜合金粉末的混合体积比为0.5-1.5:100。
其中,步骤c中,冷挤压致密的压实单位压力为100-500MPa。
其中,步骤e中,采用高频感应加热方式进行连续结晶再退火,其中高频加热频率400-1000kHz,退火温度200~400℃。
其中,步骤d包括:先对挤压坯进行热挤压,挤压温度600-800℃、挤压比12-20,获得挤压棒坯;将挤压棒坯室温下进行多道次拉拔,拉拔道次变形量5-10%,获得直径0.5-1.5mm的复合预制材料。
其中,步骤d’包括:对挤压坯进行室温多道次冷轧,其中第一道次的变形量为30%-50%,总变形量为90-99%,获得复合预制材料。
根据本发明的第二方面,提供上述两种制备方法制备的网络互穿型石墨烯-铜复合材料。
本发明中,采用化学气相沉积在铜粉末上原位生长高结晶度大片层单层或少层石墨烯,解决了石墨烯-铜复合材料的组分质量控制问题和石墨烯与铜材料的难以浸润的问题,降低了复合线材的缺陷,提升了质量。
经检测,本发明原位生长方法使石墨烯与铜基底结合良好,能够避免石墨烯团聚形成裂纹源和石墨烯与铜的分散和团聚问题,促进增强型铜基复合线材的组成均匀化。同时,长时间的球磨处理使得石墨烯和碳纳米管粉末的团聚问题得以解决,从而实现了表面包覆石墨烯的铜粉末与碳纳米管粉末的均匀混合。
本发明中,通过固定参数的热挤压和拉拔配合的形式以及固定参数的多道次冷轧两种大塑性变形方式将一维的碳纳米管,二维的石墨烯以及三维的铜粉末基体进行复合,形成网络互穿结构。碳纳米管作为桥梁,可将弥散在铜基体内部的石墨烯颗粒进行搭接,从而实现力学性能和电学性能的同时增强。
本发明的网络互穿型石墨烯-铜复合材料的制备方法,通过在铜合金粉末表面原位生长高质量石墨烯,同时与碳纳米管粉末进行混合,结合球磨与大塑性变形,解决石墨烯团聚形成裂纹源及石墨烯与铜的分散与团聚问题,所获得的三维网络互穿结构,在增强铜基体的同时,有效发挥碳纳米管和石墨烯优异的电学性能,可实现材料进行力学与电学的同时增强,使制备的石墨烯/铜复合材料的抗拉强度可达600mpa以上,电导率可达95%IACS以上。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1和图2是根据本发明实施方式的网络互穿型石墨烯-铜复合材料的制备方法的原位生长温度控制曲线;
图3是根据本发明实施方式制备的包覆有石墨烯的铜粉的拉曼光谱图。
具体实施方式
下面将根据实施例更详细地描述本公开的示例性实施方式。虽然说明书中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
实施例1一种网络互穿型石墨烯-铜复合材料X1的制备方法
本方法采用纯铜颗粒状粉末作为基材,其中颗粒状粉末的粒径为50微米。以甲烷气体为碳源,采用化学气相沉积方法(CVD法)在铜粉末表面原位生长石墨烯,具体过程及参数为:常温下将铜粉末置于容器中放入CVD炉内,封闭炉管;使用真空泵持续抽出炉内残留空气后关闭真空泵并通入载气,其中氩气量为200Sccm,氢气量为25Sccm;按照附图1所示的温控方式进行调温处理。如图1所示,在室温下对CVD炉体环境升温,50min升温至1020℃,并恒温60min;通入碳源,甲烷量为2Sccm,生长30min后关闭碳源,并开始降温,80min内将温度匀速降至室温后将样品取出,得到包覆原位生长石墨烯的铜粉样品,其拉曼光谱如图3所示。图中G峰在1589.6cm-1处,2D峰在2679.2cm-1处,是典型的石墨烯峰,同时2D峰远高于G峰,是典型的单层石墨烯拉曼光谱,这说明铜粉末表面包覆的是高质量的单层石墨烯。同时,并无明显D峰出现,说明石墨烯质量较高,几乎没有缺陷。
将取出的包覆石墨烯的铜粉样品与碳纳米管粉末机械混合,其中碳纳米管的体积含量为铜粉样品的1%。将上述混合粉末在室温下进行挤压致密,制成挤压坯料,压实的单位压力为100MPa。对挤压坯进行热挤压,挤压温度为600℃,挤压比为20,获得挤压棒坯,将挤压棒坯室温下进行四道次拉拔,拉拔道次变形量为10%,总变形量为70%,获得直径为1.5mm的预制拉拔线材。对预制拉拔线材进行快速再结晶连续退火,制得网络互穿型石墨烯-铜复合材料X1,其中高频加热频率为400kHz,退火温度为350℃。
实施例2一种网络互穿型石墨烯-铜复合材料X2的制备方法
本方法采用铜含量为75%的铜镍合金片状粉末作为基材。其中片状粉末的厚度为100微米,片状粉末的截面的X轴方向的最大长度为500微米,Y轴方向的最大长度为500微米。以乙炔气体为碳源,采用化学气相沉积方法(CVD法)在铜镍合金粉末表面原位生长石墨烯,具体过程及参数为:常温下将铜镍合金粉末置于容器中放入CVD炉内,封闭炉管;使用真空泵持续抽出炉内残留空气后关闭真空泵并通入载气,其中氩气量为200Sccm,氢气量为25Sccm;室温下开始升温,50min将温度升至1030℃,在该温度下保温60min,之后通入碳源乙炔,乙炔量为2Sccm,生长30min后关闭碳源,并开始降温。该过程的温度控制曲线如图2所示。如图2所示,具体的降温方式为,先在20min内,将温度由1030℃匀速降至800℃,然后保温60min,接着继续在60min内,将温度降至室温。将炉内温度冷却至室温后,将生长包覆有交错堆积的石墨烯的铜镍合金粉末样品取出。
将取出的粉末样品与碳纳米管粉末机械混合,其中碳纳米管的体积含量为铜粉样品的0.1%。将上述混合粉末在室温下进行挤压致密,制成挤压坯料,压实的单位压力为500MPa。对挤压坯进行多道次冷轧,其中第一道次冷轧的变形为30%,总变形量为90%,冷轧过后制成复合预制材料带材。对冷轧带材进行快速再结晶连续退火,制得网络互穿型石墨烯-铜复合材料X2,其中高频加热频率为1000kHz,退火温度为400℃。
实施例3一种网络互穿型石墨烯-铜复合材料X3的制备方法
本方法采用纯铜颗粒状粉末作为基材,其中颗粒状粉末的粒径为100微米。以乙醇液体作为碳源,采用化学气相沉积方法(CVD法)在铜粉末表面原位生长石墨烯,具体过程及参数为:常温下将铜粉末置于容器中放入CVD炉内,封闭炉管;使用真空泵持续抽出炉内残留空气后关闭真空泵并通入载气,其中氩气量为200Sccm,氢气量为25Sccm;室温下开始升温,30min将温度升至1050℃,恒温30min,然后在该温度下放入碳源乙醇,乙醇量为1mL/min,保温生长20min后关闭碳源,并开始分梯度降至室温。其中第一降温阶段的时间为50min,保温阶段的时间为100min,第二降温阶段的时间为100min。将炉内温度冷却至室温后,将生长包覆有交错堆积的石墨烯的铜镍合金粉末样品取出。
将取出的铜粉样品与碳纳米管粉末机械混合,其中碳纳米管的体积含量为铜粉样品的3%。将上述混合粉末在室温下进行挤压致密,制成挤压坯料,压实的单位压力为300MPa。对挤压坯进行多道次冷轧,其中第一道次冷轧的变形为35%,总变形量为95%,冷轧过后制成复合预制材料带材。对冷轧带材进行快速再结晶连续退火,制得网络互穿型石墨烯-铜复合材料X3,其中高频加热频率为600kHz,退火温度为300℃。
实施例4一种网络互穿型石墨烯-铜复合材料X4的制备方法
本方法采用铜含量为88%的铜镍合金片状粉末作为基材。其中片状粉末的厚度为5微米,片状粉末的截面的X轴方向的最大长度为2微米,Y轴方向的最大长度为2微米。以甲醇液体作为碳源,采用化学气相沉积方法(CVD法)在铜粉末表面原位生长石墨烯,具体过程及参数为:常温下将铜粉末置于容器中放入CVD炉内,封闭炉管;使用真空泵持续抽出炉内残留空气后并通入载气,其中氩气量为200Sccm,氢气量为25Sccm;室温下开始升温,30min将温度升至1030℃,恒温150min,然后在该温度下通入1mL/min甲醇碳源,保温生长50min后关闭碳源,并开始分梯度降至室温。具体降温方式为:其中第一降温阶段的时间为25min,保温阶段的时间为50min,第二降温阶段的时间为50min。将炉内温度冷却至室温后,将生长包覆石墨烯的铜镍合金粉末样品取出。
将取出的铜粉样品与碳纳米管粉末机械混合,其中碳纳米管的体积含量为铜粉样品的1%。将上述混合粉末在室温下进行挤压致密,制成挤压坯料,压实的单位压力为200MPa。对挤压坯进行热挤压,挤压温度为800℃,挤压比为12,获得挤压棒坯,将挤压棒坯室温下进行十四道次拉拔,每个拉拔道次变形量为5%,获得直径为0.5mm的预制拉拔线材。对预制拉拔线材进行快速再结晶连续退火,制得网络互穿型石墨烯-铜复合材料X4,其中高频加热频率为800kHz,退火温度为250℃。
实验例 网络互穿型石墨烯-铜复合材料的力学和电学性能测试
将上述实施例制备的复合材料X1-X4进行力学和电学性能测试实验,使用苏州晶格电子有限公司生产的JG2511C型多功能数字电阻率测试仪对铜基带材的电阻进行测试,测试采用四探针法,消除了样品与夹头之间的接触电阻,得到精确的电阻率数值,并换算出样品的电导率。使用万能拉伸试验机测试铜基带材的抗拉强度,为了尽量消除误差,分别测试5个样品,并取5次试验结果的平均值。其中X1产品的电导率和抗拉强度分别为98%IACS和350Mpa;X2产品的电导率和抗拉强度分别为92%IACS和441Mpa;X3产品的电导率和抗拉强度分别为96%IACS和342Mpa;X4产品的电导率和抗拉强度分别为94%IACS和392Mpa。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (11)

1.网络互穿型石墨烯-铜复合材料的制备方法,其特征在于,包括以下步骤:
a.采用常压化学气相沉积方法,使用气态或液态碳源在铜或铜合金粉末上原位生长石墨烯;
b.将原位生长有石墨烯的铜或铜合金粉末与碳纳米管粉末球磨混合;
c.将球磨混合后的混粉在室温下进行冷挤压致密制成挤压坯料;
d.对挤压坯料依次进行压力变形加工;
e.对压力变形加工后的材料进行快速再结晶连续退火,制得网络互穿型石墨烯-铜复合材料。
2.如权利要求1所述的制备方法,其特征在于,
所述压力变形加工包括对挤压坯料依次进行的热挤压步骤和室温下多道次拉拔步骤。
3.如权利要求1所述的制备方法,其特征在于,
所述压力变形加工包括对挤压坯料进行多道次冷轧的步骤。
4.如权利要求1或2或3所述的制备方法,其特征在于,
步骤a包括:将铜或铜合金粉末送入化学气相沉积炉内,封闭炉管;抽出炉内残留空气后通入定量的氢气和氩气;在室温下开始匀速升温至生长温度,恒温一段时间后,通入碳源,进行保温生长,生长结束后关闭碳源并将温度降至室温,完成沉积;
其中生长温度为1020-1070℃,升温时长为10-50min,恒温时长为30-150min,保温生长时长为20-50min,冷却方式为快速匀速降温或慢速分梯度降温,其中快速匀速降温的时间为50-100min,慢速分梯度降温包括第一降温阶段、保温阶段和第二降温阶段,第一降温阶段的时间为25-50min,保温阶段的时间为50-100min,第二降温阶段的时间为50-100min。
5.如权利要求1或2或3所述的制备方法,其特征在于,
步骤a中,铜或铜合金粉末为颗粒状粉末或者片状粉末,其中颗粒状粉末的粒径为5-100微米,片状粉末的厚度为5-100微米,片状粉末的截面的X轴方向和y轴方向的长度均位于2-500微米以内。
6.如权利要求1或2或3所述的制备方法,其特征在于,
步骤b中,碳纳米管粉末与铜或铜合金粉末的混合体积比为0.1-5:100。
7.如权利要求1或2或3所述的制备方法,其特征在于,
步骤c中,冷挤压致密的压实单位压力为100-500MPa。
8.如权利要求1所述的制备方法,其特征在于,
步骤d包括:先对挤压坯进行热挤压,挤压温度600-800℃、挤压比12-20,获得挤压棒坯;将挤压棒坯室温下进行多道次拉拔,拉拔道次变形量5-10%,获得直径0.5-1.5mm的复合预制材料。
9.如权利要求3所述的制备方法,其特征在于,
步骤d’包括:对挤压坯进行室温多道次冷轧,其中第一道次的变形量为30%-50%,总变形量为90-99%,获得复合预制材料。
10.如权利要求1或2或3所述的制备方法,其特征在于,
步骤e中,采用高频感应加热方式进行连续结晶再退火,其中高频加热频率400-1000kHz,退火温度200~400℃。
11.如权利要求1-10任一所述制备方法制备的网络互穿型石墨烯-铜复合材料。
CN201911040359.0A 2019-10-29 2019-10-29 网络互穿型石墨烯-铜复合材料的制备方法 Active CN110904356B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911040359.0A CN110904356B (zh) 2019-10-29 2019-10-29 网络互穿型石墨烯-铜复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911040359.0A CN110904356B (zh) 2019-10-29 2019-10-29 网络互穿型石墨烯-铜复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN110904356A true CN110904356A (zh) 2020-03-24
CN110904356B CN110904356B (zh) 2021-05-14

Family

ID=69816027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911040359.0A Active CN110904356B (zh) 2019-10-29 2019-10-29 网络互穿型石墨烯-铜复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN110904356B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111462938A (zh) * 2020-04-17 2020-07-28 珠海蓉胜超微线材有限公司 一种铜包碳纳米复合扁线及其制备方法
CN115351277A (zh) * 2022-08-04 2022-11-18 国网智能电网研究院有限公司 一种石墨烯铜复合材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103773985A (zh) * 2014-02-26 2014-05-07 哈尔滨工业大学 一种高效原位制备石墨烯增强铜基复合材料的方法
CN105624445A (zh) * 2016-01-06 2016-06-01 昆明理工大学 一种石墨烯增强铜基复合材料的制备方法
CN105818476A (zh) * 2016-03-21 2016-08-03 中南大学 一种表面改性三维网络碳纤维增强复合材料及制备方法
US20190055636A1 (en) * 2017-08-17 2019-02-21 Tsinghua University Method for making alloy matrix composite
CN109368616A (zh) * 2018-09-11 2019-02-22 天津大学 一种三维石墨烯碳纳米管复合材料的可控制备方法
CN109897985A (zh) * 2019-03-05 2019-06-18 天津工业大学 三维连续石墨烯/铜复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103773985A (zh) * 2014-02-26 2014-05-07 哈尔滨工业大学 一种高效原位制备石墨烯增强铜基复合材料的方法
CN105624445A (zh) * 2016-01-06 2016-06-01 昆明理工大学 一种石墨烯增强铜基复合材料的制备方法
CN105818476A (zh) * 2016-03-21 2016-08-03 中南大学 一种表面改性三维网络碳纤维增强复合材料及制备方法
US20190055636A1 (en) * 2017-08-17 2019-02-21 Tsinghua University Method for making alloy matrix composite
CN109368616A (zh) * 2018-09-11 2019-02-22 天津大学 一种三维石墨烯碳纳米管复合材料的可控制备方法
CN109897985A (zh) * 2019-03-05 2019-06-18 天津工业大学 三维连续石墨烯/铜复合材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111462938A (zh) * 2020-04-17 2020-07-28 珠海蓉胜超微线材有限公司 一种铜包碳纳米复合扁线及其制备方法
CN115351277A (zh) * 2022-08-04 2022-11-18 国网智能电网研究院有限公司 一种石墨烯铜复合材料及其制备方法和应用
CN115351277B (zh) * 2022-08-04 2024-02-06 国网智能电网研究院有限公司 一种石墨烯铜复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110904356B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
Gao et al. In-situ graphene enhanced copper wire: A novel electrical material with simultaneously high electrical conductivity and high strength
Sun et al. In situ synthesis of CNTs in Mg powder at low temperature for fabricating reinforced Mg composites
CN110904356B (zh) 网络互穿型石墨烯-铜复合材料的制备方法
CN111145960B (zh) 一种高强高导铜基复合材料及其制备方法
CN111349905B (zh) 增强型铜基复合线材的制备方法
Zuo et al. Simultaneous improvement of electrical conductivity and mechanical property of Cr doped Cu/CNTs composites
CN110846529A (zh) 石墨烯增强铜复合材料的制备方法
JP2015227498A (ja) アルミニウム基複合材料及びその製造方法
CN112011705A (zh) 纳米碳增强铜基复合材料批量制备方法
CN113787788A (zh) 一种石墨烯/金属复合材料及其制备方法和应用
Wang et al. Achieving high strength and electrical properties in drawn fine Cu matrix composite wire reinforced by in-situ grown graphene
Zhao et al. Preparation and properties of Cu/RGO composites via H2 reduction and spark plasma sintering
CN114054762A (zh) 基于石墨烯缺陷调控的石墨烯/金属基复合材料制备方法
Afshoon et al. Tuning structural and electronic properties of single-walled SiC nanotubes
Zuo et al. Investigation on the novel copper-based composite conductors synergistically improved by in-situ generated graphene and nanoparticles
JP7168264B2 (ja) グラフェン-金属複合線の製造方法
CN111139453A (zh) 一种高导电铜/石墨烯复合材料的制备方法
Wang et al. A novel approach for in-situ preparation of copper/graphene composite with high hardness and high electrical conductivity
CN111058017B (zh) 石墨烯金属复合丝材及其低温连续化制备方法
CN114214602A (zh) 一种三维原位石墨烯增强金属基复合材料的连续化制备方法
CN111364018B (zh) 一种石墨烯铜基复合材料及其制备方法
CN109468619B (zh) 碳纳米管表面镀覆方法
Zhao et al. Effect of yttrium on the electrical and mechanical properties of in situ synthesized CNTs/CuCr composites
Li et al. Particle morphology dependence of the mechanical and electrical properties in the in-situ graphene reinforced Cu matrix composites
CN115125412B (zh) 一种铜基石墨烯复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant