CN110846248A - 一种用于多环芳烃降解的人工混菌体系及其应用方法 - Google Patents

一种用于多环芳烃降解的人工混菌体系及其应用方法 Download PDF

Info

Publication number
CN110846248A
CN110846248A CN201911137707.6A CN201911137707A CN110846248A CN 110846248 A CN110846248 A CN 110846248A CN 201911137707 A CN201911137707 A CN 201911137707A CN 110846248 A CN110846248 A CN 110846248A
Authority
CN
China
Prior art keywords
polycyclic aromatic
phenanthrene
aromatic hydrocarbon
degradation
artificial mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911137707.6A
Other languages
English (en)
Inventor
贾晓强
李莹
贺赟
姜大伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201911137707.6A priority Critical patent/CN110846248A/zh
Publication of CN110846248A publication Critical patent/CN110846248A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/02Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by biological methods, i.e. processes using enzymes or microorganisms
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances

Abstract

本发明提供了一种用于多环芳烃降解的人工混菌体系及其应用方法,该人工混菌体系包括表达较高多环芳烃羟基化双加氧酶活性的工程菌株大肠杆菌Escherichia coli HY1和表达较高的多环芳烃环裂解双加氧酶活性的工程菌株铜绿假单胞菌Pseudomonas aeruginosa PH2。将制备好的人工混菌体系应用于含有多环芳烃污染物的菲类培养基中进行生物降解修复,考察诱导剂添加时间、降解天数以及降解环境对人工混菌体系总蛋白表达量和降解多环芳烃效果的影响。结果表明,本发明中的人工混菌体系对菲的降解率最高可达87.92%,与现有技术中野生单菌及野生混菌体系对多环芳烃的降解效果相比,具有良好的降解潜力。

Description

一种用于多环芳烃降解的人工混菌体系及其应用方法
技术领域
本发明涉及一种用于多环芳烃降解的人工混菌体系及其应用方法,属于生物降解领域和人工混菌构建领域。
背景技术
多环芳烃是指分子中含有2个或2个以上苯环的碳氢化合物,如萘、蒽、菲、芘、联苯等,是一种环境中广泛存在且难降解污染物,具有巨大危害,带来的环境污染问题日益突出。微生物可通过代谢的方法对多环芳烃进行降解,在微生物细胞内,经过脱氢、加氧、水解、脱羧等作用,将结构复杂的有机物转化为结构相对简单的物质,最终转变为短链的脂肪酸进入三羧酸循环,分解为无毒无害的CO2和H2O,但降解效率不高且对于高分子量的多环芳烃很难彻底降解。随着多环芳烃带来的环境污染问题日益突出,相关研究不断深入,研究的重点已经从一般寻找降解污染物的微生物转入以基因工程技术为基础构建高效降解多环芳烃的基因工程菌株。
随着人工改造规模和复杂程度的不断增加,使得利用单菌且兼容诸多功能成为难题,因为单菌的代谢能力有限,对单细胞改造过多会给菌种带来沉重的代谢负担。构建混菌体系可拓展体系功能进而提高整个体系的代谢能力,但土著微生物没有足够的时间进化出针对人工合成有机物或特殊污染物的高效降解酶体系,有时难以有效降解特定目标。换言之,天然混菌体系的形成往往以生存为目的,难以按照人类的预期实现特定降解目标,且可控性较差。
为解决工程单菌和天然混菌在降解过程中存在的问题,合成生物学正在从设计构建基本功能元件和模块,逐步向着构建混菌体系的方向迈进,合成混菌体系是未来合成生物学研究的重要方向。结合多环芳烃降解人工混菌体系分析,以混菌体系作为研究对象构建目标途径具有三大优势:(1)多环芳烃降解过程中的多个功能基因、辅助基因在不同菌株中表达,使不同菌株功能分工,便于将功能分区、避免功能间的交叉影响,适于同时完成多项复杂工作;(2)人工混菌体系细胞间作用关系动态平衡,对环境波动具有更强适应性和稳定性;(3)不同来源、不同功能的元件和模块可以在不同菌株中构建,既减轻对单菌底盘的代谢负荷,扩大了基因组可改造空间,而且加入新菌或导入新基因可以拓展体系功能。
发明内容
本发明的目的是提供一种用于多环芳烃降解的人工混菌体系及其应用方法,使得微生物可以对多环芳烃污染物进行更高效率地降解。
为实现上述发明目的,本发明提供如下技术方案:
将表达较高多环芳烃羟基化双加氧酶活性的工程菌株大肠杆菌Escherichiacoli HY1和表达较高的多环芳烃环裂解双加氧酶活性的工程菌株铜绿假单胞菌Pseudomonas aeruginosa PH2组成人工混菌体系,实现对多环芳烃的高效降解。
本发明涉及的E.coli HY1是按照天津大学于2018-6-18申请的中国专利申请号为2018——201810900749.X,发明名称为“一种降解多环芳烃污染物的大肠杆菌工程菌及其构建方法和应用”公开的降解多环芳烃基因工程菌的构建方法构建的。
本发明涉及的P.aeruginosa PH2是按照天津大学于2018-6-18申请的中国专利申请号为2018——201810900746.6,发明名称为“一种多环芳烃降解工程菌及其工程改造方法和应用”公开的降解多环芳烃基因工程菌的构建方法构建的。
一种用于多环芳烃降解的人工混菌体系;其特征是由工程菌株大肠杆菌Escherichia coli HY1(E.coli HY1)和工程菌株铜绿假单胞菌Pseudomonas aeruginosaPH2(P.aeruginosa PH2)组成。
本发明中用于多环芳烃降解的人工混菌体系,其特征是制备方法步骤如下:
(1)挑取工程菌株E.coli HY1和工程菌株P.aeruginosa PH2的单菌落分别接种至3-5ml LB液体培养基中,将工程E.coli HY1菌液置于37℃恒温摇床,工程P.aeruginosaPH2菌液置于30℃恒温摇床,于200-220rpm条件下过夜培养以活化菌体,在5000-8000rpm条件下离心8-10min收集菌体,弃掉上清,用无菌MSM无机盐培养基洗涤菌体2-3次后,用无菌MSM培养基稀释菌体,分别制成OD600值为3的菌液;
(2)将步骤(1)制成的工程E.coli HY1和工程P.aeruginosa PH2菌液按照1-4:1的比例混合,组成人工混菌体系。
利用本发明的人工混菌体系在多环芳烃污染物降解中的应用方法,其特征是包括如下步骤:
(1)将制备好的人工混菌体系按0.5%-2%的接种率接种到含有多环芳烃污染物的菲类培养基中进行降解;
(2)在接种后0-24小时,加入0.1mM的IPTG(异丙基-β-D-硫代吡喃半乳糖苷)于30-35℃,200-250rpm恒温摇床中诱导培养;
(3)培养6-9天后,完成多环芳烃污染物的高效降解。
处理培养基样品,测定多环芳烃降解率和粗蛋白浓度。
菲类培养基包括:菲降解培养基、菲+正十六烷培养基、菲+石油培养基。
其中,基础MSM培养基以1L的培养基计组成成分为:1g NH4NO3,1g K2HPO4,1gKH2PO4,0.2g MgSO4·7H2O,0.02g CaCl,0.05g FeSO4,0.02g酵母粉,其余为水,pH值7.2。
菲降解培养基为:含有100mg/L菲的MSM无机盐培养基;
菲+正十六烷培养基为:含有100mg/L菲和2%(v/v)正十六烷的MSM无机盐培养基;
菲+石油培养基为:含有100mg/L菲和2%(w/v)石油的MSM无机盐培养基。
上述含量均以1L MSM的培养基计。
降解完成后,在测定降解率之前,可用如下所述方法处理培养基样品:利用正己烷萃取培养基中底物,在萃取前,在每个摇瓶中加入芘作为内标,每瓶萃取2-3次,萃取液取至烧杯中,烧杯放在通风橱中等待正己烷挥发完全。待正己烷完全挥发,用色谱纯二氯甲烷稀释至1000-5000ppm,无水Na2SO4干燥,并通过0.22μm有机系膜过滤,之后装入进样瓶中。使用气相色谱测定人工混菌对多环芳烃菲的降解率;通过Bradford法用小牛血清白蛋白作为标准蛋白质测定人工混菌体系总蛋白质的浓度。
本发明还提供了所述人工混菌体系在多环芳烃污染物降解中的应用示意图(如图1所示),工程E.coli HY1和工程P.aeruginosa PH2组成人工混菌体系,多环芳烃可作为人工混菌体系代谢底物,分别在羟基化双加氧酶和环裂解双加氧酶作用下逐步实现羟基化和环裂解,随后,代谢物通过进一步的转化进入三羧酸循环(Tricarboxylic acid cycle,TCA)循环,最终转化为二氧化碳(CO2)和水(H2O),完成整个降解过程。
本发明的优点表现为:由于PAHs的降解过程实际上是一系列的酶促反应过程。在微生物对PAHs的代谢过程中存在两个关键的限速酶,分别负责初步开环和最后一步环裂解。羟基化双加氧酶对苯环的羟基化可以实现PAHs的初步开环;环裂解双加氧酶是芳环断裂的关键酶。本发明将多环芳烃降解过程中的环羟基化任务和环裂解任务分配到不同菌株中执行,解决了单一降解菌株应用的局限性,避免了单菌代谢负荷过重的问题;双菌比单菌的降解率更高,从而提高混菌体系对多环芳烃污染物的降解率;该体系为多环芳烃生物降解领域奠定了发明基础。
附图说明
图1工程E.coli HY1和工程P.aeruginosa PH2组成的人工混菌体系降解应用示意图
具体实施方式
下面结合具体的实施例对本发明做进一步说明:
实施例1 一种用于多环芳烃降解的人工混菌体系对多环芳烃菲的降解
(1)从平板上挑取表达较高多环芳烃羟基化双加氧酶活性的工程菌株大肠杆菌Escherichia coli HY1(E.coli HY1)和表达较高的多环芳烃环裂解双加氧酶活性的工程菌株铜绿假单胞菌Pseudomonas aeruginosa PH2(P.aeruginosa PH2)的单菌落,分别接种至5ml LB液体培养基中,将工程E.coli HY1菌液置于37℃恒温摇床,工程P.aeruginosaPH2菌液置于30℃恒温摇床,设置摇床转速为200rpm,过夜培养以活化菌体。在8000rpm条件下离心8min收集菌体,弃掉上清,用无菌MSM无机盐培养基洗涤菌体3次后,用无菌MSM培养基稀释菌体,将工程E.coli HY1和工程P.aeruginosa PH2分别制成OD600值为3的菌液;
(2)E.coli HY1和P.aeruginosa PH2按照2:1的比例制成人工混菌体系;
(3)将制备好的人工混菌体系按0.5%的接种率接种到含有100mg/L菲的100mlMSM无机盐培养基(菲降解培养基)摇瓶中;
(4)在接种24小时后加入终浓度为0.1mM的IPTG,于30℃,200rpm恒温摇床中培养;
(5)培养6天后,完成降解,处理培养基样品,测定多环芳烃降解率和粗蛋白浓度。
其中,在测定降解率之前,培养基样品的处理方法如下所述:利用正己烷萃取培养基中底物,在萃取前,在每个摇瓶中加入芘作为内标,每瓶萃取2次,萃取液取至烧杯中,烧杯放在通风橱中等待正己烷挥发完全。待正己烷完全挥发,用色谱纯二氯甲烷稀释至1000ppm,无水Na2SO4干燥,并通过0.22μm有机系膜过滤,之后装入进样瓶中。使用气相色谱测定人工混菌对多环芳烃菲的降解率;通过Bradford法用小牛血清白蛋白作为标准蛋白质测定人工混菌体系总蛋白质的浓度。
测定结果表明,在以菲为单一碳源和能源的降解实验中,由E.coli HY1和P.aeruginosa PH2组成的人工混菌体系的接种比例是2:1时,人工混菌体系的总蛋白浓度为154μg/mL,对菲的降解率可达到63.66%,具有良好的多环芳烃降解效果。
实施例2 一种用于多环芳烃降解的人工混菌体系对多环芳烃菲的降解
(1)从平板上挑取表达较高多环芳烃羟基化双加氧酶活性的工程菌株大肠杆菌Escherichia coli HY1(E.coli HY1)和表达较高的多环芳烃环裂解双加氧酶活性的工程菌株铜绿假单胞菌Pseudomonas aeruginosa PH2(P.aeruginosa PH2)的单菌落,分别接种至4ml LB液体培养基中,将工程E.coli HY1菌液置于37℃恒温摇床,工程P.aeruginosaPH2菌液置于30℃恒温摇床,设置摇床转速为210rpm,过夜培养以活化菌体。在7000rpm条件下离心9min收集菌体,弃掉上清,用无菌MSM无机盐培养基洗涤菌体3次后,用无菌MSM培养基稀释菌体,将工程E.coli HY1和工程P.aeruginosa PH2分别制成OD600值为3的菌液;
(2)E.coli HY1和P.aeruginosa PH2按照4:1的比例制成人工混菌体系;
(3)将制备好的人工混菌体系按1%的接种率接种到含有100mg/L菲的100ml MSM无机盐培养基(菲降解培养基)摇瓶中;
(4)在接种后立即加入终浓度为0.1mM的IPTG,于32℃,220rpm恒温摇床中培养;
(6)培养7天后,完成降解,处理培养基样品,测定多环芳烃降解率和粗蛋白浓度。
其中,在测定降解率之前,培养基样品的处理方法如下所述:利用正己烷萃取培养基中底物,在萃取前,在每个摇瓶中加入芘作为内标,每瓶萃取2次,萃取液取至烧杯中,烧杯放在通风橱中等待正己烷挥发完全。待正己烷完全挥发,用色谱纯二氯甲烷稀释至3000ppm,无水Na2SO4干燥,并通过0.22μm有机系膜过滤,之后装入进样瓶中。使用气相色谱测定人工混菌对多环芳烃菲的降解率;通过Bradford法用小牛血清白蛋白作为标准蛋白质测定人工混菌体系总蛋白质的浓度。
测定结果表明,在以菲为单一碳源和能源的降解实验中,E.coli HY1和P.aeruginosa PH2的接种比例是4:1时,在接种的同时添加诱导剂,6天后人工混菌体系的总蛋白浓度达124μg/mL,多环芳烃菲的降解率达53.73%,具有良好的多环芳烃降解效果。
实施例3 一种用于多环芳烃降解的人工混菌体系在石油存在环境下对多环芳烃菲的降解
(1)从平板上挑取表达较高多环芳烃羟基化双加氧酶活性的工程菌株大肠杆菌Escherichia coli HY1(E.coli HY1)和表达较高的多环芳烃环裂解双加氧酶活性的工程菌株铜绿假单胞菌Pseudomonas aeruginosa PH2(P.aeruginosa PH2)的单菌落,分别接种至3ml LB液体培养基中,将工程E.coli HY1菌液置于37℃恒温摇床,工程P.aeruginosaPH2菌液置于30℃恒温摇床,设置摇床转速为220rpm,过夜培养以活化菌体。在5000rpm条件下离心10min收集菌体,弃掉上清,用无菌MSM无机盐培养基洗涤菌体2次后,用无菌MSM培养基稀释菌体,将工程E.coli HY1和工程P.aeruginosa PH2分别制成OD600值为3的菌液;
(2)E.coli HY1和P.aeruginosa PH2按照1:1的比例制成人工混菌体系;
(3)将制备好的人工混菌体系按2%的接种率接种到含有100mg/L菲和2%(w/v)石油的100ml MSM无机盐培养基(菲+石油培养基)摇瓶中;
(4)在接种后12小时加入终浓度为0.1mM的IPTG,于35℃,250rpm恒温摇床中培养;
(7)培养9天后,完成降解,处理培养基样品,测定多环芳烃降解率和粗蛋白浓度。
其中,在降解率测定之前,培养基样品的处理方法如下所述:利用正己烷萃取培养基中底物,在萃取前,在每个摇瓶中加入芘作为内标,每瓶萃取3次,萃取液取至烧杯中,烧杯放在通风橱中等待正己烷挥发完全。待正己烷完全挥发,用色谱纯二氯甲烷稀释至5000ppm,无水Na2SO4干燥,并通过0.22μm有机系膜过滤,之后装入进样瓶中。使用气相色谱测定人工混菌对多环芳烃菲的降解率。
测定结果表明,在以菲和石油为底物的降解实验中,E.coli HY1和P.aeruginosaPH2的接种比例是1:1时,在接种后12小时添加诱导剂,经过9天的诱导培养,人工混菌体系对菲的降解率达到了79.90%,对多环芳烃菲具有显著的降解效果。
实施例4 一种用于多环芳烃降解的人工混菌体系在正十六烷存在环境下对多环芳烃菲的降解
(1)平板上挑取表达较高多环芳烃羟基化双加氧酶活性的工程菌株大肠杆菌Escherichia coli HY1(E.coli HY1)和表达较高的多环芳烃环裂解双加氧酶活性的工程菌株铜绿假单胞菌Pseudomonas aeruginosa PH2(P.aeruginosa PH2)的单菌落,分别接种至3ml LB液体培养基中,将工程E.coli HY1菌液置于37℃恒温摇床,工程P.aeruginosaPH2菌液置于30℃恒温摇床,设置摇床转速为220rpm,过夜培养以活化菌体。在5000rpm条件下离心10min收集菌体,弃掉上清,用无菌MSM无机盐培养基洗涤菌体2次后,用无菌MSM培养基稀释菌体,将工程E.coli HY1和工程P.aeruginosa PH2分别制成OD600值为3的菌液;
(2)E.coli HY1和P.aeruginosa PH2按照1:1的比例制成人工混菌体系;
(3)将制备好的人工混菌体系按2%的接种率接种到含有100mg/L菲和2%(v/v)正十六烷的100ml MSM无机盐培养基(菲+正十六烷培养基)摇瓶中;
(4)在接种后12小时加入终浓度为0.1mM的IPTG,于35℃,250rpm恒温摇床中培养;
(5)培养9天后,完成降解,处理培养基样品,测定多环芳烃降解率和粗蛋白浓度。
其中,在降解率测定之前,培养基样品的处理方法如下所述:利用正己烷萃取培养基中底物,在萃取前,在每个摇瓶中加入芘作为内标,每瓶萃取3次,萃取液取至烧杯中,烧杯放在通风橱中等待正己烷挥发完全。待正己烷完全挥发,用色谱纯二氯甲烷稀释至5000ppm,无水Na2SO4干燥,并通过0.22μm有机系膜过滤,之后装入进样瓶中。使用气相色谱测定人工混菌对多环芳烃菲的降解率。
测定结果表明,在以菲和正十六烷为底物的降解实验中,E.coli HY1和P.aeruginosa PH2的接种比例是1:1时,在接种后12小时添加诱导剂,经过9天的诱导培养,人工混菌体系对菲的降解率达到了87.92%。对多环芳烃菲具有极其显著的降解效果。
上述四组实施例应用试验结果表明,将表达较高多环芳烃羟基化双加氧酶活性的工程菌株大肠杆E.coli HY1和表达较高的多环芳烃环裂解双加氧酶活性的工程菌株铜绿假单胞菌P.aeruginosa PH2按照1-4:1的比例组成人工混菌体系,诱导表达6-9天后,不论是在以菲为单一碳源和能源的培养基中,还是在以菲+石油或菲+正十六烷的混合碳源培养基中,人工混菌体系对多环芳烃菲都有良好的降解效果,对菲的降解率最高可达87.92%,与现有技术中野生单菌及野生混菌体系对多环芳烃的降解效果相比,结果表明本发明中提供的人工混菌体系具有较高的多环芳烃降解潜力。
以上内容是结合具体的/优选的实施方式对本发明所作的进一步详细说明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种用于多环芳烃降解的人工混菌体系;其特征是由工程菌株大肠杆菌Escherichia coliHY1(E.coli HY1)和工程菌株铜绿假单胞菌Pseudomonas aeruginosaPH2(P.aeruginosaPH2)组成。
2.如权利要求1所述的用于多环芳烃降解的人工混菌体系;其特征是制备方法步骤如下:
(1)挑取工程菌株E.coli HY1和工程菌株P.aeruginosa PH2的单菌落分别接种至3-5ml LB液体培养基中,将工程E.coli HY1菌液置于37℃恒温摇床,工程P.aeruginosa PH2菌液置于30℃恒温摇床,于200-220rpm条件下过夜培养以活化菌体,在5000-8000rpm条件下离心8-10min收集菌体,弃掉上清,用无菌MSM无机盐培养基洗涤菌体2-3次后,用无菌MSM培养基稀释菌体,分别制成OD600值为3的菌液;
(2)将步骤(1)制成的工程E.coli HY1和工程P.aeruginosa PH2菌液按照1-4:1的比例混合,组成人工混菌体系。
3.利用权利要求1或2的人工混菌体系在多环芳烃污染物降解中的应用方法,其特征是包括如下步骤:
(1)将制备好的人工混菌体系接种到含有多环芳烃污染物的菲类培养基中进行降解;
(2)在接种后0-24小时,加入0.1mM的IPTG(异丙基-β-D-硫代吡喃半乳糖苷)于30-35℃,200-250rpm恒温摇床中诱导培养;
(3)培养6-9天后,完成多环芳烃污染物的高效降解。
4.如权利要求3所述的方法,其特征是步骤(1)所述人工混菌体系进行接种时,接种比例为0.5%-2%。
5.如权利要求3所述的方法,其特征是菲类培养基包括菲降解培养基、菲+正十六烷培养基、菲+石油培养基。
6.如权利要求5所述的方法,其特征是菲降解培养基为:以1LMSM的培养基计,含有100mg/L菲的MSM无机盐培养基。
7.如权利要求5所述的方法,其特征是菲+正十六烷培养基为:以1LMSM的培养基计,含有100mg/L菲和2%(v/v)正十六烷的MSM无机盐培养基。
8.如权利要求5所述的方法,其特征是菲+石油培养基为:以1LMSM的培养基计,含有100mg/L菲和2%(w/v)石油的MSM无机盐培养基。
CN201911137707.6A 2019-11-19 2019-11-19 一种用于多环芳烃降解的人工混菌体系及其应用方法 Pending CN110846248A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911137707.6A CN110846248A (zh) 2019-11-19 2019-11-19 一种用于多环芳烃降解的人工混菌体系及其应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911137707.6A CN110846248A (zh) 2019-11-19 2019-11-19 一种用于多环芳烃降解的人工混菌体系及其应用方法

Publications (1)

Publication Number Publication Date
CN110846248A true CN110846248A (zh) 2020-02-28

Family

ID=69602570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911137707.6A Pending CN110846248A (zh) 2019-11-19 2019-11-19 一种用于多环芳烃降解的人工混菌体系及其应用方法

Country Status (1)

Country Link
CN (1) CN110846248A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117004546A (zh) * 2023-09-26 2023-11-07 北京建工环境修复股份有限公司 一种多环芳烃的降解组合物与多环芳烃的降解方法

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251320A2 (en) * 1986-07-03 1988-01-07 Occidental Chemical Corporation Microorganisms for degrading toxic waste materials
WO1998001241A1 (en) * 1996-07-10 1998-01-15 Envirogen, Inc. Biodegradation of the gasoline oxygenates
WO2001023526A1 (en) * 1999-09-27 2001-04-05 The Henry M. Jackson Foundation Engineered radiation resistant bioremediating bacteria
JP2003038199A (ja) * 2000-11-09 2003-02-12 National Institute Of Advanced Industrial & Technology 汚染環境および環境試料の分子遺伝学的解析・評価法
JP2003093087A (ja) * 2001-09-26 2003-04-02 Marine Biotechnol Inst Co Ltd 水酸化された三環式芳香族化合物の製造方法
CN101857840A (zh) * 2010-05-12 2010-10-13 上海交通大学 用于降解石油的生物菌群悬浮剂及其制备和应用方法
CN101974445A (zh) * 2010-05-26 2011-02-16 北京师范大学 高分子量多环芳烃降解菌株及其混合菌系
EP2294144A1 (en) * 2008-05-16 2011-03-16 National University of Singapore Antifouling compounds and use thereof
EP2314669A1 (fr) * 2009-10-26 2011-04-27 Sarl, Polyor Substrats matriciels carbones pour l'obtention de bactéries biofertilisantes
CN102245027A (zh) * 2008-07-29 2011-11-16 尖端科学公司 四(n-烷基吡啶)-卟啉衍生物用于杀死微生物或防止微生物生长的用途
CN102659252A (zh) * 2012-06-05 2012-09-12 山东大学 一种处理含石油废水的方法
CN102888443A (zh) * 2012-10-11 2013-01-23 天津大学 一种研究低温高盐条件下微生物降解石油污染物的方法
CN102899381A (zh) * 2012-10-11 2013-01-30 天津大学 一种表面活性剂生产菌对石油降解协同作用的研究方法
CN104004682A (zh) * 2014-06-06 2014-08-27 国家海洋局第三海洋研究所 一株石油烃降解菌dl8-7及其应用
CN104004687A (zh) * 2014-06-06 2014-08-27 国家海洋局第三海洋研究所 一株石油烃降解菌dlfj1-1及其降解基因与应用
CN104004685A (zh) * 2014-06-06 2014-08-27 国家海洋局第三海洋研究所 一株多环芳烃降解菌1-25r09zxc-2及其应用
CN104004684A (zh) * 2014-06-06 2014-08-27 国家海洋局第三海洋研究所 一株多环芳烃降解菌s8-t8-L9及其应用
CN104150602A (zh) * 2014-08-22 2014-11-19 华东理工大学 根据二级出水氮含量进行氮磷适量去除的污水处理方法
CN104371941A (zh) * 2013-08-15 2015-02-25 中国科学院大连化学物理研究所 一株可降解石油烃的滕黄单胞菌及其应用
CN106315868A (zh) * 2016-10-25 2017-01-11 山东大学 一株可代谢多种烃类的降解菌在石油污染物处理中的应用
CN106587358A (zh) * 2016-12-16 2017-04-26 河北大学 湖泊航道船只漏油降解方法
CN107796906A (zh) * 2017-11-15 2018-03-13 天津大学 基于代谢组学改进红球菌降解条件以提高多环芳烃芘降解率的方法
CN109097310A (zh) * 2018-09-09 2018-12-28 南京工业大学 降解多环芳烃-芘的厌氧型菌株及其筛选方法和应用
CN109182234A (zh) * 2018-08-09 2019-01-11 天津大学 一种降解多环芳烃污染物的大肠杆菌工程菌及其构建方法和应用
CN109182233A (zh) * 2018-08-09 2019-01-11 天津大学 一种多环芳烃降解工程菌及其工程改造方法和应用
CN110396488A (zh) * 2019-07-18 2019-11-01 中国科学院城市环境研究所 一种降解多环芳烃污染物的混合菌系及应用方法
US20200318163A1 (en) * 2019-03-29 2020-10-08 Metabolik Technologies Inc. Biodegradation of toxic organic compounds in contaminated environments

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251320A2 (en) * 1986-07-03 1988-01-07 Occidental Chemical Corporation Microorganisms for degrading toxic waste materials
WO1998001241A1 (en) * 1996-07-10 1998-01-15 Envirogen, Inc. Biodegradation of the gasoline oxygenates
WO2001023526A1 (en) * 1999-09-27 2001-04-05 The Henry M. Jackson Foundation Engineered radiation resistant bioremediating bacteria
JP2003038199A (ja) * 2000-11-09 2003-02-12 National Institute Of Advanced Industrial & Technology 汚染環境および環境試料の分子遺伝学的解析・評価法
JP2003093087A (ja) * 2001-09-26 2003-04-02 Marine Biotechnol Inst Co Ltd 水酸化された三環式芳香族化合物の製造方法
EP2294144A1 (en) * 2008-05-16 2011-03-16 National University of Singapore Antifouling compounds and use thereof
CN102245027A (zh) * 2008-07-29 2011-11-16 尖端科学公司 四(n-烷基吡啶)-卟啉衍生物用于杀死微生物或防止微生物生长的用途
EP2314669A1 (fr) * 2009-10-26 2011-04-27 Sarl, Polyor Substrats matriciels carbones pour l'obtention de bactéries biofertilisantes
CN101857840A (zh) * 2010-05-12 2010-10-13 上海交通大学 用于降解石油的生物菌群悬浮剂及其制备和应用方法
CN101974445A (zh) * 2010-05-26 2011-02-16 北京师范大学 高分子量多环芳烃降解菌株及其混合菌系
CN102659252A (zh) * 2012-06-05 2012-09-12 山东大学 一种处理含石油废水的方法
CN102899381A (zh) * 2012-10-11 2013-01-30 天津大学 一种表面活性剂生产菌对石油降解协同作用的研究方法
CN102888443A (zh) * 2012-10-11 2013-01-23 天津大学 一种研究低温高盐条件下微生物降解石油污染物的方法
CN104371941A (zh) * 2013-08-15 2015-02-25 中国科学院大连化学物理研究所 一株可降解石油烃的滕黄单胞菌及其应用
CN104004685A (zh) * 2014-06-06 2014-08-27 国家海洋局第三海洋研究所 一株多环芳烃降解菌1-25r09zxc-2及其应用
CN104004687A (zh) * 2014-06-06 2014-08-27 国家海洋局第三海洋研究所 一株石油烃降解菌dlfj1-1及其降解基因与应用
CN104004684A (zh) * 2014-06-06 2014-08-27 国家海洋局第三海洋研究所 一株多环芳烃降解菌s8-t8-L9及其应用
CN104004682A (zh) * 2014-06-06 2014-08-27 国家海洋局第三海洋研究所 一株石油烃降解菌dl8-7及其应用
CN104150602A (zh) * 2014-08-22 2014-11-19 华东理工大学 根据二级出水氮含量进行氮磷适量去除的污水处理方法
CN106315868A (zh) * 2016-10-25 2017-01-11 山东大学 一株可代谢多种烃类的降解菌在石油污染物处理中的应用
CN106587358A (zh) * 2016-12-16 2017-04-26 河北大学 湖泊航道船只漏油降解方法
CN107796906A (zh) * 2017-11-15 2018-03-13 天津大学 基于代谢组学改进红球菌降解条件以提高多环芳烃芘降解率的方法
CN109182234A (zh) * 2018-08-09 2019-01-11 天津大学 一种降解多环芳烃污染物的大肠杆菌工程菌及其构建方法和应用
CN109182233A (zh) * 2018-08-09 2019-01-11 天津大学 一种多环芳烃降解工程菌及其工程改造方法和应用
CN109097310A (zh) * 2018-09-09 2018-12-28 南京工业大学 降解多环芳烃-芘的厌氧型菌株及其筛选方法和应用
US20200318163A1 (en) * 2019-03-29 2020-10-08 Metabolik Technologies Inc. Biodegradation of toxic organic compounds in contaminated environments
CN110396488A (zh) * 2019-07-18 2019-11-01 中国科学院城市环境研究所 一种降解多环芳烃污染物的混合菌系及应用方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
N. GONZÁLEZ 等: "Effect of surfactants on PAH biodegradation by a bacterial consortium and on the dynamics of the bacterial community during the process", 《BIORESOURCE TECHNOLOGY》 *
刘如洋: "多环芳烃降解菌的遗传改造及石油污染土壤的微生物部分修复", 《中国优秀硕士学位论文全文数据库(电子期刊)》 *
卢晓霞 等: "焦油污染水土中多环芳烃的微生物降解", 《污染环境的生物修复》 *
姜大伟: "联苯降解微生物菌群的筛选、结构分析及降解特性研究", 《中国优秀硕士学位论文全文数据库(电子期刊)基础科学辑》 *
肖盟 等: "多环芳烃降解菌的筛选及其降解性的强化", 《煤炭科学技术》 *
贺赟: "多环芳烃菲降解人工双菌体系的构建及其代谢交流分析", 《中国优秀硕士学位论文全文数据库(电子期刊)基础科学辑》 *
马静: "多环芳烃降解菌的筛选、降解机理及降解性能研究", 《中国优秀博士学位论文全文数据库(电子期刊)》 *
黄罗锟: "假单胞菌和酿酒酵母利用木糖共培养生产PHA的初步研究", 《中国优秀硕士学位论文全文数据库(电子期刊)工程科技I辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117004546A (zh) * 2023-09-26 2023-11-07 北京建工环境修复股份有限公司 一种多环芳烃的降解组合物与多环芳烃的降解方法
CN117004546B (zh) * 2023-09-26 2023-12-26 北京建工环境修复股份有限公司 一种多环芳烃的降解组合物与多环芳烃的降解方法

Similar Documents

Publication Publication Date Title
Shradha et al. Isolation and characterization of phenol degrading bacteria from oil contaminated soil
CN104031870A (zh) 一种微生物复合菌剂及由其制备的土壤联合修复剂及二者的应用
JPH04502277A (ja) ハロゲン置換脂肪族炭化水素の生物分解を促進する方法
CN107937321B (zh) 一种枯草芽孢杆菌及其在多环芳烃污染物菲降解中的应用
CN107418907B (zh) 一种降解汽油类石油烃的微生物菌剂及其使用方法
CN112725240B (zh) 一株活不动杆菌及其菌剂和应用
CN110846257A (zh) 降解长链烷烃的微生物菌及其应用
CN111647528B (zh) 一种具有解磷作用的石油降解菌及其培养方法与应用
CN111733098B (zh) 一种芽孢杆菌在低温降解石油烃中的应用
Mikolasch et al. From oil spills to barley growth–oil‐degrading soil bacteria and their promoting effects
CN110724654B (zh) 一株生产5-羟甲基-2呋喃甲酸的铜绿假单胞菌及其应用
CN103627657A (zh) 一种用于降解木质素废水的复合菌群及其制备方法
CN113462622B (zh) 一株高效降解多种芳香类污染物的假单胞菌及其应用
CN110656079A (zh) 一种石油烃污染土壤中萘修复降解菌剂的制备方法
CN110846248A (zh) 一种用于多环芳烃降解的人工混菌体系及其应用方法
CN117025490B (zh) 一株用于土壤修复的菌株、菌剂及其应用
CN108546659B (zh) 一种烷烃和多环芳烃降解复合菌剂及其制备方法
Östberg et al. Accelerated biodegradation of n-alkanes in aqueous solution by the addition of fermented whey
CN103865821B (zh) 一种螯合球菌及其制备和应用
CN108795802B (zh) 一株解鸟氨酸拉乌尔菌ps及其在石油降解中的应用
RU2687155C1 (ru) Штамм бактерий microbacterium paraoxydans bkm ac-2619d - деструктор нефти и нефтепродуктов
Shi et al. Mineralization and kinetics of reactive Brilliant Red X-3B by a combined anaerobic–aerobic bioprocess inoculated with the coculture of fungus and bacterium
Valsala et al. Isolation of Staphylococcus nepalensis for Degradation of pyrene from Diesel Contaminated Site
Chistyakova et al. EDTA-dependent bacterial strain
Wang et al. Study of a plugging microbial consortium using crude oil as sole carbon source

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200228

RJ01 Rejection of invention patent application after publication