CN110853859A - 一种高性能软磁复合材料的制备方法及其磁环 - Google Patents

一种高性能软磁复合材料的制备方法及其磁环 Download PDF

Info

Publication number
CN110853859A
CN110853859A CN201911188794.8A CN201911188794A CN110853859A CN 110853859 A CN110853859 A CN 110853859A CN 201911188794 A CN201911188794 A CN 201911188794A CN 110853859 A CN110853859 A CN 110853859A
Authority
CN
China
Prior art keywords
magnetic
soft magnetic
alloy particles
composite material
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911188794.8A
Other languages
English (en)
Other versions
CN110853859B (zh
Inventor
彭晓领
李静
王新庆
葛洪良
杨艳婷
徐靖才
金红晓
金顶峰
洪波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201911188794.8A priority Critical patent/CN110853859B/zh
Publication of CN110853859A publication Critical patent/CN110853859A/zh
Priority to US17/627,141 priority patent/US20220270818A1/en
Priority to PCT/CN2020/093243 priority patent/WO2021103467A1/zh
Application granted granted Critical
Publication of CN110853859B publication Critical patent/CN110853859B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer

Abstract

本发明公开了一种高性能软磁复合材料的制备方法及其磁环,在球形软磁合金颗粒外包覆绝缘层形成混合粉末;将混合粉末装入模具使混合粉末压制成型;在混合粉末成型过程中施加外磁场,磁场平行于工作磁路平面,垂直于工作磁路平面法向方向;去应力退火而获得软磁复合材料。该技术方案非常简便,对磁粉、设备都没有严苛要求,即可实现高性能;非磁性相的非对称分布:沿外磁场方向呈连续链状分布,降低了水平磁路磁阻和损耗;磁性相的非对称分布:沿外磁场方向排列紧密有序,细小的磁性颗粒择优填充在磁环平面方向的气隙,降低了水平磁路磁阻和损耗;高磁导率和低损耗;本发明采用设备少、工艺步骤少、工艺简单,可以快速实现软磁复合材料的工业应用。

Description

一种高性能软磁复合材料的制备方法及其磁环
技术领域
本发明涉及磁性材料制备领域,尤其涉及一种高性能软磁复合材料的制备方法及其磁环。
背景技术
软磁复合材料具有高磁通和低损耗的软磁复合材料,工业领域又称磁粉芯。软磁复合材料的电阻率比金属软磁高,因此磁损耗低;其饱和磁化强度比铁氧体高,因此功率密度大,软磁复合材料具有独特的优势和应用范围。
软磁复合材料是对磁性颗粒进行绝缘包覆处理,经有机材料和无机材料绝缘包覆处理,利用粉末冶金技术使混合粉末成为各向同性的块体材料。现有工业生产制造的软磁复合材料各向同性,各向同性意味着沿各个方向的磁性能是相同的。但实际应用中,我们仅需要利用工作磁路方向的磁性能,其它非工作磁路方向的磁性能的好坏都不会影响到软磁复合材料的工作特性。因此,各向同性实际上造成了软磁复合材料磁性能的浪费。为了提高磁导率,可降低非磁性绝缘层厚度,但这会降低电阻率,使涡流损耗增大;为降低损耗,可增大软磁合金电阻率,增加绝缘层厚度,但这又使磁导率和饱和磁化强度降低。因此,各向同性的软磁复合材料难以同时满足高磁导率、高饱和磁化强度、低损耗的要求,一方面性能有所提高通常要牺牲另外一方面的性能。
而现有技术中所采用的提高磁导率或降低损耗的技术手段,通常都是同时改善各个方向的性能,在一定程度上造成非工作磁路方向磁性能的浪费。
发明内容
本发明的目的是提供一种高性能软磁复合材料的制备方法,可以解决上述技术问题中的一个或是多个。
为了达到上述目的,本发明提出的技术方案如下:
一种高性能软磁复合材料的制备方法,在球形软磁合金颗粒外包覆绝缘层形成混合粉末;将混合粉末装入模具使混合粉末压制成型;在混合粉末成型过程中施加外磁场,所述磁场平行于工作磁路平面,垂直于工作磁路平面法向方向;去应力退火而获得软磁复合材料。
在没有采用外磁场取向技术方案制备的常规软磁复合材料中,由于使用的是球形软磁合金颗粒,其为形状各向均匀,对于施加外磁场在理论上应该是没有差异的;因此非磁性相对磁粉的包覆是均匀的,电阻率、磁导率、损耗、磁阻在各个方向也是均匀的。
而本发明中创造性的在复合材料压制成型过程中增加了平行于工作磁路平面的磁场,实现了磁性相和非磁性相的重新排列;获得了意想不到的性能更好的软磁复合材料,本复合材料绝缘层的非磁性相在球形磁性相周围为非对称分布:在沿磁环平面方向,球形软磁合金颗粒排列紧密有序,非磁性相颗粒受软磁合金颗粒推挤排斥而呈连续分布;沿磁环法向轴线方向,球形软磁合金颗粒排列无序,非磁性相颗粒排列不连续。因此在本软磁复合材料中,电阻率、磁导率、损耗、磁阻呈各向异性。沿外场方向磁阻降低、退磁场降低、磁导率增大、磁滞损耗降低。另一方面,在磁场平行取向的样品中,细小的磁粉在水平间隙处填充的更好,这也使在水平方向的空隙减少,进一步使磁阻降低,磁导率增大。
在压制成型为磁环工作时,其工作磁路是沿磁环一周的闭环。对应所产生的涡流与磁环圆周完全垂直,这正对应于与轴向平行方向的涡流损耗,则沿磁场方向涡流损耗降低。因此,该技术方案具有良好的软磁特性。
优选的:所述磁场强度为0.1~10T。
优选的:所述为线圈磁场、电磁铁磁场或脉冲磁场中的一种。
优选的:在混合粉末压制成型过程中始终施加外磁场。
优选的:所述的球形软磁合金颗粒的质量分数为90wt.%~99.9wt.%;所述的绝缘层的质量分数为0.1wt.%~10wt.%。
优选的:所述的球形软磁合金颗粒为Fe、Fe-Si、Fe-Ni、Fe-Ni-Mo、Fe-Si-Al、Fe-Si-B非晶、铁基纳米晶合金中的一种。
优选的:所述的绝缘层为玻璃粉、水玻璃、MgO、SiO2、Al2O3、ZnO和TiO2中的一种。理论上可以将上述绝缘层粉中的几种混合作为绝缘层包覆于球形软磁合金颗粒外。
优选的:所述球形软磁合金颗粒5μm~40μm;所述非磁性相颗粒的直径10nm~200nm。让非磁性相颗粒的直径远小于球形软磁合金颗粒直径,可以形成良好包覆。
优选的:所述球形软磁合金颗粒通过气雾化法或水雾化法制备获得。
本发明的另一个目的是提供一种软磁复合材料的磁环,可广泛应用于电机、工频至高频的变压器、传感器、扼流圈、噪音过滤器、燃料喷射器等装置中。
一种包含上述高性能软磁复合材料的磁环,包括磁环本体,磁环本体内包括球形软磁合金颗粒和非磁性相颗粒;非磁性相颗粒包覆于球形软磁合金颗粒;非磁性相颗粒在球形软磁合金颗粒的界面处分布:在沿磁环平面方向,球形软磁合金颗粒排列紧密有序,非磁性相颗粒受软磁合金颗粒推挤排斥而呈连续分布;沿磁环法向轴线方向,球形软磁合金颗粒排列无序,非磁性相颗粒排列不连续。在磁环内球形软磁合金颗粒和非磁性相颗粒的分布使球形软磁合金颗粒和非磁性相粉末的分布在磁环内具有各向异性。
相比较于软磁合金颗粒和非磁性相的均匀分布,本发明中的磁环各向异性分布具有更高的磁导率以及更低的损耗。
本发明的技术效果是:
1、该技术方案非常简便,对磁粉、设备都没有严苛要求,即可实现高性能;
2、非磁性相的非对称分布:沿外磁场方向呈连续链状分布,降低了水平磁路磁阻和损耗;磁性相的非对称分布:沿外磁场方向排列紧密有序,细小的磁性颗粒择优填充在磁环平面方向的气隙,降低了水平磁路磁阻和损耗;
3、平行于工作磁路平面取向的软磁复合材料具有高磁导率和低损耗;
4、本发明由于采用设备少、工艺步骤少、工艺简单,可以快速实现软磁复合材料的工业应用。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
在附图中:
附图1给出了实施例1中包覆后样品的扫描电镜照片;
附图2给出了实施例1中磁场水平取向样品的扫描电镜照片,磁场为水平方向;
附图3给出了实施例1中没有经磁场取向样品的扫描电镜照片(作为对比);
附图4给出了实施例1中样品的有效磁导率;
附图5给出了实施例1中样品的磁损耗;
附图6给出了实施例1中样品的复数磁导率的实部;
附图7给出了实施例1中样品的复数磁导率的虚部;
附图8给出了实施例1中样品的品质因数;
附图9给出了实施例1中样品的损耗角正切;
附图10给出了实施例1中样品的μQ积。
附图11是本发明中复合材料的示意图;
在图4-图10中:Normal表示未施加外磁场取向的样品曲线;Parallel表示施加了外磁场取向的样品曲线。
在图11中:1球形软磁合金颗粒,2非磁性相颗粒。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明,其中的示意性实施例以及说明仅用来解释本发明,但并不作为对本发明的不当限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如图1、图11所示,图1是单独一颗球形软磁合金颗粒被非磁性相包覆为绝缘层的示意图;图11是理想状态下软磁复合材料的截面示意图,在图11中,假设球形软磁合金颗粒相同,非磁性相颗粒也都相同。
以下实施例,将以常见的环形软磁复合材料为例。其他形状的软磁复合材料具有相同的性质不再做赘述。
实施例1:
1)原材料准备
磁性主相为球形Fe-Si-B非晶软磁合金颗粒,软磁合金颗粒平均直径为20μm;软磁合金颗粒是通过气雾化方法获得的;绝缘层的非磁性相为Al2O3粉末,作为软磁合金颗粒的界面相;Al2O3平均直径为90nm;
2)软磁合金颗粒的绝缘包覆
球形Fe-Si-B非晶软磁合金颗粒经过钝化后,与Al2O3粉末充分混合,实现Al2O3粉末对Fe-Si-B非晶颗粒的绝缘包覆形成Al2O3绝缘层;形成混合粉末;其中球形Fe-Si-B非晶软磁合金颗粒的质量分数为96wt.%;Al2O3的质量分数为4wt.%;包覆效果如附图1所示;
3)磁场取向成型
将步骤2)中的混合粉末装入环形模具,进行压制成型;在磁环成型过程中施加电磁铁磁场,磁场平行于磁环平面(工作磁路平面),垂直于磁环法向(工作磁路平面法向方向),磁场强度为1T,使磁环中的磁性主相(球形Fe-Si-B非晶软磁合金颗粒)与非磁性相(Al2O3粉末)的排列重新分布;
4)去应力退火
环形软磁复合材料(磁环)在成型后,进一步去应力退火,降低磁滞损耗;软磁合金颗粒与非磁性相非均匀分布的高性能软磁复合材料;
附图2给出了磁场平行于磁环平面(工作磁路平面)样品的扫描电镜照片;可以发现,水平方向磁粉连续分布,部分磁粉形成了链状,尺寸较小的磁粉填充在水平间隙;此外,细小的Al2O3颗粒在磁场方向由于磁性颗粒的排斥力,也形成了良好连续分布;
附图3给出了没有经磁场取向样品的扫描电镜照片(作为对比);可以看出,磁粉和绝缘介质基本均匀分布;
附图4给出了图2和图3中样品的有效磁导率;可以发现,经水平磁场取向的样品具有更高的磁导率;
附图5给出了图2和图3中样品的磁损耗;可以发现,经水平磁场取向的样品具有更低的损耗;
附图6给出了图2和图3中样品的复数磁导率的实部;可以发现,经水平磁场取向的样品在低频时具有更高的磁导率,并具有更高的截止频率值;
附图7给出了图2和图3中样品的复数磁导率的虚部;可以发现,经水平磁场取向的样品的损耗值明显更低,且在高频时表现更加显著;
附图8给出了图2和图3中样品的品质因数;可以发现,经水平磁场取向的样品的品质因数更高;
附图9给出了图2和图3中样品的损耗角正切;可以发现,经水平磁场取向的样品的损耗角正切更小,代表损耗更低;
附图10给出了图2和图3中样品的μQ积;可以发现,经水平磁场取向的样品的μQ积更高,表现出更好的综合软磁特性;
因此,可以发现制备过程中施加平行于工作磁路平面的磁场让样品进行取向,可以获得优秀的综合软磁特性。
实施例2:
1)原材料准备
磁性主相是通过水雾化方法获得的球形Fe软磁合金颗粒;绝缘层为非磁性相的玻璃粉,玻璃粉作为软磁合金颗粒的界面相;
2)软磁合金颗粒的绝缘包覆
球形Fe颗粒经钝化后,与玻璃粉充分混合得到混合粉末,在混合粉末中玻璃粉对Fe颗粒的绝缘包覆形成绝缘层;
Fe的质量分数为90wt.%;玻璃粉的质量分数为10wt.%;
3)磁场取向成型
将步骤2)中的混合粉末装入环形模具压制成型,在磁环成型过程中施加线圈磁场,磁场平行于磁环平面(工作磁路平面),垂直于磁环法向轴线(工作磁路平面的法向),磁场强度为0.1T,使磁环中的软磁合金颗粒与非磁性相的排列重新分布;
4)去应力退火
软磁复合磁环在成型后,进一步去应力退火,降低磁滞损耗;磁性主相(球形Fe颗粒)与非磁性相(玻璃粉)非均匀分布的高性能软磁复合材料;
表1为经过磁场取向和未取向玻璃粉/Fe软磁复合材料的有效磁导率和损耗值。
Figure BDA0002293050030000061
可以发现,经平行于工作磁路平面的磁场取向后的玻璃粉/Fe软磁复合材料具有高磁导率和低损耗。
实施例3:
1)原材料准备
通过气雾化方法获得的球形Fe-Si软磁合金颗粒作为磁性主相;界面相为水玻璃非磁性相;
2)软磁合金颗粒的绝缘包覆
球形Fe-Si软磁合金颗粒经钝化后,与水玻璃充分混合,球形Fe-Si软磁合金颗粒和水玻璃形成混合粉末,水玻璃实现对Fe-Si颗粒的绝缘包覆形成绝缘层;Fe-Si的质量分数为92wt.%;水玻璃的质量分数为8wt.%;
3)磁场取向成型
将步骤2)中的混合粉末装入环形模具,在磁环成型过程中施加电磁铁磁场,磁场平行于磁环平面(工作磁路平面),垂直于磁环法向(工作磁路平面的法向),磁场强度为0.4T,使磁环中的磁性主相(球形软磁合金颗粒)与非磁性相(水玻璃)排列重新分布;
4)去应力退火
软磁复合磁环在成型后,进一步去应力退火,降低磁滞损耗;软磁合金颗粒与非磁性相非均匀分布的高性能软磁复合材料;
表2为取向和未取向水玻璃/Fe-Si软磁复合材料的有效磁导率和损耗值。
Figure BDA0002293050030000062
Figure BDA0002293050030000071
可以发现,经平行于工作磁路平面的磁场取向后的水玻璃/Fe-Si软磁复合材料具有高磁导率和低损耗。
实施例4:
1)原材料准备
通过水雾化方法获得球形Fe-Ni软磁合金颗粒,球形Fe-Ni软磁合金颗粒作为磁性主相;界面相选择MgO为非磁性相;
2)软磁合金颗粒的绝缘包覆
球形Fe-Ni颗粒经钝化后,与MgO粉末充分混合,形成混合粉末;MgO粉末实现对球形Fe-Ni软磁合金颗粒的绝缘包覆形成绝缘层;球形Fe-Ni软磁合金颗粒的质量分数为95wt.%;MgO粉末的质量分数为5wt.%;
3)磁场取向成型
将步骤2)中的混合粉末装入环形模具压制成型,在磁环成型过程中施加电磁铁磁场,磁场平行于磁环平面(工作磁路平面),垂直于磁环法向(工作磁路平面的的),磁场强度为0.6T,使磁环中的磁性主相(球形Fe-Ni软磁合金颗粒)与非磁性相(MgO粉末)的排列重新分布;
4)去应力退火
软磁复合磁环在成型后,进一步去应力退火,降低磁滞损耗;球形软磁合金颗粒与非磁性相非均匀分布的高性能软磁复合材料;
经测试,经水平磁场取向(平行于工作磁路平面的磁场)的样品具有更加优秀的综合软磁特性。
实施例5:
1)原材料准备
通过水雾化方法获得球形Fe-Ni-Mo软磁合金颗粒,球形Fe-Ni-Mo软磁合金颗粒作为磁性主相;非磁性相为SiO2粉末,SiO2粉末作为球形Fe-Ni-Mo软磁合金颗粒之间的界面相;
2)软磁合金颗粒的绝缘包覆
球形Fe-Ni-Mo软磁合金颗粒经钝化后,与SiO2粉末充分混合,形成混合粉末;以实现SiO2对球形Fe-Ni-Mo软磁合金颗粒的绝缘包覆,在球形Fe-Ni-Mo软磁合金颗粒外形成绝缘层;球形Fe-Ni-Mo软磁合金颗粒的质量分数为97wt.%;SiO2粉末的质量分数为3wt.%;
3)磁场取向成型
将步骤2)中的混合粉末装入环形模具压制成型为磁环,在磁环成型过程中施加电磁铁磁场,磁场平行于磁环平面(工作磁路平面),垂直于磁环法向(工作磁路平面的法向),磁场强度为0.8T,使磁环中的磁性主相(球形Fe-Ni-Mo软磁合金颗粒)与非磁性相(SiO2粉末)的排列重新分布;
4)去应力退火
软磁复合磁环在成型后,进一步去应力退火,降低磁滞损耗;非均匀分布的软磁合金颗粒与非磁性相使得磁环为高性能软磁复合材料;
经测试,经平行于工作磁路平面的磁场取向后的样品具有更加优秀的综合软磁特性。
实施例6:
1)原材料准备
采用水雾化法获得球形Fe-Si-Al软磁合金颗粒,将球形Fe-Si-Al软磁合金颗粒作为磁性主相;非磁性相采用ZnO粉末,ZnO粉末作为界面相;
2)软磁合金颗粒的绝缘包覆
球形Fe-Si-Al软磁合金颗粒经钝化后,与ZnO粉末充分混合,形成混合粉末;ZnO粉末实现对球形Fe-Si-Al软磁合金颗粒的绝缘包覆,在球形Fe-Si-Al软磁合金颗粒外形成ZnO粉末的绝缘层;球形Fe-Si-Al软磁合金颗粒的质量分数为98wt.%;ZnO粉末的质量分数为2wt.%;
3)磁场取向成型
将步骤2)中的混合粉末装入环形模具压制成型为磁环,在磁环成型过程中施加电磁铁磁场,磁场平行于磁环平面(工作磁路平面),垂直于磁环法向(工作磁路平面的法向),磁场强度为2T,使磁环中的磁性主相(球形Fe-Si-Al软磁合金颗粒)与非磁性相(ZnO粉末)的排列重新分布;
4)去应力退火
软磁复合磁环在成型后,进一步去应力退火,降低磁滞损耗;磁性主相(球形Fe-Si-Al软磁合金颗粒)与非磁性相(ZnO粉末)在磁环内非均匀分布,使磁环成为高性能软磁复合材料。
经测试,经平行于工作磁路平面的磁场取向后的样品具有更加优秀的综合软磁特性。
实施例7:
1)原材料准备
通过气雾化方法获得球形铁基纳米晶软磁合金颗粒;球形铁基纳米晶软磁合金颗粒作为磁性主相,界面相为TiO2粉末非磁性相;
2)软磁合金颗粒的绝缘包覆
球形铁基纳米晶软磁合金颗粒经钝化后,与TiO2粉末充分混合,形成混合粉末;TiO2粉末实现对球形铁基纳米晶软磁合金颗粒的绝缘包覆,在球形铁基纳米晶软磁合金颗粒外形成TiO2粉末的绝缘层;球形铁基纳米晶软磁合金颗粒的质量分数为99wt.%;TiO2粉末的质量分数为1wt.%;
3)磁场取向成型
将步骤2)中的混合粉末装入环形模具压制成型为磁环,在磁环成型过程中施加脉冲磁场,磁场平行于磁环平面(工作磁路平面),垂直于磁环法向(工作磁路平面的法向),磁场强度为5T,使磁环中的磁性主相(球形铁基纳米晶软磁合金颗粒)与非磁性相(TiO2粉末)的排列重新分布;
4)去应力退火
软磁复合磁环在成型后,进一步去应力退火,降低磁滞损耗;磁性主相(球形铁基纳米晶软磁合金颗粒)与非磁性相(TiO2粉末)非均匀分布的高性能软磁复合材料;
经测试,经水平磁场(平行于工作磁路平面的磁场)取向的样品具有更加优秀的综合软磁特性。
实施例8:
1)原材料准备
通过水雾化方法获得球形Fe-Si-Al软磁合金颗粒;球形Fe-Si-Al软磁合金颗粒作为磁性主相,界面相为玻璃粉非磁性相;
2)软磁合金颗粒的绝缘包覆
球形Fe-Si-Al软磁合金颗粒经钝化后,与玻璃粉充分混合,形成混合粉末;玻璃粉实现对球形Fe-Si-Al软磁合金颗粒的绝缘包覆,在球形Fe-Si-Al软磁合金颗粒外形成玻璃粉的绝缘层;球形Fe-Si-Al软磁合金颗粒的质量分数为99.9wt.%;玻璃粉的质量分数为0.1wt.%;
3)磁场取向成型
将步骤2)中的混合粉末装入环形模具,在磁环成型过程中施加脉冲磁场,磁场平行于磁环平面(工作磁路平面),垂直于磁环法向(工作磁路平面的法向),磁场强度为10T,使磁环中的磁性主相(球形Fe-Si-Al软磁合金颗粒)与非磁性相(玻璃粉)的排列重新分布;
4)去应力退火
软磁复合磁环在成型后,进一步去应力退火,降低磁滞损耗;磁性主相(球形Fe-Si-Al软磁合金颗粒)与非磁性相非均匀分布的高性能软磁复合材料;
经测试,经平行于磁路工作面(磁环平面方向)磁场取向的样品具有更加优秀的综合软磁特性。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种高性能软磁复合材料的制备方法,其特征在于:在球形软磁合金颗粒外包覆绝缘层形成混合粉末;将混合粉末装入模具使混合粉末压制成型;
在混合粉末成型过程中施加外磁场,所述外磁场平行于工作磁路平面,垂直于工作磁路平面法向方向;
去应力退火而获得软磁复合材料。
2.根据权利要求1所述的高性能软磁复合材料的制备方法,其特征在于:所述磁场强度为0.1~10T。
3.根据权利要求1所述的高性能软磁复合材料的制备方法,其特征在于:所述磁场为线圈磁场、电磁铁磁场或脉冲磁场中的一种。
4.根据权利要求1所述的高性能软磁复合材料的制备方法,其特征在于:在混合粉末压制成型过程中始终施加外磁场。
5.根据权利要求1所述的高性能软磁复合材料的制备方法,其特征在于:所述的球形软磁合金颗粒的质量分数为90wt.%~99.9wt.%;所述的绝缘层的质量分数为0.1wt.%~10wt.%。
6.根据权利要求1所述的高性能软磁复合材料的制备方法,其特征在于:所述的球形软磁合金颗粒为Fe、Fe-Si、Fe-Ni、Fe-Ni-Mo、Fe-Si-Al、Fe-Si-B非晶、铁基纳米晶合金中的一种。
7.根据权利要求1所述的高性能软磁复合材料的制备方法,其特征在于:所述的绝缘层为玻璃粉、水玻璃、MgO、SiO2、Al2O3、ZnO和TiO2中的一种。
8.根据权利要求1所述的高性能软磁复合材料的制备方法,其特征在于:所述球形软磁合金颗粒5μm~40μm;所述非磁性相颗粒的直径10nm~200nm。
9.根据权利要求1所述的高性能软磁复合材料的制备方法,其特征在于:所述球形软磁合金颗粒通过气雾化法或水雾化法制备获得。
10.一种包含权利要求1—9任意所述的高性能软磁复合材料的磁环,其特征在于:包括磁环本体,磁环本体内包括球形软磁合金颗粒和非磁性相颗粒;非磁性相颗粒包覆于球形软磁合金颗粒;
非磁性相颗粒在球形软磁合金颗粒的界面处分布:在沿磁环平面方向,球形软磁合金颗粒排列紧密有序,非磁性相颗粒受球形软磁合金颗粒推挤排斥而呈连续分布;沿磁环法向轴线方向,球形软磁合金颗粒排列无序,非磁性相颗粒排列不连续;
在磁环内球形软磁合金颗粒和非磁性相颗粒的分布使球形软磁合金颗粒和非磁性相粉末的分布在磁环内具有各向异性。
CN201911188794.8A 2019-11-28 2019-11-28 一种高性能软磁复合材料的制备方法及其磁环 Active CN110853859B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201911188794.8A CN110853859B (zh) 2019-11-28 2019-11-28 一种高性能软磁复合材料的制备方法及其磁环
US17/627,141 US20220270818A1 (en) 2019-11-28 2020-05-29 Method for preparing high-performance soft magnetic composite and magnetic toroidal core thereof
PCT/CN2020/093243 WO2021103467A1 (zh) 2019-11-28 2020-05-29 一种高性能软磁复合材料的制备方法及其磁环

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911188794.8A CN110853859B (zh) 2019-11-28 2019-11-28 一种高性能软磁复合材料的制备方法及其磁环

Publications (2)

Publication Number Publication Date
CN110853859A true CN110853859A (zh) 2020-02-28
CN110853859B CN110853859B (zh) 2021-05-28

Family

ID=69605837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911188794.8A Active CN110853859B (zh) 2019-11-28 2019-11-28 一种高性能软磁复合材料的制备方法及其磁环

Country Status (3)

Country Link
US (1) US20220270818A1 (zh)
CN (1) CN110853859B (zh)
WO (1) WO2021103467A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021103467A1 (zh) * 2019-11-28 2021-06-03 中国计量大学 一种高性能软磁复合材料的制备方法及其磁环

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036092B (zh) * 2022-07-22 2023-07-21 横店集团东磁股份有限公司 一种复合磁环及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105810383A (zh) * 2016-05-12 2016-07-27 宁波中科毕普拉斯新材料科技有限公司 一种铁基纳米晶磁粉芯的制备方法
JP2017022192A (ja) * 2015-07-08 2017-01-26 株式会社ジェイテクト 磁石の製造方法及び磁石
CN106373693A (zh) * 2016-11-15 2017-02-01 彭晓领 一种完全取向软磁复合材料的制备方法
CN107146675A (zh) * 2017-04-18 2017-09-08 马鞍山新康达磁业有限公司 一种高频低损耗铁基合金磁粉及其制造方法
CN108987025A (zh) * 2018-06-11 2018-12-11 彭晓领 一种高磁导率低损耗软磁复合材料及其制备方法
CN109036754A (zh) * 2018-06-11 2018-12-18 彭晓领 一种高磁导率软磁复合材料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119802A (ja) * 1982-12-27 1984-07-11 Seiko Epson Corp 異方性複合軟磁性材料
KR20140095362A (ko) * 2013-01-24 2014-08-01 삼성전기주식회사 이중층 복합 금속 분말 및 연자성 코어의 제조방법
CN105097167B (zh) * 2015-07-23 2017-05-24 南京航空航天大学 一种圆环取向非晶磁粉芯的制备方法
CN108565109B (zh) * 2018-06-11 2020-09-25 中国计量大学 一种软磁复合材料的制备方法
CN110491615A (zh) * 2019-07-18 2019-11-22 山东科技大学 一种用于小型直流电机的钕铁硼磁体制备方法
CN110853859B (zh) * 2019-11-28 2021-05-28 中国计量大学 一种高性能软磁复合材料的制备方法及其磁环

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022192A (ja) * 2015-07-08 2017-01-26 株式会社ジェイテクト 磁石の製造方法及び磁石
CN105810383A (zh) * 2016-05-12 2016-07-27 宁波中科毕普拉斯新材料科技有限公司 一种铁基纳米晶磁粉芯的制备方法
CN106373693A (zh) * 2016-11-15 2017-02-01 彭晓领 一种完全取向软磁复合材料的制备方法
CN107146675A (zh) * 2017-04-18 2017-09-08 马鞍山新康达磁业有限公司 一种高频低损耗铁基合金磁粉及其制造方法
CN108987025A (zh) * 2018-06-11 2018-12-11 彭晓领 一种高磁导率低损耗软磁复合材料及其制备方法
CN109036754A (zh) * 2018-06-11 2018-12-18 彭晓领 一种高磁导率软磁复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
彭晓领: "磁场中浆料内部磁性粒子结构与形成机理研究", 《稀有金属材料与工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021103467A1 (zh) * 2019-11-28 2021-06-03 中国计量大学 一种高性能软磁复合材料的制备方法及其磁环

Also Published As

Publication number Publication date
CN110853859B (zh) 2021-05-28
US20220270818A1 (en) 2022-08-25
WO2021103467A1 (zh) 2021-06-03

Similar Documents

Publication Publication Date Title
CN110853910B (zh) 高磁导率低损耗软磁复合材料的制备方法及其磁环
JP5986010B2 (ja) 圧粉磁心およびそれに用いる磁心用粉末
JP5063861B2 (ja) 複合圧粉磁心及びその製造法
CN110853859B (zh) 一种高性能软磁复合材料的制备方法及其磁环
JP2006287004A (ja) 高周波用磁心及びそれを用いたインダクタンス部品
JPWO2010038441A1 (ja) 複合磁性材料及びその製造方法
Zhang et al. Great reduction in pressure by particle grading for Fe-Si-Al SMCs with good low-frequency magnetic properties
CN117174424B (zh) 一种电感用高性能合金磁体及制备方法
CN110880396B (zh) 一种低损耗软磁复合材料的制备方法及其磁环
KR101963265B1 (ko) 인덕터 부품
JP4171002B2 (ja) 圧粉磁芯用マグネタイト−鉄複合粉末およびこれを用いた圧粉磁芯
JP2005213621A (ja) 軟磁性材料および圧粉磁心
JP7417830B2 (ja) 複合磁性体の製造方法
JP4701531B2 (ja) 圧粉磁芯
JP2006100292A (ja) 粉末磁性体コアの製造方法及びそれを用いてなる粉末磁性体コア
JP2013222789A (ja) 合金系複合軟磁性材料及びその製造方法
JP2010185126A (ja) 複合軟磁性材料とその製造方法
CN109192430A (zh) 提高金属软磁粉芯高频有效磁导率的制备方法及产品
CN113066627B (zh) 一种复合磁粉芯及其制备方法
CN111599567B (zh) 复合磁性材料、磁芯和电子零件
JP7428013B2 (ja) 軟磁性合金粉末、電子部品及びその製造方法
Akdogan et al. Highly anisotropic magneto responsive SU8/Fe ink for additive manufacturing
JPH06283356A (ja) 異方性化ダストコアとその製造方法
CN106971804A (zh) 一种FeSiB非晶磁粉芯及其制备方法
JP2001057307A (ja) 複合磁性材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant